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EXECUTIVE SUMMARY 

Deliverable 6.3 presents the consolidated results on Artificial Intelligence and Machine Learning 

(AI/ML) enhanced climate services across Europe. The analysis covered historical, forecasted, and 

projected climate conditions, highlighting their implications for extreme impacts. 

In the evolving field of climate research, the integration of AI/ML into climate services is 

revolutionizing our understanding and response strategies to climatic changes affecting the water, 

energy, and food sectors. This transformation depends significantly on data accessibility and integrity. 

This deliverable illustrates this through various methods and case studies, encompassing a wide range 

of environmental parameters such as temperature, river discharge, and precipitation.  

This report expands from the preliminary findings (see Deliverable D6.2) and the selection of suitable 

AI/ML methodologies to address the climate data complexity and enhance its integration into 

modeling frameworks, to the developed cornerstones of the currently built impact models and climate 

services per sector.  

Water Sector 
We introduce here a Multi-basin Long-Short-Term-Memory (LSTM) framework that builds on the 

previously developed Single-basin approach (D6.2). Unlike the Single-basin model, which trains a 

separate LSTM for each station, the Multi-basin approach uses data from 2,072 monitoring stations to 

train a single model, enabling it to learn generalizable hydrological patterns across diverse 

catchments. The model integrates dynamic inputs from the pan-European E-HYPE hydrological model 

(simulated streamflow, temperature, and precipitation over a 3-day window) and static inputs 

(station-specific climatic, physiographic, hydrological, and anthropogenic attributes). To assess both 

temporal and spatial generalization, a dual cross-validation strategy was applied—splitting data by 

time and location and employing K-fold validation across stations. The results show that AI post-

processing significantly reduces biases in streamflow predictions, especially for high flows, where the 

raw E-HYPE model typically underestimates runoff. The AI-enhanced model offers a more accurate 

and spatially detailed representation of streamflow, particularly in hydrologically complex areas like 

mountainous and coastal regions. Temporal and spatial validation confirms the robustness of these 

improvements. This approach not only boosts predictive accuracy but also enables reliable streamflow 

simulations in ungauged basins, enhancing the spatial resolution and reliability of hydrological 

assessments. 

Energy Sector 
This work investigates the role of climate variability in shaping the future of the European power 

system, using the PRIMES-IEM model integrated with hydrological data from the E-HYPE model under 

multiple climate scenarios (RCP2.6, RCP4.5, RCP8.5). Building on previous research, the analysis 

applies machine learning techniques to identify key river basins influencing national hydropower 

production and to assess projected changes in hydropower availability. This approach enables a 

detailed quantification of system-level responses as the energy system transitions toward a fully 

decarbonized power sector by 2050. The findings demonstrate that even in a net-zero system, 

hydropower remains a cornerstone of system flexibility, with a significant impact on storage 

requirements, cross-border electricity flows, and the deployment of backup generation capacity. 
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Importantly, the assessment captures both annual hydropower availability and the seasonal dynamics 

of inflow patterns, offering insights into the climate-informed design of the power system. 

Food Sector 
For the food sector we present the development, the methodology, the evaluation and the results for 

the AI surrogate model, emulating the crop growth model ECroPS, for various datasets from the 

Coupled Model Intercomparison Project Phase 6 (CMIP6) collections, the European Centre for 

Medium-Range Weather Forecasts (ECMWF) Seasonal forecast System 5.1 (SEAS5.1) and ECMWF 

ReAnalysis, version 5 (ERA5, Hersbach et al. 2020). Additionally, we determine Areas of Concern (AoC), 

showing the more vulnerable areas in the future using the projections of the CMIP6 models. We show 

that the newly developed AI surrogate model is robust in accurately emulating yields, while 

performing in a faster and more simplified manner, which is the backbone of operationalization, 

scaling and further development. In terms of assessing the historical representation of climate impacts 

on yield, we see that the ERA5 reanalysis comparison with SEAS5.1/CMIP6 forcings is successful in 

metrics and qualitative analyses. At the same time, we observe an objective overestimation, likely due 

to the lack of human interventions in terms of mitigation and prevention measures in the model.  
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1. Introduction 

1.1. Summary of previous work 

The work presented in this document builds upon Deliverable 6.2 and highlights the transformative 

potential of Artificial Intelligence (AI)/Machine Learning (ML)-enhanced climate services (CSs). As 

climate change intensifies the frequency and severity of extreme events such as floods, droughts, and 

heatwaves, there is a growing need for accurate, actionable, and operational climate information. CSs 

play a vital role in translating complex climate data into tools that support adaptation, mitigation, and 

disaster risk management across sectors like water, energy, and food. 

Modern CSs are designed to meet the needs of diverse user groups by providing tailored tools, ranging 

from forecasts and long-term projections to risk assessments, and economic analyses. These tools 

enable stakeholders to make informed decisions, to help increase resilience in the face of climate 

variability and change. However, significant challenges remain in scaling and operationalizing these 

services to meet sector-specific and regional demands. Issues such as data complexity and 

heterogeneous data sources, lack of standardization, and difficulties in translating scientific outputs 

into context-specific information continue to limit their effectiveness. 

The integration of AI and ML into CSs offers promising solutions to these challenges. These 

technologies enhance the capacity to detect, predict, and attribute extreme events by improving the 

processing and interpretation of large, complex datasets. For example, ML methods can refine outputs 

from numerical weather prediction or impact models, making them more relevant for on-the-ground 

decision-making. AI-driven tools can also help bridge the gap between climate science and user needs 

by enabling more targeted and adaptive services. 

Focusing on the water, energy, and food sectors, we highlight how climate data, processed through 

AI-enhanced methodologies, can be embedded into impact models tailored to each sector’s 

requirements. These sectors demand different types of data and temporal resolutions: the water 

sector, for instance, depends on both long-term projections for planning and short-term forecasts for 

emergency response. Likewise, the energy and food sectors require customized climate information 

to optimize operations and ensure long-term sustainability. 

Building on methodologies developed in earlier phases of the project and more specifically in 

Deliverable 6.2, this report illustrates AI-enhanced CSs at the pan-European scale. These innovations 

are designed to inform local case studies and help demonstrate the added value of AI in making CSs 

more usable, responsive, and impactful. By prioritizing operationalization and user-centered design, 

we aim to contribute to closing the gap between scientific research, practical applications, and 

climate-informed decision-making, fostering climate resilience across Europe.  

The Water, Energy, and Food Sectors 
The CLINT project targets three key sectors, namely water, energy, and food, each with distinct 

vulnerabilities to climate change and extreme weather events. For each sector, the project integrates 

climate data and advanced AI/ML methodologies into modeling frameworks to improve predictions 

and inform better management strategies. 
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Water Sector 
In the water sector, the project employs the E-HYPE hydrological model to enhance predictions of 

runoff and water availability across Europe. The integration of AI/ML techniques, including statistical 

methods like Generalized Linear Models and machine learning methods such as Random Forest and 

Long Short-Term Memory networks, refines model outputs by addressing biases and improving 

predictions of extreme hydrological conditions. Post-processing techniques have significantly 

enhanced the accuracy of streamflow simulations, particularly in Central Europe. The Budyko 

framework further attributes runoff changes to climatic drivers like precipitation and 

evapotranspiration, offering insights into future water resource variability under different climate 

scenarios. These advancements provide decision-makers with robust tools for water resource 

planning and management, ensuring resilience to climate variability and extreme events.  

Energy Sector 
The energy sector relies on the PRIMES model to evaluate the impacts of climate-induced variations 

in temperature and river discharge on power demand and hydropower generation. AI-enhanced 

modeling links climate variability with energy production and consumption, highlighting the sector 

vulnerabilities to extreme realizations of future hydrologic conditions. Preliminary results 

demonstrate the potential for these tools to improve the resilience of energy systems by providing 

detailed insights into changes in hydropower energy availability. These findings are critical for 

developing adaptive strategies to ensure stable energy supplies and mitigate the impacts of extreme 

climate events on energy infrastructure. 

Food Sector 
For the food sector, the ECroPS crop growth model is utilized to analyze the effects of climate 

variability and climate extremes on agricultural yields. The model integrates detailed simulations of 

crop growth processes under varying environmental conditions, incorporating seasonal forecasts and 

high-resolution climate projections to assess vulnerabilities. The CS is built using AI-based surrogate 

modeling that aims to enhance the efficiency and scalability of such analyses, enabling resource-

efficient and robust predictions of crop performance under different scenarios. Given the observed 

and projected increase of high-impact compound events like droughts and heatwaves, the project 

supports the development of adaptive agricultural practices to ensure food security and optimize 

productivity. 

The transformative potential of AI and ML in advancing CSs forms the foundation of the work detailed 

in the upcoming chapters. These technologies have enhanced the ability to detect, predict, and 

attribute extreme events, offering stakeholders insights that are both precise and sector specific. The 

integration of advanced modeling techniques across water, energy, and food sectors demonstrates 

how AI/ML can address the complexities of climate variability, enabling a deeper understanding of its 

cascading impacts and supporting the development of resilient strategies. 

1.2. Structure and objectives of this document 

The overarching objective of this report is to describe and present the methodologies, data and results 

that are used in the three sector-oriented CSs for the European domain. 

Each chapter explores how these methodologies have been applied to refine existing models and 

operationalize them for real-world use. The focus is on addressing specific challenges in each sector, 
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enhancing runoff simulations and hydrological predictions in the water sector, linking climate 

variability with energy demand and production in the energy sector, and assessing agricultural 

vulnerabilities to extreme weather in the food sector. These detailed analyses underscore the 

importance of tailoring CSs to meet diverse user needs, incorporating high-quality data, and fostering 

collaboration across sectors. 

The chapters also illustrate the ways in which this integration of AI/ML lays a foundation for future 

advancements. From improving data integration and accessibility to scaling models for broader 

applications, the innovations highlighted set a benchmark for operationalizing CSs. By addressing 

sector-specific challenges and enabling adaptive strategies, these efforts establish CSs as 

indispensable tools for mitigating the impacts of accelerating climate change and building resilience 

across interconnected systems. 

1.3. Connection to other work packages 

This deliverable is complementary to the findings and methodologies described in other work 
packages (WPs), particularly WP2 and WP3, in some cases refining the AI/ML methods developed 
therein. Additionally, the datasets and web service requirements related to the CSs developed and 
utilized are managed through WP8. Finally, the methodologies presented in this deliverable at pan-
European scale can be streamlined to activities under WP7 for local case studies. An example of a link 
that can be identified in terms of the CS developed for the food sector, the crop growth surrogate 
model, is the application at the greater Como lake hotspot area in Italy, where modelling of crops 
without irrigation, which is currently accommodated using water from the lake basin, could be 
examined in terms of future risks such as persisting droughts under climate change scenarios.  

2. Enhanced impact models description and operability 

2.1. Water sector 

2.1.1. E-HYPE hydrological model 
Here we only briefly describe the hydrological model used in the pan-European investigation. More 
details about the hydrological model setup can be found in Deliverable D6.2 “Preliminary report on 
AI-enhanced Climate Services for extreme impacts”. 

The E-HYPE model v.3.1.3 covering the pan-European domain (8.8 million km2) was used to generate 
streamflow simulations. E-HYPE is a semi-distributed process-based model operating at a fine spatial 
resolution with 35 408 sub-basins and an average spatial resolution of 215 km2 (Hundecha et al., 
2016). The model itself has been used in various investigations involving seasonal predictions and 
assessment of the impacts of climate change on water resource management. 

The model has been forced with meteorological input from the Hydrological Global Forcing Data 
version 3.2 (HydroGFD v3.2) product. HydroGFD is an observation‐corrected reanalysis dataset 
providing historical meteorological information of precipitation and mean temperature at a 0.5° 
gridded resolution (Berg et al., 2021). HydroGFD was used to force the E-HYPE hydrological model to 
generate the reference simulation (here considered as 'observations'; pseudo-observations) across all 
35 408 sub-basins. 
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2.1.2. AI-Based Streamflow Enhancement in Ungauged Conditions 
Artificial intelligence (AI) has demonstrated strong potential for improving hydrological simulations by 
enhancing process-based models. In this study, we developed a regionalized streamflow post-
processing framework using Long Short-Term Memory (LSTM) networks to correct residual errors in 
the process-based E-HYPE model. 

LSTM networks, a specialized form of recurrent neural networks, are particularly well-suited for 
sequential data analysis (Hochreiter & Schmidhuber, 1997). Their ability to capture complex temporal 
dependencies and retain information over extended sequences makes them highly effective for 
hydrological modeling. LSTMs have been widely applied in hydrology due to their capacity to model 
the non-linear and non-stationary characteristics of hydrological time series (Kratzert et al., 2018; Lees 
et al., 2022; Li et al., 2021). By leveraging information from multiple time steps, LSTMs can effectively 
represent the intricate interactions between hydrological variables and their temporal evolution. 

This study implements a Multi-basin LSTM framework, building upon the Single-basin approach 
previously introduced in D6.2. While the Single-basin trains distinct LSTMs for each station individually 
(Du & Pechlivanidis, 2024), the multi-basin approach trains a single LSTM using data from all stations 
simultaneously. This enables the model to learn common hydrological patterns across multiple 
catchments, improving its ability to generalize beyond individual locations. 

The dataset includes observations from 2,072 monitoring stations, incorporating both dynamic and 
static variables. The dynamic inputs consist of simulated outputs from the E-HYPE model, specifically 
streamflow, temperature, and precipitation time series, with a look-back period of three days (i.e., the 
current day, as well as one and two days prior). Static inputs include environmental characteristics of 
each station, such as climatic indicators, physiographic attributes, hydrological regime descriptors, 
and measures of human impact on water systems. 

To ensure a robust evaluation of the model's performance, a dual cross-validation strategy is applied 
across both temporal and spatial dimensions. Temporal validation involved an 80-20 split of the 
dataset, where 80% of the data are used for training and 20% for testing, assessing the model’s 
generalization across different time periods. Spatial validation follows a similar 80-20 split at the 
station level, with K-fold cross-validation employed to evaluate the model’s ability to generalize across 
different geographical regions. This comprehensive validation strategy ensures that the model is not 
only temporally robust but also transferable across diverse hydrological settings. 

By integrating both dynamic and static features, the LSTM model effectively captures the interplay 
between temporal variations and spatial heterogeneity in hydrological processes. The inclusion of K-
fold cross-validation specifically addresses the challenge of spatial transferability, ensuring that the 

model remains applicable across a wide range of hydrological conditions (Willmott & Matsuura, 2005). 

2.1.3. Model Evaluation 

Evaluation metrics 
To evaluate the added value from post-processing, three evaluation metrics are used to assess the 
potential improvements regarding errors in total volume, high and low streamflow extremes (Table 
1), as represented by the Mean Absolute Error (MAE; Willmott & Matsuura, 2005), Nash-Sutcliffe 
Efficiency (NSE; Nash & Sutcliffe, 1970) and its logarithmic form (logNSE; Lamontagne et al., 2020), 
respectively. In particular, the Scaled Mean Absolute Error (SMAE) is applied to adjust MAE in relation 
to the average streamflow observed at each station, thus allowing the comparison of MAE values 
across stations that have varying streamflow magnitudes.  
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The performance of the multi-basin LSTM is evaluated through comparison with both the raw E-HYPE 
simulations and the individually trained Single-basin LSTMs. This comparative assessment helps 
quantify the potential benefits of the regionalized approach against both the original hydrological 
model outputs and station-specific machine learning models. 

Table 1 - The evaluation metrics used to quantify the model performance improvements assessing different characteristics 
of the streamflow time series. The interpretation gives common standards for model evaluation with the corresponding 
metric (Crochemore et al.). 

Characteristic 
of the 
streamflow 
signal 

Evaluation 
metric 
(Abbreviat
ion) 

Equation Interpretation 

Total Volume 

Mean 
Absolute 

Error 
(MAE); 
Scaled 
Mean 

Absolute 
Error 

(SMAE) 

𝑀𝐴𝐸 =
∑ |𝑦𝑜

𝑡−𝑦𝑚
𝑡 |𝑇

𝑡=1

𝑇
; 

𝑆𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝑦𝑜
 

Focusing on the volumetric biases 

Very good [0 – 0.3] 

Good [0.3 - 0.4] 

Fair [0.4 - 0.5] 

Poor [0.5 - 0.6] 

Very poor [0.6 - 0.7] 

Unsatisfactory [0.7 - Inf] 

High streamflow 
extreme 

Nash-
Sutcliffe 

Efficiency 
(NSE) 

1 −
∑ (𝑦𝑜

𝑡 − 𝑦𝑚
𝑡 )2𝑇

𝑡=1

∑ (𝑦𝑜
𝑡 − 𝑦𝑜)

2𝑇
𝑡=1

 

Focusing on high extremes 
Very good [0.7 – 1] 

Good [0.5 - 0.7] 

Fair [0.2 - 0.5] 

Poor [0 - 0.2] 

Very poor [-0.5 - 0] 

Unsatisfactory [-Inf - -0.5] 

Low streamflow 
extreme 

Logarithmic 
Nash-

Sutcliffe 
Efficiency 
(logNSE) 

1 −
∑ (log(𝑦𝑜

𝑡) − log(𝑦𝑚
𝑡 ))2𝑇

𝑡=1

∑ (log(𝑦𝑜
𝑡) − log(𝑦𝑜))

2𝑇
𝑡=1

 

Focusing on low extremes 
Very good [0.7 – 1] 

Good [0.5 - 0.7] 

Fair [0.2 - 0.5] 

Poor [0 - 0.2] 

Very poor [-0.5 - 0] 

Unsatisfactory [-Inf - -0.5] 

𝑦𝑜
𝑡 and 𝑦𝑚

𝑡  denotes the observation and model simulation at each timestep t, respectively, where t ranges from 
1 to T. 

Evaluation of Hydrological Signatures 
The evaluation of hydrological extremes focused on three key flow statistics (Du et al., 2024) to 
characterize the range of flow conditions across the study area: 

The 20th percentile flow (Q20) represents low flow conditions, providing insight into periods of 
reduced water availability and potential drought conditions. This quantile is particularly relevant for 
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understanding water resource management during dry periods and assessing environmental flow 
requirements. 

The 90th percentile flow (Q90) captures high flow conditions, offering information about potential 
flood events and periods of abundant water resources. This value is crucial for flood risk assessment 
and infrastructure planning. 

The mean flow provides a central tendency measure that characterizes the typical flow conditions in 
each catchment. This index serves as a baseline for understanding the overall water availability and 
helps contextualize the extreme flow conditions represented by Q20 and Q90. 

Together, these three statistics provide a comprehensive characterization of the flow regime, enabling 
the assessment of both water scarcity and abundance across the pan-European region. This analysis 
framework allows for the identification of areas prone to hydrological extremes and supports 
informed decision-making in water resource management. 

2.1.4. Model Application in the Ungauged Conditions 
Following successful training and validation, the LSTM model was deployed across all catchments in 
the pan-European region to update the hydrological signature patterns. This comprehensive 
application enabled a systematic assessment of hydrological characteristics across diverse 
geographical and climatic conditions throughout Europe. 

2.2. Energy sector 

2.2.1. PRIMES-IEM energy model 
This deliverable briefly introduces the PRIMES-IEM energy model, which is used for EU-level energy 
system analysis. A detailed description of the model setup can be found in Deliverable D6.2 
“Preliminary report on AI-enhanced Climate Services for extreme impacts”. 

The PRIMES model is a large-scale applied energy system model designed to project long-term energy 
system evolution and restructuring on both the supply and demand sides. It operates at both country 
and EU levels, integrating sector-specific modules for power generation, industry, transportation, 
residential, and services. The model incorporates behavioral dynamics and discrete choice theory to 
capture decision-making processes across different energy sectors (E3-Modeling, 2018). 

The model ensures continuity between historical Eurostat energy data and future projections, 
covering the EU 27 countries. It operates in five-year increments with projections extending to 2100. 

The PRIMES-IEM variant, used in this study, offers a flexible time-step framework, supporting up to 
8760 hourly time steps per year. It provides a detailed representation of European power and heat 
generation, integrating supply, demand, and energy exchanges within a stylized network. The model 
simulates long-term electricity and heat demand across key sectors—industry, residential, services, 
and transportation—and assesses changes in the power mix under different climate and energy 
policies, economic, and technological conditions. 

PRIMES-IEM includes an advanced representation of power generation technologies, including future 
energy solutions such as carbon capture, storage, and utilization (CCS/U), synthetic fuels, and 
renewable fuels of non-biological origin (RFNBO). It inherits the core characteristics of PRIMES, 
ensuring compatibility with EU policy instruments and climate targets, making it a valuable tool for 
analyzing the impact of climate change on the European electricity market. 
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2.2.2 AI-Based hydro generation Profiles 
Run-of-river (ROR) hydropower and reservoirs are weather-dependent energy sources that rely on 
river discharge to generate electricity. Understanding the relationship between inflow and generation 
from ROR and lakes is crucial for assessing future hydropower potential, particularly in the context of 
climate change. ML techniques have increasingly been applied to predict weather-dependent 
electricity generation, offering a non-parametric approach to model the complex relationship 
between river discharge and hydro generation. 

Building on previous work, this study applies the datasets developed with the ML method (XGBoost 
model) to analyze climate driven effects on hydropower generation at a European scale. The approach 
expands upon the methodology introduced in Deliverable D6.2, using ML to analyze hydrological data 
and project ROR and reservoirs’ generation patterns for individual countries. The generated time 
series are then integrated into the PRIMES-IEM energy model to assess future energy under different 
projections of climate. 

The dataset used in this study consists of daily river discharge estimates at the sub-basin level across 
Europe, derived from the E-HYPE (Europe Hydrological Predictions for the Environment) model. Future 
projections of hydro generation are available for the period 2025–2100, considering three 
Representative Concentration Pathways (RCPs; RCP2.6, RCP4.5, and RCP8.5). The uncertainty in these 
projections is assessed using the EURO-CORDEX climate model ensemble. To explore extreme hydro 
generation patterns, the median and the 95th percentile range of the ensemble are analyzed, ensuring 
consistency of generation patterns on a daily basis. 

In this deliverable, we present the results of the ML-based generation projections and their integration 
into PRIMES-IEM. The analysis provides insights into the potential evolution of hydropower across 
different climate scenarios, supporting energy system planning and policy development at the 
European level. 

2.2.3 Evaluation metrics for the scenarios in the Energy Sector  
Table 2 - Evaluation metrics for assessing climate-induced impacts on power generation and hydropower availability. 

Description of 
the variable 

Evaluation metric [unit] Interpretation 

Annual hydropower 
generation 

Annual sum of hydropower 
generation per country, change in 

power generation by plant type 
[GWh / year] 

Evaluates the dependence of 

power generation on 

hydropower 

Fossil generation 
Annual sum of fossil - fueled power 
generation per country, change in 

power generation by plant type 
[GWh / year] 

Evaluates the dependence of 

power generation on fossil 

fuels 

System costs 
Annual total system costs for power 

generation (investment, energy 
purchase, network costs) 

[EUR/year] 
Balancing, flexibility and fuel 
costs included in the metric 

Emissions 
Change in annual emissions from 
power generation sector (5-year 

steps) 
[MtCO2] 

Emissions from the power 
generation sector 
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2.3. Food sector – The surrogate crop growth model 

2.3.1. ECroPS crop growth model 
Crop growth models are fundamental tools for understanding how climate and management practices 

influence agricultural productivity. Models like ECroPS (https://github.com/ec-jrc/ecrops/, Toreti et 

al. 2022) and WOFOST (de Wit et al. 2019; Ceglar et al. 2019) integrate a variety of biological, 

physiological, and environmental processes to simulate crop development over time. They offer 

valuable insights into the effects of temperature, precipitation, soil moisture, and nutrient availability 

on crop performance, which helps farmers, policymakers, and agribusinesses make informed decisions 

and risk assessments. 

ECroPS, which is built on the WOFOST framework, simulates essential physiological processes such as 

photosynthesis, respiration, and transpiration. It monitors the entire crop life cycle through thermal 

time and tracks key growth stages. The model consists of interconnected modules that integrate water 

and nutrient balance calculations, and predict biomass and yield, providing time series of crop 

development under various conditions. 

Considering climate change, ECroPS can be critical in assessing agricultural vulnerability and 

supporting adaptation/mitigation strategies. It simulates various production scenarios, including 

potential, water-limited, and nutrient-limited conditions, and accounts for spatial variability across the 

greater European domain. This enables the prediction of crop responses to extreme weather events 

and aids stakeholders in developing adaptive measures. For further details refer to deliverable D6.2. 

The overall pipeline of the surrogate modeling commences from the deployment and running of the 

crop growth model itself. The ECroPS version 1.5.0 is installed and set in the High-Performance 

Computing (HPC) environment at the Deutsches Klimarechenzentrum (DKRZ) in order to utilize the 

hardware resources of the HPC and the parallelization/distribution capacities built both within the 

HPC and ECroPS itself. This system ensures scalability and the automated repetition of the 

experiments in a parallel workflow.  

ECroPS integrates multiple datasets to assess crop performance under varying climatic conditions (see 

Deliverable D6.2 for details and schematics). The process workflow involves the acquisition of 

essential input data, including year, crop type, location (longitude and latitude), sowing date, weather 

variables, soil characteristics (i.e., field capacity, wilting point, saturation concentrations and soil 

maximum thickness for root depth), and crop-specific growth parameters. The static soil and crop-

specific gridded datasets required to run ECroPS at a spatial resolution of 0.25° are provided by EC 

JRC.  

In order to illustrate the added value of the AI surrogate model we focus on grain maize. Grain maize 

is a crucial crop in the EU, primarily used for animal feed, biofuel production, and industrial 

applications. In 2023, the EU produced approximately 61.0 million tons of grain maize and corn-cob-

mix, marking a 15.2% increase from the drought-hit 2022 season, despite a 6.1% decrease in harvested 

area to 8.3 million hectares (Eurostat, retrieved 15/04/2025). ECroPS simulates maize growth 

dynamics across the timeline, providing biomass accumulation, soil moisture variations, and the 

impact of climatic factors on crop development. The weather data stem from the ERA5 reanalysis, 

consisting of daily minimum and maximum temperature, precipitation, radiation, wind speed, and 

relative humidity, and are preprocessed to extract the relevant spatial and temporal subsets for 

https://github.com/ec-jrc/ecrops/
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simulation (per latitude and longitude and timestep). More specifically, the simulation covers the 1993 

to 2023 period in order to align with the reforecast period of the seasonal forecasts (see Chapter 5). 

The spatial bounding box for grain maize within the greater European domain, as defined by the EC 

JRC for grain maize production, includes longitudes from 17.19° W to 48.99° E and latitudes from 

32.76° N to 56.01° N (see also Deliverable D6.2). 

ECroPS simulates each grid cell individually, determining the crop growth based on a sowing date. The 

model is executed in parallel for each grid cell, spanning the entire growing season, simulating crop 

growth, yield potential, and water balance dynamics. The model simulates phenology, biomass 

accumulation, and soil moisture balance, incorporating predefined workflows. Finally, following the 

simulations for attainable production, a post-processing pipeline is employed to refine the output. The 

simulation results are transformed into standardized NetCDF files, aligning geographic coordinates 

with reference datasets. 

2.3.2. AI-based surrogate modelling 
ECroPS, like most complex crop growth models, is highly demanding in computational resources and 

the calculations are quite time consuming. As a result, the democratization and wider accessibility of 

such models is currently quite difficult both in terms of deployment complexity and in resources. This 

is one major aspect that is currently addressed, with respect to the service-oriented goals in CLINT. 

We have successfully developed an AI-based surrogate model to complement traditional mechanistic 

approaches such as ECroPS and WOFOST (see also D6.2). The newly developed surrogate model 

harnesses the deep learning capacities to directly capture the nonlinear and dynamic relationships 

between environmental variables and crop responses, overcoming the complexity and high 

computational demands that limit the broader use of conventional crop models. 

The surrogate model leverages advanced computational techniques, including parallel GPU processing 

and distributed computing, to quickly analyze the input datasets, train the model and then swiftly 

predict. This capacity enables real-time decision support and risk assessment in agricultural 

management. Our surrogate model replicates the behavior of resource-intensive simulations while 

drastically reducing computational costs. This advancement allows the easy integration of crop growth 

modeling into operational decision support systems, allowing stakeholders to make better-informed 

decisions and effectively adapt to environmental uncertainties. 

The surrogate model is based on Recurrent Neural Networks (RNNs), a class of neural networks 

specifically designed for processing sequential data. Unlike traditional feedforward networks, RNNs 

have internal feedback loops that retain and utilize information from previous time steps, making 

them particularly well-suited for tasks such as time series forecasting, language modeling, and the 

simulation of complex dynamical systems. This ability to capture temporal dependencies has 

established RNNs as indispensable tools across many fields where dynamic modeling is essential. 

Building on the basic RNN architecture, LSTM networks were developed to overcome limitations of 

standard RNNs (such as the vanishing gradient problem) by employing gating mechanisms to regulate 

the flow of information. An evolution of this concept is the nested LSTM, in which LSTM cells are 

embedded within other LSTM cells to create a hierarchical memory structure. This approach enables 

the network to capture multiple layers of temporal abstraction, modeling both fine-grained details 

and broader trends in complex data sequences. The idea of incorporating hierarchical or nested 
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memory structures is exemplified by the work of Chung et al. (2017), who introduced hierarchical 

multiscale recurrent neural networks, laying the groundwork for these advanced architectures. 

In terms of training (90%) and testing (10%) of the surrogate model, the feature space consists of a 

number of features both raw and engineered. Each sample from the datasets corresponds to a specific 

location and contains daily weather observations as independent variables across multiple years with 

the yield simulation from ECroPS being the dependent variable. The model uses three meteorological 

variables as its primary features: Temperature (maximum & minimum), total precipitation and 

engineered features including temporally lagged weather variables and day of the year (DOY). 

A key aspect of this approach is the use of lagged features, which provide historical weather context, 

allowing the model to learn from past trends and improve prediction accuracy. The generation of 

lagged features provides substantial inferential torque relying mainly on three major rationales: (i) 

weather persistence, (ii) delayed crop responses to the cumulative impact of precipitation and 

temperature on crops, and (iii) improved pattern recognition capacity learning the effects of recurrent 

weather patterns, such as a dry spell followed by rainfall. For each day in the dataset, past weather 

conditions from the previous 1 to 5 days are included, which is expected to enhance the predictive 

power by allowing the model to link past weather fluctuations with future trends. 

Overall, the feature space consists of 19 features: the 3 weather input variables, 5 lag features per 

weather variable and the DOY. The output dependent variable is the grain maize yield in terms of total 

weight of storage organs (TWSO).  

2.3.3. The Architecture 
Time-series AI models like RNNs require structured input sequences to capture meaningful temporal 

representations. In our model, fixed-length 6-day batches are created to infer short-term variability 

and long-term dependencies across multiple batches. This batching methodology is based on the 

rationale that each sample contains a meaningful time window, allowing the model to identify local 

fluctuations in the independent variables from the input feature space while maintaining the ability 

to track broader trends over time. By processing non-overlapping sequences, the model avoids 

redundant information while ensuring that patterns within each batch are independent, leading to 

more accurate learning. The 6-day window reflects a balance between preserving memory efficiency 

and providing the network with enough contextual information to infer relevant weather-driven 

dynamics, specifically for crop development. 

This batching process is critical for the nested RNN architecture, as it enables the inner LSTMs to focus 

on intrinsic patterns within each batch, while the outer LSTMs look at the bigger picture, connecting 

sequences over time. This time-series partitioning strategy allows the model to efficiently process 

sequential dependencies across time scales and enhances the model's ability to recognize the 

underlying patterns. 

The model is built using a hierarchical recurrent structure designed to process time-dependent data. 

The overall architecture and the components are shown in Figure 1. The surrogate model consists of 

two levels of LSTM networks: an inner TimeDistributed LSTM responsible for capturing short-term 

patterns within each 6-day batch and an outer LSTM that processes the sequence of batch outputs to 

capture long-term dependencies. The inner LSTMs focus on short-term variability, condensing 

patterns within each batch into a summarized representation, while the outer LSTMs track transitions 
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and relationships between consecutive time windows, enabling the model to identify temporally 

varying effects of weather on crop development, ultimately providing time-series of yield prediction. 

The final fully connected layer, which is a TimeDistributed-wrapped dense layer, maintains the 

sequential nature of the predictions, while a Rectified Linear Unit (ReLU) activation function 

guarantees non-negative predictions, aligning with the needs of the target variable. Finally, the use of 

dropout layers confines potential overfitting. 

The surrogate model was trained using the Adam (Kingma and Ba 2014) optimizer. All LSTM layers 

consist of 128 units, the dropout layer has a setting of 0.3. Additionally, a Huber loss function (Huber 

1964) is employed, ensuring a more stable training than e.g. regular mean absolute error (MAE), using 

a loss delta of 0.5. 

All aspects of the modelling are implemented in Python >=3.7, using the Tensorflow Keras framework 

(Chollet 2015; Abadi et al. 2016). 

 

 

Figure 1 - Surrogate model architecture. 

2.3.4. Model evaluation 
The AI surrogate model is trained on ERA5-forced yearly crop yields from ECroPS for the years 1993 to 

2023. More specifically, the crop yield target variable is the Attainable Total Weight of Storage Organs 

(ATT_TWSO), which quantifies water-limited scenarios without human intervention for harvestable 

yield. The temporal resolution is daily while on the spatial domain the model is agnostic, and like 

ECroPS it performs per grid cell. ATT_TWSO is measured in kilograms per hectare (kg/ha), representing 

the total weight of storage organs such as grains per hectare.  

The model evaluation lies in a two stage process: Firstly, the actual training and testing process, using 

the ECroPS ATT_TWSO output (using ERA5 and the static EC JRC gridded datasets) to train and test the 

prediction pipeline. Secondly, once the AI surrogate is trained, and since ECroPS cannot be utilized 

with SEAS5.1 or CMIP6 weather data due to the different resolution of the input data (soil 

characteristics, crop-specific data and agromanagement data), the evaluation is performed between 

the ERA5-forced benchmark AI model output and the target AI surrogate yield (using SEA5.1 or 

CMIP6).  
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A series of metrics are used to provide visual and numerical aspects: 

(i) Pearson correlation chart: yearly correlation values (one value per year) between the ERA5‐based 

TWSO and SEAS5.1-forced TWSO simulations; 

(ii) correlation map: correlation per grid cell between two datasets for all the years; 

(iii) probability density functions (PDFs) overlaying: visual similarity metric which indicates whether 

the distributions share similar central tendencies, spreads, and overall shapes; 

(iv) MAE, RMSE and mean bias maps calculating the agreement between the two TWSO datasets over 

all the years and for each grid cell; 

(vii) yearly MAE, RMSE and mean bias for each cell and year. 

A summary of the performance metrics employed for the assessment of the RNN prediction (ym), with 

respect to a target variable (y0) is presented in Table 2 and Table 3. 

Table 3 - Evaluation metrics employed for the experiments of the food sector. 

Metric Description [unit] Equation Interpretation 

Root Mean 
Square error 

(RMSE) 

Average deviation 
based on the squared 
difference between 
predictions and the 

target variable. 
Penalizes larger errors 
more strongly, making 
it sensitive to outliers. 

kg/ha 
1

𝑇
∑(𝑦𝑜

𝑡   − 𝑦𝑚
𝑡 )2

𝑇

𝑡=1

 

Lower RMSE 
indicates better 

prediction. 

Mean 
absolute error 

(MAE) 

Average deviation 
based on the absolute 

difference between 
predictions and the 

target variable. More 
robust to outliers due 
to the use of absolute 

differences. 

kg/ha 
1

𝑇
∑|𝑦𝑜

𝑡  − 𝑦𝑚
𝑡 |

𝑇

𝑡=1

 

Lower MAE 
indicates better 

prediction. 

Pearson 
correlation 

Measures linear 
dependencies between 

two samples. 
Unitless 

∑ (𝑦𝑜
𝑡 − 𝑦𝑜

𝑡) (𝑦𝑚
𝑡 − 𝑦𝑚

𝑡 )𝑇
𝑡=1  

√∑ (𝑦𝑜
𝑡 − 𝑦𝑜

𝑡)
2

𝑇
𝑡=1 ∑ (𝑦𝑚

𝑡 − 𝑦𝑚
𝑡 )

2
𝑇
𝑡=1   

 

Values close to 1 
indicate strong 
positive linear 

relationship, and 
values close to -1 
strong negative 

linear 
relationship. 

Spearman 
correlation 

Rank-based correlation 
coefficient measuring 

monotonic 
relationships. 

Unitless 
Same as Pearson, but with ranked data r(xi) 

and r(yi) 

Values close to 1 
indicate a strong 

monotonic 
association of the 
ranked variables, 
and values close 
to -1 indicate a 
strong negative 

monotonic 
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association of the 
ranked variables. 

Mean Bias 

Average raw deviation 
between predictions 

and the target variable. 
Includes the sign of the 

deviation and can be 
positive or negative 

kg/ha 
1

𝑇
∑𝑦𝑜

𝑡

𝑇

𝑜=1

  − 𝑦𝑚
𝑡2 

Values close to 
zero indicate low 

bias. 

The training process includes only data from cells that actually produce yields after they reach 

Development Stage (DVS) 1 to DVS2. The Development Stage is a key phenological indicator in crop 

growth modeling, representing the progression of a crop through its life cycle from sowing to maturity. 

In ECroPS, DVS1 marks the transition from vegetative growth to the reproductive phase, when the 

crop begins flowering and shifts energy from leaf and root development to grain production. As the 

plant continues to develop, it moves toward DVS2, the stage of physiological maturity. At this point, 

grain filling is complete, and the crop is ready for harvesting. 

The overall results of the comparison of the test dataset (excluded from the training phase) with the 

corresponding ground truth from ERA5-driven ECroPS simulations, are shown in Figure 2 and Figure 

3. Both figures show that the model performance is very good, with the emulator capturing accurately 

both the evolution of the crop and the actual time of harvest reaching DVS2. 

 

Figure 2 - The histogram shows the frequency of values for the spearman correlation coefficient between the predictions of 
the test dataset and the actual ERA5-forced TWSO. 
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Figure 3 - Random samples (grid points) of crop growth timeline from DVS1 to DVS2 in terms of actual and predicted TWSO 
(kg ha-1). 

2.3.5. Model deployment 
The surrogate model exhibits great computational performance: the prediction time for a single year 

for one grid cell amounts to a total of approximately 0.008 seconds CPU time in DKRZ’s Levante HPC. 

Comparatively, the ECroPS CPU time for one year and one grid cell is approximately 70 seconds, 4 

orders of magnitude slower than the surrogate model. Due to its efficiency, the model composes an 

efficient service to digest climate datasets and thus provide yield predictions in an operation mode.  

The surrogate model was deployed for ERA5, six CMIP6 Earth System Models (ESMs) (Table 4) and the 
ECMWF SEAS5.1 seasonal forecasting system (Johnson et al., 2019). The CMIP6 ESMs were bias 
adjusted using ERA5 reference data (1940-2014) and the quantile delta mapping methodology 
(Cannon et al. 2015) using the MBC R-package. In terms of spatial extent, the EC JRC data for maize 
cultivation in the European domain is bound by a box with the following edge coordinates: Latitude: 
32.7° N to 56.0° N; Longitude: 17.2° W to 49.0° E. 
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Table 4 - The CMIP6 ESMs that were used in the Food sector. 

Model name Historical realizations 

Approximate 
nominal  

resolution in 
degrees (latitude, 

longitude) 

Reference 

CNRM-CM6-1-HR 'r1i1p1f2' 0.5°, 0.5° 
(Voldoire et al. 

2019) 

EC-Earth3 

'r11i1p1f1', 'r13i1p1f1', 
'r15i1p1f1', 'r1i1p1f1', 

'r3i1p1f1', 'r4i1p1f1', 'r6i1p1f1', 
'r9i1p1f1' 

0.7°, 0.7° 
(Döscher et al. 

2022) 

GFDL-ESM4 'r1i1p1f1' 1°, 1.25° (Dunne et al. 2020) 

HadGEM3-GC31-MM 'r1i1p1f3' 0.56°, 0.8° (Ridley et al. 2019) 

MPI-ESM1-2-HR 

'r10i1p1f1', 'r1i1p1f1', 
'r2i1p1f1', 'r3i1p1f1', 'r4i1p1f1', 
'r5i1p1f1', 'r6i1p1f1', 'r7i1p1f1', 

'r8i1p1f1', 'r9i1p1f1' 

1°, 1° (Müller et al. 2018) 

NorESM2-MM 'r1i1p1f1' 1°, 1.25° (Seland et al. 2020) 

2.3.6. Areas of Concern 
The AI surrogate model TWSO output is additionally used to determine AoC. AoC for agricultural 

production are regions within the European domain that are prone to substantial impact and require 

targeted attention. EC JRC applies this term to areas facing challenges such as yield reductions and 

crop losses, water deficits and droughts (Ridoutt et al. 2016; Seguini et al. 2019). By marking these 

areas, AoC can be viewed as service-oriented forecasts that help focus research, preparedness and 

guide mitigation actions. 

To figure out which areas need attention, an EC JRC council of experts considers multiple sources of 

information such as ground observations, satellite imagery and weather data among others, fusing 

them in a comprehensive way. The EC JRC creates scientific reports with AoC, transforming this 

information into bulletin updates for decision-makers, interested stakeholders as well as the public. 

In CLINT, we introduce the AoC concept to build a similar AI-based product with the potential of 

extending the product to various lead times, from 1 to 7 months into the future as per the SEAS5.1 

lead times implementation. AI-based AoC enhance the potential of an operational system providing 

CSs into the next seasons for different crops. AoC are derived from impact classification at the crop 

yield surrogate model output. AoC are herein defined as those grid cells exhibiting a 5% or greater loss 

with respect to the mean yields of a reference period.  
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3. Presentation of the AI-enhanced Climate Services for Extreme 
Impacts - Water sector 

3.1. Model evaluation 

Figure 4 shows the performance distribution of AI-enhanced approaches under different gauged and 

ungauged conditions. The figure presents cumulative distributions of performance metrics across the 

stations. The analysis considers two dimensions: Space (referring to station locations) and Time 

(representing temporal periods), with Train indicating training data and Test indicating testing data. 

For gauged stations, where Space: Train, Time: Test represents the testing period, both single-basin 

and multi-basin approaches show comparable baseline performance during training. In temporal 

validation, the multi-basin approach exhibits marginally superior performance compared to the single-

model approach. This enhancement may be attributed to either increased sample size or the model's 

ability to learn complex patterns when data from multiple stations are pooled together during training. 

In ungauged scenarios (Space: Test, Time: Test), where the single-basin approach calculated on each 

gauged station serves as a reference, the multi-model approach shows modest but notable 

improvements in performance with respect to raw E-HYPE. 

 

Figure 4 - Performance distribution of AI-enhanced approaches at different gauged and ungauged conditions. For SMAE, the 
perfect performance is 0 on the x-axis, therefore the model with better performance will appear with higher curve position 
(e.g. closer to 0); while for NSE and logNSE, the perfect performance is 1 on the x-axis, the model with better performance 
will appear lower in the plot (e.g. closer to 1). 
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Further analysis of different hydrological regimes reveals varying degrees of effectiveness across 

different basin types, categorized by their hydrological signatures, as shown in Figure 5. Particularly 

noteworthy is the performance in snow-dominated, baseflow-controlled catchments, where the 

multi-basin approach achieves considerable improvement in ungauged basins. This suggests the 

model's capability to effectively capture residual patterns in these catchment types. In precipitation-

driven catchments with rapid response characteristics, the Nash-Sutcliffe Efficiency (NSE) shows 

minimal improvement for ungauged stations. This limited improvement is likely due to the inherent 

complexity and high variability of quick-response systems, which make their behavior patterns 

challenging to capture and generalize. 

 

Figure 5 - Performance distribution of NSE of AI-enhanced approaches at different gauged and ungauged conditions in 
specific hydrological regimes. 

3.2. Enhanced simulation of hydrological signatures 

To assess model performance in capturing hydrological signatures, particularly high and low 

streamflow extremes, we compare AI-enhanced results with observations and raw E-HYPE outputs. 

Here only the multi-basin approach is used for AI enhancement, as the Single-basin approach lacks 

applicability to ungauged stations later. 
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Figure 6 - Spatial comparison of streamflow characteristics across Europe showing observations, E-HYPE, and AI-enhanced 
predictions (multi-basin approach), with runoff values in mm represented by the color scales. 

The spatial patterns of mean flow and flow quantiles (Q20 and Q90) across European catchments 

demonstrate the comparative performance of the E-HYPE model and our AI-enhanced approach 

against observation data (Figure 6). Both models effectively capture the general spatial distribution of 

flow characteristics of the observations, with notable patterns observed in northern Europe and along 

western coastal regions. 

The mean flow distribution (top row) reveals that both modeling approaches successfully reproduce 

the observed spatial patterns. The AI-enhanced approach shows particular skill in representing the 

higher flow regions, especially in Scandinavian countries and along the Atlantic coast, where values 

frequently exceed 4.5 mm/day. These areas typically correspond to regions with significant 

precipitation and snowmelt contributions. Low flow conditions, represented by Q20 (middle row), 
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show more subtle spatial variations. The AI-enhanced model maintains consistency with observational 

patterns, particularly in capturing the gradual transitions between flow regimes. High flow 

characteristics Q90 (bottom row), demonstrate the models' capabilities in representing extreme flow 

conditions. The AI-enhanced approach shows notable improvement in capturing the intensity and 

spatial extent of high-flow regions. This enhanced performance is most evident in coastal Norway and 

the Alpine region, where complex terrain and diverse precipitation patterns influence flow regimes. 

In summary, AI-enhanced approach shows superior performance in representing local variations and 

extreme values, suggesting that the AI enhancement effectively captures additional spatial and 

temporal dependencies that may be oversimplified in the E-HYPE model. 

Figure 7 presents a scatterplot comparison of model signatures before and after AI enhancement, 

illustrating improved alignment with observations following post-processing. For mean flows, the AI-

enhanced model shows a closer match to observations compared to the raw E-HYPE output, with 

reduced scatter and better adherence to the 1:1 line. This improvement is consistent across both 

training and testing periods and extends to ungauged stations. The enhancement is particularly 

evident for high flows (Q90), where the raw E-HYPE model systematically underestimates streamflow. 

The AI-enhanced version significantly reduces this bias, capturing flow variability more accurately. For 

low flows (Q20), both models perform similarly, though the AI-enhanced approach provides slightly 

better predictions, especially for gauged stations. Colors of the points denote different hydrological 

regimes of that station, with further details on the cluster classifications can be found in Pechlivanidis 

et al. (2020). The performance improvements remain robust across both temporal validation (testing 

period) and spatial validation (ungauged stations), confirming that the AI enhancement improves 

predictive accuracy rather than simply overfitting to training data. 
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Figure 7 - Scatter plots comparing observed versus predicted streamflow signatures (Mean, Q20, and Q90) for raw E-HYPE 
(left panels) and AI-enhanced (right panels) results. Results are shown for both training and testing periods, and for gauged 
and ungauged stations. Different colors represent distinct hydrological clusters (1-11). The dashed line indicates the 1:1 
perfect prediction line. 

3.3. Updated streamflow signature pattern 

Based on the results above, the AI-enhanced multi-basin approach is applied to all ungauged 

catchments across the pan-European area, generating updated streamflow simulations. The AI-

enhanced streamflow signature patterns are presented in Figure 8, offering insights into the spatial 

distribution of the streamflow. 

A comparison between the raw E-HYPE runoff estimates and the AI-enhanced runoff data (Q90) 

reveals significant differences in spatial patterns and variability. The E-HYPE model (top panel) appears 

to produce a more smoothed representation, potentially missing finer-scale hydrological features. In 
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contrast, the AI-enhanced model (bottom panel) provides a more detailed and heterogeneous 

distribution, particularly in hydrologically complex regions such as mountainous areas, northern 

Europe, and major river basins. One key improvement is the enhancement of high-runoff regions, 

where the AI-processed data reveals more pronounced localized hotspots, particularly in high-altitude 

and coastal areas. This refinement allows for a more accurate representation of extremes, improving 

the ability to capture small-scale variability. 

 

 

Figure 8 - Spatial patterns of simulated extreme high streamflows (90th percentile; Q90) before and after the AI 
enhancement. 

This study introduces a multi-basin post-processing approach that combines data from multiple river 
systems to train a single, regionalized model. Unlike previous methods that develop separate models 
for each gauged basin in D6.2, this approach integrates static basin characteristics, e.g. climatic 
conditions, physiographical attributes, and hydrological regimes, into the model inputs. This enables 
the method to capture common hydrological patterns across basins and extend its applicability to 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 
AI-ENHANCED CLIMATE SERVICES FOR EXTREME IMPACTS 33 

 

ungauged or data-scarce locations by transferring knowledge from hydrologically similar gauged 
systems. 

A key contribution of this work is its potential to improve forecast skills in operational applications. 
Hydrological forecast skill depends on two main factors: the initialization of hydrological states and 
the forcing with bias-adjusted meteorological forecasts. Biases in both components can compromise 
forecast quality, as meteorological skill declines with lead time and errors propagate from the initial 
hydrological conditions. By applying the proposed post-processing framework on reforecasts and 
observations at each lead time, lead time-specific correction factors can be generated and then can 
be applied to new forecasts, to improve accuracy throughout the forecast horizon. These 
advancements align with global efforts, such as the IAHS HELPING scientific decade and the UN’s Early 
Warnings for All initiative, which aim to reduce the impacts of hydrological hazards. Achieving these 
goals depends on accurate forecasts, highlighting the need to operationalize enhanced modelling 
frameworks. 

4. Presentation of the AI-enhanced Climate Services for Extreme 
Impacts - Energy sector 

4.1. AI-enhanced hydro inflows projections for the European energy sector 

This chapter analyzes seasonal run-of-river (ROR) inflow patterns for a historical baseline (2015–2024) 

compared to projected medium-term (2025–2035) and long-term (2045–2055) periods under three 

climate scenarios: RCP2.6, RCP4.5, and RCP8.5. Key aspects discussed include analysis of changes in 

ROR inflow potential, such as alterations in seasonal variability between the medium-term and long-

term climate projections. We discuss potential impacts on hydropower generation reliability. Finally, 

we present the results of the PRIMES-IEM model run for the long-term (2045–2055) periods under 

three climate scenarios: RCP2.6, RCP4.5, and RCP8.5. 

The analysis estimates the climate variability at different time scales on the European power system, 

contributing to the EU climate neutrality target by 2050 using the PRIMES IEM model. We demonstrate 

the projections for the power generation sector, taking into account climate variability under current 

and planned policies at the European scale to demonstrate the impact of extreme events in the energy 

sector. We analyze the potential vulnerabilities arising in specific periods of the year due to projected 

climate variability. We discuss the opportunity to mitigate the impact of climate-related events on the 

European power system that undergoes the transition under the plan of the European Union to reduce 

greenhouse gas emissions and reach emissions neutrality by 2050 (European Commission, 2019). 

We analyze hydropower generation: changes in hydropower generation at the national or regional 

level induced by climate change. The analysis focuses on the ROR-dominant European countries and 

presents data and findings on the country’s level. We simulate European countries and focus our 

assessment on the ROR-dominant power systems under 3 different climatic scenarios (RCP2.6, RCP4.5, 

and RCP8.5) available from 9 GCM models’ ensemble. The analysis focuses on the impact of annual 

and interannual variability hydropower under different realizations of climate projections. 

4.1.1. Overview of changes in the hydro inflows: historical and climate projections 
The availability of water for hydropower is crucial for assessing risks in a future decarbonized energy 

system under varying climate conditions. Decarbonizing the power sector requires a more flexible 

energy system, relying on options such as long-term storage, batteries, and pumped storage. 
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Maximizing hydropower resources, particularly in hydro-dominant countries, can enhance system 

reliability. We discuss the effect of changes in annual and intra-annual inflow patterns, affecting the 

run of river power generation and generation from river based reservoir capacities. 

In our previous work (D6.2), we identified European countries where hydropower plays a dominant 

role in the power generation mix: Austria, Croatia, Finland, France, Germany, Italy, Latvia, Portugal, 

Romania, and Spain (Table 5). Errore. L'origine riferimento non è stata trovata.Machine learning (ML) 

techniques used to project future inflows performed best in countries where ROR contributed over 

5% of total generation or exceeded 0.5 GW of installed capacity in 2020. 

Fitting ML models for countries where hydropower is produced in small quantities proved more 

challenging, often leading to overfitting during training. The model struggled to identify meaningful 

sub-basin combinations to represent the limited number of generators in the dataset, resulting in low 

accuracy. This is because small hydropower generators are usually not driven by weather patterns but 

mostly by economic signals and system’s flexibility needs. 

Table 5 - Run-of-river generation share and capacity in each country (2020). Source: ENTSO-E. 

Country ROR % of overall generation (2020) ROR capacity (GW, 2020) 

Austria 27.6% 5.25 

Croatia 20.3% 0.93 

Finland 11.4% 1.85 

France 1.4% 1.71 

Germany 2.4% 4.01 

Italy 7.0% 3.12 

Latvia 48.2% 1.59 

Portugal 13.9% 3.05   

Romania 15.5% 3.62 

Spain 6.4% 4.51 

Note: In Sweden, run-of-river hydropower also plays a significant role in the national power mix. However, the incompleteness of time series 
data in the ENTSO-E database poses a limitation for effectively training the ML models used in the analysis and is therefore not included in 
the results. 

Future projections of hydro inflows for each country were generated using a supervised machine 

learning regression model XGBoost1. We found the relationship between river basins and the ROR 

annual generation profiles. These inflows represent the availability of water resources for hydropower 

generation. ROR generation patterns have been projected for the period 2025–2100 under three 

climate scenarios: RCP2.6, RCP4.5, and RCP8.5. Simulations were conducted using nine EURO-CORDEX 

models’ ensemble. The following paragraphs describe the next steps towards constructing the 

hydropower generation profiles for run of river and lakes. We provide the descriptive analysis of 

changes in the hydropower inflows for the selected countries and discuss observed seasonal changes 

 
 

1A detailed description of the method is provided in Deliverable D6.2 and is not discussed here for the sake of 
conciseness. In the D6.2 we analyzed performance of XGBoost and Neural Networks models. The XGBoost was 
found to be more balanced in its prediction in relation to the ground truth and was chosen to construct the 
annual generation profiles. 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 
AI-ENHANCED CLIMATE SERVICES FOR EXTREME IMPACTS 35 

 

in the projected hydropower inflows. We follow up with the analysis of climate-enhanced scenarios 

for the European power generation system under 2050 emissions neutrality target. 

 

Figure 9 - Historical and projected inflows for Austria: models’ ensemble and scenarios: RCP2.6, RCP4.5, RCP8.5 (Note: 
Graphs for the rest of hydro-dominant countries are available in the Appendix). 

Figure 9 illustrates the projected ROR inflows for Austria, showing historical inflow variability alongside 

ML-projected inflows for each RCP scenario and the models’ ensemble.  The variability in ROR 

generation patterns for each considered country is assessed by analyzing projections for each RCP 

scenario and variation in the models’ ensemble of the annual hydropower availability. Figure 10 

illustrates the percentage deviation in annual hydropower inflow from the historical average (2015–

2023) for the period 2020–2060 using the AI-enhanced annual inflow projections. For projections, 

annual inflows are estimated for the climate models’ ensemble mean and 95th percentile. The 

comparison of the median and the 95th percentile ensemble projections, highlights the range of 

potential ROR inflow variations within the analyzed period. While the analysis of ensemble’s median 

projection suggests moderate fluctuations with respect to the long-term historical average, the upper 

bound (95th percentile) reveals the possibility of extreme hydropower inflow reductions for the 

RCP8.5 scenario, particularly in southern European countries. 

These findings emphasize that the management of hydropower availability and the plans for future 

resilience need region-specific adaptation strategies and consider climate scenarios and model 

ensembles to manage hydropower availability under future climate conditions. In particular we 

observe that: 

- In the RCP2.6 scenario, hydropower inflow variability remains relatively moderate, with 

noticeable deviations in Spain, Portugal, and Latvia, where periods of increased and decreased 

inflows alternate. Similar changes are observed across the selected hydropower dominant 

countries, and we illustrate this in the example of Austria in section 0. 

- Under RCP4.5, variability intensifies, particularly in Romania and Spain, where inflows 

frequently deviate by more than ±10% from the historical average.  
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- The RCP8.5 scenario exhibits the highest fluctuations, with several regions—including Spain, 

Portugal, and Latvia—experiencing prolonged periods of reduced inflows (below -15%) and 

occasional extreme increases (above +15%). 

 

 

 

Figure 10 - Projected changes in annual ROR hydropower inflow variability (2020–2060): median vs. 95th percentile ensemble 
estimates. 

4.1.2 Implications for hydropower inflow variability: Case Austria 
This section presents an overview of the ROR inflow variability on the hydropower generation profiles 

on the example of Austria. The historical period (2015–2024) shows a pronounced seasonal cycle in a 

ROR-dominant country - Austria. Winter months (Dec–Feb) exhibit the lowest flows of the year, 

reflecting typical alpine conditions where precipitation is stored as snow and natural runoff is minimal. 

February is generally the lowest point of the year in terms of ROR inflow. Flows begin to increase in 

early spring (March–April) as temperatures rise and snowmelt commences. 

In the medium-term future (2025–2035), projected under RCP2.6, RCP4.5, and RCP8.5, Austria’s 

seasonal inflow pattern still resembles the historical cycle, but with subtle shifts emerging. Under all 

three scenarios, winter and spring inflows tend to increase slightly relative to the 2015–2024 historical 

average, while summer inflows show slight decreases, especially under higher-emission scenario 

(RCP8.5). The overall shape of the seasonal distribution remains, but the timing and magnitude of 

flows’ low and peak points begin to adjust: 

• Winter (Dec–Feb): By 2025–2035, winter ROR inflows are higher than in the historical period, 

particularly under RCP4.5 and RCP8.5. Winter inflows show a substantial increase by mid-

century: in RCP8.5 (2045–2055), monthly flows in December, January, and February are 

considerably higher than the historical level. 
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• Spring (Mar–May): Spring inflows rise noticeably in the 2025–2035 period across all RCP 

scenarios, with the effect growing from RCP2.6 to RCP8.5. Spring flows are projected to 

become much larger, with peak inflow arriving earlier by 2045–2055, especially under RCP8.5: 

May inflow exceeds June as the month with the highest inflow in the historical period, 

representing the new annual peak. 

• Summer (Jun–Aug): During early summer, June in 2025–2035 still tends to be a high-flow 

month. Mid-summer inflows are starting to decline, possibly due to earlier depletion of the 

snowpack and drier summer conditions. Under RCP4.5, July–August declines are present but 

modest, and under RCP2.6 they are minimal (summer flows remain close to historical levels). 

By 2045–2055 The decline in mid-summer flows becomes very pronounced for July and 

August. The median June inflow under RCP8.5 is lower than the historical median June (and 

also lower than May’s in this scenario). 

• Autumn (Sep–Nov): September and October inflows in 2025–2035 remain relatively low, 

similar to the historical baseline. By mid-century, autumn flows remain relatively low, with 

RCP8.5 introducing a slight extension of the summer dryness into early autumn. 

In summary, the medium-term projections show that Austria’s peak inflow timing is beginning to shift 

earlier (from June to May). Under RCP2.6, the peak remains centered on June (only a marginal 

advance). Under RCP4.5, peak flows are distributed between May and June. By 2045-2055, Austria’s 

peak runoff clearly shifts from early summer to late spring in the projections. 

 

 

Note: Historic period 2015-2023 and ensemble median monthly ROR production. Graphs for the rest of ROR-dominant 
countries are available in the Appendix. 

Figure 11 - Projected changes in annual ROR hydropower inflow variability (2020–2060): median vs. 95th percentile ensemble 
estimates. 

Deviations of the occurrence of the peak inflow are modest in 2025–2035 but become more significant 

in 2045–2055.  If electricity demand patterns do not align with this (for instance, if summer demand 

is higher due to cooling needs), there could be a mismatch in timing leading potentially to periods of 

deficit of ROR generation within each year. If Austria or neighboring regions (e.g. Germany) face peak 
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electricity demand in July-August, the hydropower supply might be contributing less to the power 

balance with river flows below historical levels. The earlier spring peak may also overlap with periods 

when reservoirs are full due to snowmelt, limiting the potential to store electricity during surplus of 

ROR generation. 

4.2. Long-term trends of hydropower generation variability in Europe 

4.2.1 Hydropower variability and capacity factor assumptions for hydropower systems    

As a next step, the analysis investigates trends in 5-year changes in ROR hydropower inflows for 

selected European countries identified as ROR-dominant. Historical inflow data (2015–2023) is 

compared to projected future inflows under three climate scenarios (RCP2.6, RCP4.5, and RCP8.5) to 

identify long-term trends in hydropower availability, Table 6. The use of 5-year intervals aligns this 

inflow analysis with the time resolution of the PRIMES-IEM model horizon, facilitating integrated 

assessments of climate impacts on future hydropower availability. 

Table 6 - Change in potential hydro generation for RCP scenarios for selected countries for climate scenarios: RCP2.6, RCP4.5, 
RCP8.5. 

 

Average annual inflow 
(historical period) 

Change in annual five-year average ROR inflow compared to 
historical period* 

[MWh] [%] [%] [%] [%] [%] [%] 

Country RCP 2015-2023 2025 2030 2035 2040 2045 2050 

Austria 

RCP2.6 1,121,087 1.6 1.1 0.5 1.5 -0.3 -0.4 

RCP4.5 1,138,844 -3.1 0.4 -1.3 -2.4 -3.9 -4.6 

RCP8.5 1,119,161 2.6 1.2 2.2 1.4 1.0 1.4 

Croatia 

RC2.6 72,470  0.0 -1.3 -1.7 0.0 -0.2 1.1 

RCP4.5 73,100  -2.8 -3.1 -2.1 -2.5 -5.2 -8.9 

RCP8.5 74,198  -2.4 -2.9 -2.3 -3.6 -1.5 -0.4 

Finland 

RC2.6 573,184  -1.6 0.8 0.7 -0.8 0.2 2.6 

RCP4.5 568,171  3.0 2.8 2.7 0.6 -1.4 2.3 

RCP8.5 568,136  -1.3 -1.8 3.3 0.2 0.5 -4.1 

France 

RC2.6 1,804,906  1.6 0.9 -1.6 -2.2 -2.0 -7.8 

RCP4.5 1,805,637  0.2 -1.0 0.2 -0.3 -3.6 -10.2 

RCP8.5 1,857,247  -4.3 -1.2 -1.0 -3.5 -1.9 -3.9 

Germany 

RC2.6 646,567  0.8 0.6 0.7 0.0 -2.4 -2.6 

RCP4.5 649,689  -0.4 0.0 -0.3 -0.5 -1.3 -4.9 

RCP8.5 643,821  0.8 0.4 1.2 0.4 2.4 0.3 

Italy 

RC2.6 1,482,194  4.7 1.2 3.7 0.5 0.4 3.1 

RCP4.5 1,450,163  2.5 2.7 5.3 3.2 1.2 -0.2 

RCP8.5 1,503,412  -3.4 -1.2 0.3 0.5 0.4 -1.6 

Latvia 

RC2.6 135,289  -1.6 -5.7 3.4 -0.4 1.9 -5.5 

RCP4.5 138,804  -3.5 -3.9 15.3 -2.6 -6.4 1.1 

RCP8.5 147,013  -8.6 -8.5 -7.0 -11.6 -9.7 -9.4 

Portugal 
RC2.6 216,929  1.7 -1.1 -5.3 -3.6 2.4 15.5 

RCP4.5 213,074  11.5 -4.2 8.2 7.9 9.3 -9.2 
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RCP8.5 230,711  -5.6 -0.6 -17.6 -5.5 -2.7 1.9 

Romania 

RC2.6 392,457  -0.3 0.8 3.6 -3.6 -3.8 7.5 

RCP4.5 384,860  4.2 4.7 7.2 8.1 6.5 0.3 

RCP8.5 408,160  1.1 5.1 -4.5 -1.2 1.8 -1.9 

Spain 

RC2.6 263,630  5.4 6.2 4.1 -1.2 3.6 8.3 

RCP4.5 256,356  11.1 6.5 8.7 10.1 13.7 -0.9 

RCP8.5 291,093 -8.6 -2.2 -17.2 -4.4 -4.7 1.1 

*Changes in annual run-of-river (ROR) inflows relative to the historical period are presented as five-year averages, 
corresponding to the modeled time steps.  

 

Country-specific details for ROR hydropower inflow variability in changing climate conditions: 

Austria: Under RCP2.6, slight positive changes in the medium term are projected (+2.6%), stabilizing 

towards mid-century. In contrast, under RCP4.5 and RCP8.5, inflows are projected to decline by 

approximately 4.6% by mid-century, reflecting increased drought conditions. 

Croatia: Moderate negative inflow changes are consistent across all RCP scenarios, worsening 

significantly under RCP4.5 (-8.9%) by 2055. 

Finland: Under RCP4.5 and RCP8.5, inflows initially rise moderately but show some fluctuations and 

declines by mid-century. 

France: Notably reduced inflows projected under RCP8.5, especially pronounced by 2050 (-10.2%). 

Germany: Stable to slightly negative inflow changes appear in medium to long-term periods, 

becoming most significant under RCP4.5 and RCP8.5 (-4.9%). 

Italy: Short-term increases under RCP4.5 and RCP8.5, followed by stabilization or slight declines 

approaching mid-century. 

Latvia: Significant positive variability appears in the medium-term under RCP4.5 (+15.3%) but 

diminishes substantially by 2055. 

Portugal: Fluctuations occur, with notable increases under RCP4.5 in the medium term (+11.5%) 

followed by significant declines in long-term scenarios, particularly under RCP8.5 (-17.6%). 

Romania: Consistent moderate-to-strong positive changes in the medium term under RCP4.5 (+8.1%) 

contrast sharply with significant negative trends under RCP8.5 in mid-century (-4.5%). 

Spain: Negative changes dominate, especially under RCP8.5 scenario by 2050 (-17.2%), indicating 

substantial future vulnerability in ROR inflows. 

With the aim to focus on the 2050 horizon, we estimate capacity factors for (the 5-year period related 

to) this year under the climate scenarios for each ROR-dominant country2. These factors serve as an 

input for interconnected PRIMES-IEM modeling, assessing the reliability and operational flexibility of 

hydropower under projected climate-driven inflow changes. Capacity factors for ROR in the identified 

 
 

2 From now on we indicate the 5 year period related to 2050 as '2050'. 
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countries for the year 2050 have been developed using ensemble median projections across the RCP 

scenarios. The resulting hourly capacity factors illustrate the anticipated operational performance of 

hydropower plants, allowing integration into broader energy system models. Notably, these 

projections indicate an effect of climate scenarios on ROR generation potential. 

 

Figure 12 - Estimated ROR capacity factors: projections for 2050 for climate scenarios: RCP2.6, RCP4.5, RCP8.5. 
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4.2.2 Impact of climate variability on hydropower generation and cross-cutting effect across 
European power generation sector under emissions neutrality target 

Scenario design 
In order to assess the cross-cutting effect of hydropower variability, we simulate the future European 

power system that is aligned with long term EU energy and climate targets (i.e. reaching the climate 

neutrality target by 2050). We focus on the years 2030 and 2050 to analyze the behavior of the 

European power system under different projected climate conditions. Projections on the inflows for 

3 RCP scenarios are available from the E-HYPE model: RCP2.6, RCP4.5, RCP8.5. For each RCP scenario 

we analyze the 9 EURO-CORDEX models ensemble’s median. To assess the impact of extreme climate 

realizations, we model the 5th and 95th percentile ensemble projections of hydropower inflows under 

the RCP8.5 and RCP4.5 scenarios. 

The main focus of the analysis is to show difference in the response to climate events with the 

decarbonized energy system described by the climate neutrality scenario, meeting the EU energy and 

climate targets in 2030 and the emissions neutrality target in 2050.  Figure 13 and Figure 14  show the 

power mix in 2030 and 2050 respectively. At this point of the close future, decarbonization of the 

power generations sector is driven by the EU Renewable Energy Directive3. Long term emissions 

reduction in energy in energy sectors ensured by EU emissions trading system (ETS) and 2050 EU 

emissions neutrality target. National coal and nuclear phase out policies announced by the European 

member states form the power mix by 2030 and beyond. The 2050 emissions neutrality target drives 

further reduction in fossil run power generation capacities, increasing the share of intermittent 

renewable generation (solar and wind) in the power mix. 

The following paragraphs present the results of a model-based scenario analysis of the European 

power system along a decarbonization pathway. The discussion focuses on key system-level 

parameters to highlight the cross-cutting effects of hydropower variability. The main evaluation 

metrics, summarized in Table 2, include: annual hydropower and fossil generation, total system costs, 

fuel purchase costs, and total GHG EU emissions. Additionally, we examine changes in net electricity 

imports between modelled regions to illustrate the impact of hydropower variability on cross-border 

power exchanges and system balancing needs. In the following chapters, the analysis of climate-

related hydrological variability encompasses both ROR generation and generation from lakes, 

representing a mix of ROR and large reservoir operations. 

As shown in Figure 1, the analysis follows five-year time steps, in line with the model’s temporal 
resolution. Furthermore, we assess climate impacts using a set of RCP scenarios, incorporating the 
ensemble median as well as the 5th and 95th percentile projections to capture a broad range of possible 
climate outcomes. From a scenario design perspective, the analysis is guided by the overarching 
objective of achieving climate neutrality by 2050 and is structured accordingly to reflect this long-term 
target. 

 
 

3 To the time of the scenario design, 2030 policy landscape was designed under the framework of 2021 legislative 
proposals for Fit for 55 policy package: 38-40% renewable share in the Final energy consumption: Proposal 
Renewable Energy Directive COM (2021/557). 
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Figure 13  – Power mix in 2030. Emissions neutrality scenario under the historical median weather years. Source: PRIMES-
IEM. 

 

Figure 14 - Power mix in 2050. Emissions neutrality scenario under the historical median weather years. Source: PRIMES-
IEM 

Climate-enhanced scenarios – projections of ensemble median 
As fossil-based power generation declines by 2050, the power system becomes increasingly reliant on 

flexibility options to balance electricity supply and demand. These include various storage 

technologies, cross-border electricity exchanges, and the utilization of power generation capacities 

with fast ramp-up capabilities. 

With relatively small variations in annual hydropower generation projected for 2030, and seasonal 

shifts in inflow peaks (as discussed in Section 4.2.1), the energy system must identify cost-optimal 

solutions to maintain balance under changing hydropower availability due to future climate conditions 

across European regions.  
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The system’s response differs between 2030 and 2050, reflecting evolving infrastructure and 

constraints. In 2030 (see Figure 15, left), the system compensates for hydropower variability primarily 

through remaining gas-fired power generation, leading to increased fuel costs and higher total power 

generation costs, including ETS-related payments. Under the RCP2.6 scenario, higher annual 

hydropower generation compared to the long-term historical median results in lower fossil fuel use, 

reduced emissions, and lower system-wide costs. However, to manage seasonal hydropower 

shortfalls, the system relies more heavily on electricity imports from neighboring regions, reflected in 

higher net imports. 

By contrast, in 2050, (see Figure 15, right), with more advanced system flexibility and reduced fossil 

fuel capacity, the optimization strategy shifts further toward renewables integration, storage, and 

cross-border coordination, underlining the critical role of climate-informed energy planning. 

  

Note for this and following Figures: Hydropower includes power generation from run-of-river power plants and reservoirs. 
Fossil generators include natural gas, oil, and coal. The axes represent the percentage difference of the climate neutrality 
scenario for the historical median weather years and RCP scenarios. Results are presented for the aggregated region 
France, Portugal, Spain.  

Figure 15 – Comparing 3 climate scenarios for 2030: RCP2.6, RCP4.5, RCP8.5. Source: PRIMES-IEM. 
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Central Europe: Austria, Belgium, Luxembourg, Netherlands, Germany. Eastern Europe: Czech Republic, Estonia, Latvia, 
Lithuania, Poland, Slovakia. Eastern Europe: Czech Republic, Estonia, Latvia, Lithuania, Poland, Slovakia. Scandinavia: 
Denmark, Finland, Sweden, Ireland. South-East Europe: Bulgaria, Croatia, Hungary, Romania, Slovenia. Southern Europe: 
Cyprus, Greece, Italy, Malta. Iberian Peninsula: France, Portugal, Spain. 

Figure 16 – Relationship between hydropower generation and fossil run generation for 3 climate scenarios for 2030: 
RCP2.6, RCP4.5, RCP8.5 Source: PRIMES-IEM. 

Changes in hydropower generation—based on the median of the model ensemble projections by 2030 

under the RCP climate scenarios—have a noticeable impact on fossil-based power generation, which 

at that point consists mainly of gas-fired capacities. These changes enable lower fossil-fired power 

generation (Figure 16), contributing to lower emissions and fuel purchase costs. 

By 2050, however, the influence of hydropower variability on emissions and fossil generation becomes 

marginal, as fossil-based generation is nearly eliminated from the EU power system. At this stage, the 

system's flexibility is largely ensured through various storage options and interconnection capacity 

between the member states and regions. 

Climate scenarios – projections of lower and upper percentile of models’ ensembles 
To capture the full range of potential impacts, the ensemble’s median projections can be 

complemented by an analysis of the 5th and 95th percentiles, representing less likely but more 

extreme climate realizations. The following paragraphs provide a detailed assessment of the power 

generation system a tightly interconnected regional cluster comprising France, Portugal, and Spain. 

Within this region, Portugal and France have been identified as ROR dominant countries, with the 

most reliable inflow projections. The analysis focuses on the structure and response of the power 

system under two climate scenarios—RCP4.5 and RCP8.5—including their 5th and 95th percentile 

realizations, which capture the range of potential climate impacts on hydropower availability and 

broader system performance. 
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Plots for other countries are available in the appendix. Plot is shown for the interconnected regional cluster comprising France, 
Portugal, and Spain. Plots for selected EU regions are provided in the Appendix. 

Figure 17 - Comparing climate scenarios for: RCP8.5 in 2030: median, lower 5% and upper 95%. Source: PRIMES-IEM. 

 

 

Plots for other countries are available in the appendix. Plot is shown for the interconnected regional cluster comprising France, 
Portugal, and Spain. Plots for selected EU regions are provided in the Appendix. 

Figure 18 – Comparing climate scenarios RCP4.5 in 2030 and 2050: median, lower 5% and upper 95%. Source: PRIMES-IEM. 

The analysis of the differences between lower and higher inflows projections under different climate 

scenarios on the interconnected regional power system, reveals that hydropower generation 

variability strongly influences system performance in 2030. In scenarios with higher hydropower 

inflows—such as the 95th percentile projections under RCP4.5 and RCP8.5—we observe reduced 

reliance on fossil fuel generation, leading to lower emissions and fuel costs (Figure 17 and Figure 18). 
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These scenarios also show reduced battery storage capacity and net imports, indicating that abundant 

hydropower can contribute to lower need for other flexibility mechanisms. Conversely, in low inflow 

scenarios (5th percentile), limited hydropower availability forces the system to heavily rely on gas-

fired generation and storage, resulting in increased emissions and total costs.  

By 2050, when the system undergoes the transformation towards decarbonization of the power 

generation sector, see Figure 18, the differences between climate projections become less 

pronounced, particularly in emissions and fossil use. However, hydropower variability continues to 

affect system dynamics. Higher inflow scenarios still lead to slightly lower battery capacity and 

imports, while low inflow scenarios necessitate greater use of flexibility options available. These 

trends illustrate how, even in a deeply decarbonized system, climate-driven hydrological variability 

continues to shape infrastructure needs and cost structures—especially through its influence on 

seasonal balancing discussed in Section 4.1.2. 

The comparison between 2030 and 2050 highlights a transition in system flexibility: from fossil-based 

backup in the near term to a greater reliance on storage and interconnectors in the long term. By 

2050, with natural gas fired power generation nearly absent, the system becomes reliant on 

deployment of batteries and cross-border electricity exchanges to manage seasonal and climate-

related fluctuations. These findings underscore the importance of integrating climate resilience into 

long-term power system planning. 

Even in fully decarbonized scenarios, climate variability—particularly shifts in hydropower inflows—

can significantly affect system costs, storage needs, and power exchanges between the regions and 

countries. Integrating climate risk into energy planning is essential to ensure the stability and 

affordability of future power systems, under the risk of climate variability. 

Using percentile-based hydropower inflow projections (5th–95th) under different RCP scenarios 

reveals how extreme, less likely climate outcomes could shape the ongoing transformation to the 

decarbonized power generation system. This approach enables more resilient, cost-effective 

infrastructure investment decisions—especially in regions with strong seasonal hydro dependencies. 

5. Presentation of the AI-enhanced Climate Services for Extreme 
Impacts - Food sector 

5.1. Performance 

We assess the AI model performance of the observation-level quality of the SEAS5.1-forced and 

CMIP6-forced surrogate yield outputs by comparing those with the ERA5-forced surrogate yield 

outputs. Hereafter, we show example metric outputs that are used, with the same process applied to 

all considered datasets.  

5.1.1. SEAS5.1 
Crop yield simulations with SEAS5.1 are generated using the surrogate model both for the reforecast 

period (1993-2016) comprising 25 ensemble members and the forecast period (2017-2023) 

comprising 51 ensemble members, focusing on the first lead time component. This choice is due to 

the known heavy deterioration of model accuracy after the one-month lead time. 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 
AI-ENHANCED CLIMATE SERVICES FOR EXTREME IMPACTS 47 

 

Figure 19 - shows the year-by-year Pearson correlation plot between all SEAS5.1 ensemble members 

and ERA5-forced yields from 1993 to 2016. In most years, correlations lie above 0.5, often clustering 

between 0.6 and 0.8. This indicates that, on average, the first-time lead SEAS5.1 ensembles capture a 

reasonable fraction of the year‐to‐year ERA5 TWSO variability. Some years (e.g. the mid-1990s) show 

better agreement than other years (e.g., early 2010s) greater uncertainty among members. Temporal 

variations in the correlation can denote internal climate variability, model biases, or sensitivity to 

initial‐ conditions.  

 
Figure 19 - Annual Pearson correlation plot for an ensemble of 25 SEAS5.1 reforecasts and ERA5-forced yields from 1993 to 
2016. 

Figure 20 and Figure 21 represent the output metrics for the reforecast period using the SEAS5.1 

ensemble member 01 (SEAS5.1_ens01). 

Figure 20 shows two pronounced peaks in the simulated (1993-2016) crop yield distribution (one near 

low TWSO values and another around 12,000 kg/ha), whereas the ERA5 has broader peaks around 

2,000–3,000 kg/ha and 10,000–11,000 kg/ha. This suggests that the SEAS5.1_ens01 is producing more 

frequent very-high TWSO occurrences compared to ERA5. In terms of the degree of overlap, the curves 

overlap substantially e.g., near 10,000–11,000 kg/ha.  
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Figure 20 - Overlaid probability density functions (PDFs) of TWSO (kg/ha) simulations forced with ERA5 and the SEAS5.1 
ensemble member 01 (SEAS5.1_ens01) 

Figure 21 a displays the correlation between ERA5 and the SEAS5.1_ens01 TWSO. Overall, much of 

the domain shows moderate to strong positive correlations suggesting that this ensemble member 

generally captures the patterns in ERA5-forced TWSO reasonably well. Some localized patches of 

lower correlation indicate where the ensemble diverges from ERA5, possibly due to local-scale 

processes or/and poorer performance of the SEAS5.1 ensemble. 

The Mediterranean coastline and the mountainous areas such as the Alps show consistently higher 

errors (e.g. very high and very low mean bias values in these areas), whereas the western 

Mediterranean near the Iberian Peninsula and mainland Europe show smaller errors and better 

agreement with ERA5 (Figure 21b, c and d). This suggests that in regions with complex topography 

and heterogeneous surface processes such as the land-sea interaction, the SEAS5.1 has greater 

difficulty reproducing accurately observed TWSO. Although regions such as the Alps and other 

mountainous areas generally yield misaligned results, they can be disregarded as most of these 

regions are not used for cultivation. 
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(a) (b) 

 

 

(c) (d) 

Figure 21 - Comparison of the ERA5 and SEAS5.1_ens01 TWSO simulations over the period 1993-2016: (a) Pearson 

correlation; (b) MAE; (c) RMSE; (d) Mean bias. 

The assessment of annual metrics through the analyzed period confirms spatial variations in model 

performance, with reduced error over the Mediterranean and larger discrepancies in northern and 

eastern parts of the continent. In terms of mean bias, yield simulations exhibit persistent (almost 

systematic) overestimation in some northern and central regions, whereas the Mediterranean 

generally experiences a more mixed, occasionally negative, bias.  

The combined analysis of MAE, RMSE, and mean bias suggests that yield estimation discrepancies are 

greatest and most consistently noticeable across Northern and Eastern Europe, with Central Europe 

exhibiting intermediate, variable patterns. Conversely, the Mediterranean region generally shows 

lower deviations. 

5.1.2. CMIP6 
In respect to the CMIP6 models, we ran the surrogate model and generated yield outputs for the 

historical simulations shown in Figure 22. The considered period is from 1993 to 2014, which is the 

same period used for SEAS5.1. This is a reasonable period for the monitoring of agricultural activity, 

since it is not affected by extreme underlying diversity in practices and production schemes. In Figure 

22 and Figure 23 we present sample metrics. 

As an example, Figure 22a shows the PDF of ERA5-forced and GFDL-ESM4-forced yields. The 

distributions of TWSO values match reasonably, except for the highest-ranking yields. The ERA5 

distribution peaks at lower yields (around 0–3000 kg/ha), whereas the GFDL-ESM4 model strongly 

peaks at high yields (around 12,000–14,000 kg/ha), indicating a tendency towards higher yield 

estimations compared to ERA5 reanalysis. 
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(a) (b) 

Figure 22 - Probability density functions (PDFs) of TWSO (kg/ha) AI-based surrogate simulations forced with ERA5 and (a) raw 

GFDL-ESM4 (r1i1p1f1) / (b) bias-adjusted GFDL-ESM4 (r1i1p1f1) for 1993-2014. 

The performance in terms of PDFs similarity is evidently better in the bias adjusted version of that 

CMIP6 model than in the raw data as seen in Figure 22b. 

The panels of Figure 23 illustrate the performance metrics of GFDL-ESM4 with respect to ERA5-forced 

TWSOs. High RMSE and MAE values consistently appear over the Mediterranean and certain eastern 

European regions. These errors correspond to negative mean biases, especially in southern and 

southeastern areas, revealing an overestimation of yield by the CMIP6-forced yields. Conversely, 

northern and central European areas show comparatively small differences, although localized 

discrepancies do appear. The left panels of Figure 23 shows the raw (non-bias corrected) error maps, 

which show comparatively larger departures than the bias adjusted CMIP6-forced TWSO outputs as 

depicted in the right panels. 
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(a) (d)  

  

 

(b) (e)  

 
 

 

(c) (f)  

Figure 23 - Comparison of the ERA5 and raw GFDL-ESM4 (r1i1p1f1TWSO simulations over the period 1993-2014: (a) MAE; (b) 
RMSE; (c) Mean bias. Comparison of the ERA5 and bias adjusted GFDL-ESM4 (r1i1p1f1) TWSO simulations over the period 
1993-2014: (d) MAE; (e) RMSE; (f) Mean bias. 

5.2. Areas of Concern 

5.2.1. SEAS5.1 – probabilistic AOC 
Detecting the AoC for the surrogate SEAS5.1-forced yields is based on a probabilistic pipeline. The full 

ensemble of reforecasts (1993 – 2016) is used as the reference yields. First, the procedure computes 

the mean over time and the ensemble members of TWSO from this reference dataset. Deviations are 

then defined as relative anomalies, as a percentage change of the reference value, with only negative 

anomalies retained. Dynamic thresholds are derived by computing the lower percentile (0.33 quantile) 

and the upper percentile (0.66 quantile) of the relative anomalies over the reference period and all 

ensemble members. The relative anomaly of the forecast (2017 – 2023) is then calculated using the 

same reference period, and again only negative anomalies are selected. 

For each ensemble member in the forecast, the anomaly is classified into one of three categories: 

above-normal if the forecast anomaly is greater than the upper tercile, normal if it falls between the 

lower and upper terciles, and below-normal if it is less than the lower tercile. The percentage of 

ensemble members in each category is then calculated to determine the associated probabilities. 
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Finally, we develop decision rules to be applied with the aim of assigning a “most probable forecast” 

category for each grid cell and forecast time. These rules are: (i) inconclusive, when the probabilities 

of below-normal and above-normal are equal, (ii) above-normal, when the probability above-normal 

exceeds the rest, (iii) normal to above-normal, when the probabilities of above-normal and normal are 

equal, (iv) normal, when the probability of normal exceeds the others, and (v) below-normal, when 

the probability below-normal exceeds both above-normal and normal. 

The results in terms of annual AoC forecasts for each year of the 2017-2023 period are shown in Figure 

24. During the period 2017–2023, Europe experienced substantial variability in agricultural conditions 

linked to climatic patterns, as depicted by the probabilistic Areas of Concern derived from seasonal 

forecasts. In 2017, southern European regions, notably the Iberian Peninsula and Italy exhibited 

predominantly below-normal conditions, contrasting with central and northern Europe's mixed 

patterns. The year 2018 exhibits widespread below-normal conditions across central and northern 

Europe, including France, Germany, and much of eastern Europe, suggesting significant agricultural 

stress, while parts of southern Europe, notably the Iberian Peninsula, experienced more favorable 

conditions. In 2019, below-normal conditions intensified, particularly affecting the Iberian Peninsula, 

north-eastern Europe and central Europe. The year 2020 presented a fragmented distribution of 

impacts, with persistent below-normal conditions in southern Spain and southeastern regions such as 

Greece, whereas central Europe displayed a mix of normal, above-normal, and inconclusive 

categories, emphasizing regional variability and uncertainty. By 2021, below-normal conditions 

expanded across eastern Europe, particularly impacting the Balkans, while western Europe, including 

western France and the Iberian Peninsula, showed notable improvements. The year 2022 again stood 

out, with extensive below-normal conditions dominating much of western, central, and southeastern 

Europe, including Spain, France, Germany, Italy, and Greece, signaling widespread agricultural stress. 

Finally, 2023 is characterized by highly fragmented conditions and spatial variability, with stress 

conditions affecting mainly central Europe. Overall, from 2017 to 2023, Europe’s agricultural regions 

encountered substantial climatic variability, with pronounced episodes of widespread agricultural 

stress, particularly in 2018 and 2022. Southern Europe consistently exhibited greater vulnerability, 

emphasizing the necessity of targeted agricultural management and preparedness strategies in these 

regions. 
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Figure 24 - Probabilistic Areas of Concern for each year of the 2017-2023 period based on 51 ensemble members of SEAS5.1 
and the surrogate TWSO simulations. 

5.2.2. CMIP6 
For the CMIP6 models, we performed the AoC analysis for different realizations of two selected Shared 

Socioeconomic Pathways (SSP), namely SSP3-7.0 and SSP5-8.5 as shown in Table 7. Model runs are 

required to extend up to year 2050 and have a corresponding historical realization which is used to 

generate the reference yield dataset. Current national pledges under the Paris Agreement aim to limit 

warming to below 2 °C, ideally 1.5 °C. Even with full implementation of current policies, the global 

temperature is likely headed towards 2.4–2.8 °C by 2100, which is closer to SSP3-7.0 than SSP5-8.5 

(Intergovernmental Panel on Climate Change, 2023; Climate Action Tracker: 2024 warming projection 

update). 

Table 7 - CMIP6 models historical simulations used to simulate TWSO with the surrogate model for AoC generation, 1993-
2014. 

Model name SSP3-7.0 SSP5-8.5 

CNRM-CM6-1-HR - 'r1i1p1f2' 

EC-Earth3 
'r11i1p1f1', 'r13i1p1f1', 'r15i1p1f1', 

'r1i1p1f1', 'r6i1p1f1', 'r9i1p1f1'  

'r11i1p1f1', 'r13i1p1f1', 'r15i1p1f1', 
'r1i1p1f1', 'r3i1p1f1', 'r4i1p1f1', 

'r6i1p1f1', 'r9i1p1f1' 

GFDL-ESM4 'r1i1p1f1' 'r1i1p1f1' 

HadGEM3-GC31-MM - 'r1i1p1f3' 

MPI-ESM1-2-HR 

'r10i1p1f1', 'r1i1p1f1', 'r2i1p1f1', 
'r3i1p1f1', 'r4i1p1f1', 'r5i1p1f1', 
'r6i1p1f1', 'r7i1p1f1', 'r8i1p1f1', 

'r9i1p1f1' 

'r1i1p1f1', 'r2i1p1f1' 

NorESM2-MM 'r1i1p1f1' 'r1i1p1f1' 
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An example of 10-yearly averages of AoC for GFDL’s ESM for SSP5-8.5 (Figure 25) illustrates the 

concept of the AoC service based on the surrogate model. One strong model assumption for ECroPS 

and the surrogate model is the lack of any factor other than the climatological information provided 

by the ESM in any part of the process, such as land cover and land use, irrigation, 

adaptation/mitigation measures. This assumption is also the rationale behind limiting the yield 

projections and AoC to the year 2050. 

During the first decade (2015–2024), areas of agricultural concern identified by the raw projections 

are predominantly limited to the southern Mediterranean region, notably southern Spain, Italy and 

Greece, while central and northern Europe remain largely stable. Conversely, bias-corrected 

projections reveal a significantly broader extent of stress, affecting also central Europe, particularly 

France, and eastern Europe. 

In the following decade (2025–2034), non-bias corrected data indicate a moderate northward 

expansion of impacted areas, especially across southern and southeastern Europe, with growing 

intensity in Spain, southern Italy, and Greece. Scattered stress emerges in central Europe. The bias-

corrected scenario, however, demonstrates a more pronounced geographic expansion of concern, 

highlighting extensive impact across central and eastern Europe, including major agricultural regions 

in France, Ukraine, and the Balkans. 

By the period 2035–2044, non-bias corrected scenarios show similar climate-induced agricultural 

stress as the previous decade, extending into France, central Italy, and further into eastern Europe. 

The bias-corrected projections exhibit an even more severe and widespread distribution of stress, 

significantly affecting nearly all southern European regions, including intensified impacts in Spain, 

France, Italy and eastern European countries. 

For the final years (2045–2050), non-bias corrected results depict even more severe climatic concerns 

across the Mediterranean basin, southern, and eastern Europe, with further expansion into France 

and central Europe. The bias-corrected scenario projects an even greater severity and geographical 

coverage, with almost all agricultural areas in southern, central, and eastern Europe under significant 

climatic stress, including previously less affected northern regions. 

Overall, the bias-corrected scenarios consistently illustrate broader, and more intense agricultural 

vulnerability than the non-bias corrected projections. The bias correction clearly underscores that 

climate risks to agricultural productivity, particularly in southern and eastern Europe, could be 

significantly underestimated without such adjustments, highlighting the importance of incorporating 

bias adjustment for impact assessments.  
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Raw projections Bias adjusted projections 

 

Figure 25 - 10-yearly average AoC maps for GFDL-ESM4 under SSP5-8.5 based on the surrogate model; Left: raw 
projections; Right: bias adjusted projections. 

6. Summary and conclusions 

This deliverable demonstrates how AI/ML significantly enhance CSs by addressing core challenges 

ranging from hydrological patterns reconstruction to the development of surrogate models towards 

trustworthy, fast and economically viable CSs products. Sector-specific applications such as multi-

basin LSTM streamflow post-processing in the water sector, ML-based hydropower projections in the 

energy sector, and RNN surrogate models for crop yield in the food sector—highlight how AI improves 

accuracy, scalability, and operational relevance across diverse contexts. These innovations support 

climate services along the full temporal spectrum: real-time monitoring, seasonal forecasting, and 

long-term scenario-based projections. Beyond individual sectors, the integration of AI across the 

water-energy-food nexus offers a powerful pathway to address compound risks and cascading 

impacts, addressing the competing nature of those sectors, aligning with the overarching goals of CSs 

to transform complex climate data into actionable, sector-specific insights, and thus providing science 

informed policy information. 
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6.1. AI-enhanced climate services for the water sector 

In this work, we develop an AI-enhanced post-processing framework using a multi-basin LSTM model 

to improve streamflow predictions from the process-based E-HYPE model. By learning from residual 

errors, the AI model refines streamflow estimates across both gauged and ungauged catchments in 

the pan-European region. The results demonstrate that AI post-processing significantly reduces biases, 

particularly for high flows (Q90), where the raw E-HYPE model tends to underestimate runoff. The AI-

enhanced model provides a more detailed and spatially heterogeneous representation of streamflow, 

particularly in hydrologically complex regions such as mountainous and coastal areas. The robustness 

of these improvements is confirmed through temporal and spatial validation, indicating that AI-

enhancement increases predictive accuracy. Overall, this approach can be applied to other ungauged 

basins and provides AI-enhanced streamflow simulations in these ungauged basins, making 

hydrological assessments more reliable and spatially refined. 

6.2. AI-enhanced climate services for the energy sector 

The analysis underscores that hydropower is not only central to Europe's clean energy transition but 

also highly sensitive to climate-induced inflow variability. To ensure long-term system reliability, 

especially in regions exposed to pronounced extremes, investments in adaptive infrastructure, flexible 

storage, and regional cooperation will be essential. The divergence across RCP scenarios highlights the 

need for robust planning approaches that integrate uncertainty, ensuring that power systems can 

respond effectively to a changing climate while advancing toward net-zero targets. 

• Regions such as Austria, Finland, and Germany generally experience moderate shifts in inflow 

and ROR generation patterns. 

• Southern European countries (e.g., greater Iberian Peninsula including Portugal, Spain and 

France) and some Eastern European countries (e.g., Romania, Croatia) face higher variability 

and more pronounced extremes, necessitating further adaptation of flexibility options in 

power generation sector. 

• The notable divergence in projections between different RCP scenarios underscores the 

importance of adaptive capacity, robust infrastructure, and diversified flexibility measures to 

maintain reliable hydropower operations in the face of climatic uncertainties. 

6.3. AI-enhanced climate services for the food sector 

We developed and presented a well-functioning AI surrogate crop growth model which performs in a 

low cost and resource effective way, emulating yield growth, from flowering to harvest time, as 

simulated by the ECroPS model. The output consists of grain maize simulations for ERA5, six CMIP6 

ESMs and SEAS5.1 seasonal forecast system from ECMWF. We illustrate potential applications of the 

AI model in historical (reanalysis) and retrospective forecasts (SEAS5.1). Regarding future projections, 

we present and evaluate the sub-service for Areas of Concern, showing the potential of the model to 

estimate areas that exhibit high probability for elevated risk in comparison to past yields. The AI 

surrogate model can be deployed for various datasets within the European domain it was trained with 

and can easily be adapted by stakeholders.   
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