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This document does not represent the opinion of the European Union, and the European
Union is not responsible for any use that might be made of it.

Copyright notice
© Copyright 2022 by the CLINT Consortium

This document contains information that is protected by copyright. All Rights Reserved. No part of this
work covered by copyright hereon may be reproduced or used in any form or by any means without
the permission of the copyright holders.
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EXECUTIVE SUMMARY

Deliverable 6.3 presents the consolidated results on Artificial Intelligence and Machine Learning
(AI/ML) enhanced climate services across Europe. The analysis covered historical, forecasted, and
projected climate conditions, highlighting their implications for extreme impacts.

In the evolving field of climate research, the integration of AlI/ML into climate services is
revolutionizing our understanding and response strategies to climatic changes affecting the water,
energy, and food sectors. This transformation depends significantly on data accessibility and integrity.
This deliverable illustrates this through various methods and case studies, encompassing a wide range
of environmental parameters such as temperature, river discharge, and precipitation.

This report expands from the preliminary findings (see Deliverable D6.2) and the selection of suitable
Al/ML methodologies to address the climate data complexity and enhance its integration into
modeling frameworks, to the developed cornerstones of the currently built impact models and climate
services per sector.

Water Sector

We introduce here a Multi-basin Long-Short-Term-Memory (LSTM) framework that builds on the
previously developed Single-basin approach (D6.2). Unlike the Single-basin model, which trains a
separate LSTM for each station, the Multi-basin approach uses data from 2,072 monitoring stations to
train a single model, enabling it to learn generalizable hydrological patterns across diverse
catchments. The model integrates dynamic inputs from the pan-European E-HYPE hydrological model
(simulated streamflow, temperature, and precipitation over a 3-day window) and static inputs
(station-specific climatic, physiographic, hydrological, and anthropogenic attributes). To assess both
temporal and spatial generalization, a dual cross-validation strategy was applied—splitting data by
time and location and employing K-fold validation across stations. The results show that Al post-
processing significantly reduces biases in streamflow predictions, especially for high flows, where the
raw E-HYPE model typically underestimates runoff. The Al-enhanced model offers a more accurate
and spatially detailed representation of streamflow, particularly in hydrologically complex areas like
mountainous and coastal regions. Temporal and spatial validation confirms the robustness of these
improvements. This approach not only boosts predictive accuracy but also enables reliable streamflow
simulations in ungauged basins, enhancing the spatial resolution and reliability of hydrological
assessments.

Energy Sector

This work investigates the role of climate variability in shaping the future of the European power
system, using the PRIMES-IEM model integrated with hydrological data from the E-HYPE model under
multiple climate scenarios (RCP2.6, RCP4.5, RCP8.5). Building on previous research, the analysis
applies machine learning techniques to identify key river basins influencing national hydropower
production and to assess projected changes in hydropower availability. This approach enables a
detailed quantification of system-level responses as the energy system transitions toward a fully
decarbonized power sector by 2050. The findings demonstrate that even in a net-zero system,
hydropower remains a cornerstone of system flexibility, with a significant impact on storage
requirements, cross-border electricity flows, and the deployment of backup generation capacity.

AI-ENHANCED CLIMATE SERVICES FOR EXTREME IMPACTS 8
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Importantly, the assessment captures both annual hydropower availability and the seasonal dynamics
of inflow patterns, offering insights into the climate-informed design of the power system.

Food Sector

For the food sector we present the development, the methodology, the evaluation and the results for
the Al surrogate model, emulating the crop growth model ECroPS, for various datasets from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) collections, the European Centre for
Medium-Range Weather Forecasts (ECMWF) Seasonal forecast System 5.1 (SEAS5.1) and ECMWF
ReAnalysis, version 5 (ERA5, Hersbach et al. 2020). Additionally, we determine Areas of Concern (AoC),
showing the more vulnerable areas in the future using the projections of the CMIP6 models. We show
that the newly developed Al surrogate model is robust in accurately emulating yields, while
performing in a faster and more simplified manner, which is the backbone of operationalization,
scaling and further development. In terms of assessing the historical representation of climate impacts
on yield, we see that the ERA5 reanalysis comparison with SEAS5.1/CMIP6 forcings is successful in
metrics and qualitative analyses. At the same time, we observe an objective overestimation, likely due
to the lack of human interventions in terms of mitigation and prevention measures in the model.

AI-ENHANCED CLIMATE SERVICES FOR EXTREME IMPACTS 9
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1. Introduction

1.1. Summary of previous work

The work presented in this document builds upon Deliverable 6.2 and highlights the transformative
potential of Artificial Intelligence (Al)/Machine Learning (ML)-enhanced climate services (CSs). As
climate change intensifies the frequency and severity of extreme events such as floods, droughts, and
heatwaves, there is a growing need for accurate, actionable, and operational climate information. CSs
play a vital role in translating complex climate data into tools that support adaptation, mitigation, and
disaster risk management across sectors like water, energy, and food.

Modern CSs are designed to meet the needs of diverse user groups by providing tailored tools, ranging
from forecasts and long-term projections to risk assessments, and economic analyses. These tools
enable stakeholders to make informed decisions, to help increase resilience in the face of climate
variability and change. However, significant challenges remain in scaling and operationalizing these
services to meet sector-specific and regional demands. Issues such as data complexity and
heterogeneous data sources, lack of standardization, and difficulties in translating scientific outputs
into context-specific information continue to limit their effectiveness.

The integration of Al and ML into CSs offers promising solutions to these challenges. These
technologies enhance the capacity to detect, predict, and attribute extreme events by improving the
processing and interpretation of large, complex datasets. For example, ML methods can refine outputs
from numerical weather prediction or impact models, making them more relevant for on-the-ground
decision-making. Al-driven tools can also help bridge the gap between climate science and user needs
by enabling more targeted and adaptive services.

Focusing on the water, energy, and food sectors, we highlight how climate data, processed through
Al-enhanced methodologies, can be embedded into impact models tailored to each sector’s
requirements. These sectors demand different types of data and temporal resolutions: the water
sector, for instance, depends on both long-term projections for planning and short-term forecasts for
emergency response. Likewise, the energy and food sectors require customized climate information
to optimize operations and ensure long-term sustainability.

Building on methodologies developed in earlier phases of the project and more specifically in
Deliverable 6.2, this report illustrates Al-enhanced CSs at the pan-European scale. These innovations
are designed to inform local case studies and help demonstrate the added value of Al in making CSs
more usable, responsive, and impactful. By prioritizing operationalization and user-centered design,
we aim to contribute to closing the gap between scientific research, practical applications, and
climate-informed decision-making, fostering climate resilience across Europe.

The Water, Energy, and Food Sectors

The CLINT project targets three key sectors, namely water, energy, and food, each with distinct
vulnerabilities to climate change and extreme weather events. For each sector, the project integrates
climate data and advanced Al/ML methodologies into modeling frameworks to improve predictions
and inform better management strategies.

AI-ENHANCED CLIMATE SERVICES FOR EXTREME IMPACTS 12
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Water Sector

In the water sector, the project employs the E-HYPE hydrological model to enhance predictions of
runoff and water availability across Europe. The integration of Al/ML techniques, including statistical
methods like Generalized Linear Models and machine learning methods such as Random Forest and
Long Short-Term Memory networks, refines model outputs by addressing biases and improving
predictions of extreme hydrological conditions. Post-processing techniques have significantly
enhanced the accuracy of streamflow simulations, particularly in Central Europe. The Budyko
framework further attributes runoff changes to climatic drivers like precipitation and
evapotranspiration, offering insights into future water resource variability under different climate
scenarios. These advancements provide decision-makers with robust tools for water resource
planning and management, ensuring resilience to climate variability and extreme events.

Energy Sector

The energy sector relies on the PRIMES model to evaluate the impacts of climate-induced variations
in temperature and river discharge on power demand and hydropower generation. Al-enhanced
modeling links climate variability with energy production and consumption, highlighting the sector
vulnerabilities to extreme realizations of future hydrologic conditions. Preliminary results
demonstrate the potential for these tools to improve the resilience of energy systems by providing
detailed insights into changes in hydropower energy availability. These findings are critical for
developing adaptive strategies to ensure stable energy supplies and mitigate the impacts of extreme
climate events on energy infrastructure.

Food Sector

For the food sector, the ECroPS crop growth model is utilized to analyze the effects of climate
variability and climate extremes on agricultural yields. The model integrates detailed simulations of
crop growth processes under varying environmental conditions, incorporating seasonal forecasts and
high-resolution climate projections to assess vulnerabilities. The CS is built using Al-based surrogate
modeling that aims to enhance the efficiency and scalability of such analyses, enabling resource-
efficient and robust predictions of crop performance under different scenarios. Given the observed
and projected increase of high-impact compound events like droughts and heatwaves, the project
supports the development of adaptive agricultural practices to ensure food security and optimize
productivity.

The transformative potential of Al and ML in advancing CSs forms the foundation of the work detailed
in the upcoming chapters. These technologies have enhanced the ability to detect, predict, and
attribute extreme events, offering stakeholders insights that are both precise and sector specific. The
integration of advanced modeling techniques across water, energy, and food sectors demonstrates
how Al/ML can address the complexities of climate variability, enabling a deeper understanding of its
cascading impacts and supporting the development of resilient strategies.

1.2. Structure and objectives of this document

The overarching objective of this report is to describe and present the methodologies, data and results
that are used in the three sector-oriented CSs for the European domain.

Each chapter explores how these methodologies have been applied to refine existing models and
operationalize them for real-world use. The focus is on addressing specific challenges in each sector,
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enhancing runoff simulations and hydrological predictions in the water sector, linking climate
variability with energy demand and production in the energy sector, and assessing agricultural
vulnerabilities to extreme weather in the food sector. These detailed analyses underscore the
importance of tailoring CSs to meet diverse user needs, incorporating high-quality data, and fostering
collaboration across sectors.

The chapters also illustrate the ways in which this integration of Al/ML lays a foundation for future
advancements. From improving data integration and accessibility to scaling models for broader
applications, the innovations highlighted set a benchmark for operationalizing CSs. By addressing
sector-specific challenges and enabling adaptive strategies, these efforts establish CSs as
indispensable tools for mitigating the impacts of accelerating climate change and building resilience
across interconnected systems.

1.3. Connection to other work packages

This deliverable is complementary to the findings and methodologies described in other work
packages (WPs), particularly WP2 and WP3, in some cases refining the Al/ML methods developed
therein. Additionally, the datasets and web service requirements related to the CSs developed and
utilized are managed through WP8. Finally, the methodologies presented in this deliverable at pan-
European scale can be streamlined to activities under WP7 for local case studies. An example of a link
that can be identified in terms of the CS developed for the food sector, the crop growth surrogate
model, is the application at the greater Como lake hotspot area in Italy, where modelling of crops
without irrigation, which is currently accommodated using water from the lake basin, could be
examined in terms of future risks such as persisting droughts under climate change scenarios.

2. Enhanced impact models description and operability
2.1. Water sector

2.1.1. E-HYPE hydrological model

Here we only briefly describe the hydrological model used in the pan-European investigation. More
details about the hydrological model setup can be found in Deliverable D6.2 “Preliminary report on
Al-enhanced Climate Services for extreme impacts”.

The E-HYPE model v.3.1.3 covering the pan-European domain (8.8 million km?) was used to generate
streamflow simulations. E-HYPE is a semi-distributed process-based model operating at a fine spatial
resolution with 35408 sub-basins and an average spatial resolution of 215 km? (Hundecha et al.,
2016). The model itself has been used in various investigations involving seasonal predictions and
assessment of the impacts of climate change on water resource management.

The model has been forced with meteorological input from the Hydrological Global Forcing Data
version 3.2 (HydroGFD v3.2) product. HydroGFD is an observation-corrected reanalysis dataset
providing historical meteorological information of precipitation and mean temperature at a 0.5°
gridded resolution (Berg et al., 2021). HydroGFD was used to force the E-HYPE hydrological model to
generate the reference simulation (here considered as 'observations'; pseudo-observations) across all
35 408 sub-basins.
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2.1.2. Al-Based Streamflow Enhancement in Ungauged Conditions

Artificial intelligence (Al) has demonstrated strong potential for improving hydrological simulations by
enhancing process-based models. In this study, we developed a regionalized streamflow post-
processing framework using Long Short-Term Memory (LSTM) networks to correct residual errors in
the process-based E-HYPE model.

LSTM networks, a specialized form of recurrent neural networks, are particularly well-suited for
sequential data analysis (Hochreiter & Schmidhuber, 1997). Their ability to capture complex temporal
dependencies and retain information over extended sequences makes them highly effective for
hydrological modeling. LSTMs have been widely applied in hydrology due to their capacity to model
the non-linear and non-stationary characteristics of hydrological time series (Kratzert et al., 2018; Lees
et al., 2022; Li et al., 2021). By leveraging information from multiple time steps, LSTMs can effectively
represent the intricate interactions between hydrological variables and their temporal evolution.

This study implements a Multi-basin LSTM framework, building upon the Single-basin approach
previously introduced in D6.2. While the Single-basin trains distinct LSTMs for each station individually
(Du & Pechlivanidis, 2024), the multi-basin approach trains a single LSTM using data from all stations
simultaneously. This enables the model to learn common hydrological patterns across multiple
catchments, improving its ability to generalize beyond individual locations.

The dataset includes observations from 2,072 monitoring stations, incorporating both dynamic and
static variables. The dynamic inputs consist of simulated outputs from the E-HYPE model, specifically
streamflow, temperature, and precipitation time series, with a look-back period of three days (i.e., the
current day, as well as one and two days prior). Static inputs include environmental characteristics of
each station, such as climatic indicators, physiographic attributes, hydrological regime descriptors,
and measures of human impact on water systems.

To ensure a robust evaluation of the model's performance, a dual cross-validation strategy is applied
across both temporal and spatial dimensions. Temporal validation involved an 80-20 split of the
dataset, where 80% of the data are used for training and 20% for testing, assessing the model’s
generalization across different time periods. Spatial validation follows a similar 80-20 split at the
station level, with K-fold cross-validation employed to evaluate the model’s ability to generalize across
different geographical regions. This comprehensive validation strategy ensures that the model is not
only temporally robust but also transferable across diverse hydrological settings.

By integrating both dynamic and static features, the LSTM model effectively captures the interplay
between temporal variations and spatial heterogeneity in hydrological processes. The inclusion of K-
fold cross-validation specifically addresses the challenge of spatial transferability, ensuring that the
model remains applicable across a wide range of hydrological conditions (Willmott & Matsuura, 2005).

2.1.3. Model Evaluation

Evaluation metrics

To evaluate the added value from post-processing, three evaluation metrics are used to assess the
potential improvements regarding errors in total volume, high and low streamflow extremes (Table
1), as represented by the Mean Absolute Error (MAE; Willmott & Matsuura, 2005), Nash-Sutcliffe
Efficiency (NSE; Nash & Sutcliffe, 1970) and its logarithmic form (logNSE; Lamontagne et al., 2020),
respectively. In particular, the Scaled Mean Absolute Error (SMAE) is applied to adjust MAE in relation
to the average streamflow observed at each station, thus allowing the comparison of MAE values
across stations that have varying streamflow magnitudes.
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The performance of the multi-basin LSTM is evaluated through comparison with both the raw E-HYPE
simulations and the individually trained Single-basin LSTMs. This comparative assessment helps
quantify the potential benefits of the regionalized approach against both the original hydrological
model outputs and station-specific machine learning models.

Table 1 - The evaluation metrics used to quantify the model performance improvements assessing different characteristics

of the streamflow time series. The interpretation gives common standards for model evaluation with the corresponding
metric (Crochemore et al.).

Characteristic  Evaluation

of the metric . .
. Equation Interpretation
streamflow (Abbreviat q P
signal ion)
Mean
Absolute Focusing on the volumetric biases
Error e . Very good [0 —0.3]
(MAE); MAE = M; Good [0.3 - 0.4]
Total Volume Scaled MAE Fair [0.4 - 0.5]
Mean SMAE = 7. Poor [0.5 - 0.6]
(o]
Absolute Very poor [0.6 - 0.7]
Error Unsatisfactory [0.7 - Inf]
(SMAE)
Focusing on high extremes
" Very good [0.7 — 1]
Nash-
Good [0.5-0.7]
High streamflow Sutcliffe _ t=1(¥5 — ym)? Fair [0.2 - 0.5]
. . T t _ J— 2 . .
extreme Ef?;g—‘;)cv 0~ 70) Poor [0-0.2]
Very poor [-0.5 - 0]
Unsatisfactory [-Inf - -0.5]
Focusing on low extremes
Logarithmic Very good [0.7 — 1]
- Good [0.5-0.7]
Low streamflow Nash t=1(og(¥5) — log(ym))? .
extreme Sutcliffe 1 . > Fair [0.2 - 0.5]
Efficiency i=1(log(y) —10g(35)) Poor [0-0.2]
(logNSE) Very poor [-0.5 - 0]
Unsatisfactory [-Inf - -0.5]
yt and y!, denotes the observation and model simulation at each timestep t, respectively, where t ranges from
ltoT.

Evaluation of Hydrological Signatures
The evaluation of hydrological extremes focused on three key flow statistics (Du et al., 2024) to
characterize the range of flow conditions across the study area:

The 20th percentile flow (Q20) represents low flow conditions, providing insight into periods of
reduced water availability and potential drought conditions. This quantile is particularly relevant for
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understanding water resource management during dry periods and assessing environmental flow
requirements.

The 90th percentile flow (Q90) captures high flow conditions, offering information about potential
flood events and periods of abundant water resources. This value is crucial for flood risk assessment
and infrastructure planning.

The mean flow provides a central tendency measure that characterizes the typical flow conditions in
each catchment. This index serves as a baseline for understanding the overall water availability and
helps contextualize the extreme flow conditions represented by Q20 and Q90.

Together, these three statistics provide a comprehensive characterization of the flow regime, enabling
the assessment of both water scarcity and abundance across the pan-European region. This analysis
framework allows for the identification of areas prone to hydrological extremes and supports
informed decision-making in water resource management.

2.1.4. Model Application in the Ungauged Conditions

Following successful training and validation, the LSTM model was deployed across all catchments in
the pan-European region to update the hydrological signature patterns. This comprehensive
application enabled a systematic assessment of hydrological characteristics across diverse
geographical and climatic conditions throughout Europe.

2.2. Energy sector

2.2.1. PRIMES-IEM energy model

This deliverable briefly introduces the PRIMES-IEM energy model, which is used for EU-level energy
system analysis. A detailed description of the model setup can be found in Deliverable D6.2
“Preliminary report on Al-enhanced Climate Services for extreme impacts”.

The PRIMES model is a large-scale applied energy system model designed to project long-term energy
system evolution and restructuring on both the supply and demand sides. It operates at both country
and EU levels, integrating sector-specific modules for power generation, industry, transportation,
residential, and services. The model incorporates behavioral dynamics and discrete choice theory to
capture decision-making processes across different energy sectors (E3-Modeling, 2018).

The model ensures continuity between historical Eurostat energy data and future projections,
covering the EU 27 countries. It operates in five-year increments with projections extending to 2100.

The PRIMES-IEM variant, used in this study, offers a flexible time-step framework, supporting up to
8760 hourly time steps per year. It provides a detailed representation of European power and heat
generation, integrating supply, demand, and energy exchanges within a stylized network. The model
simulates long-term electricity and heat demand across key sectors—industry, residential, services,
and transportation—and assesses changes in the power mix under different climate and energy
policies, economic, and technological conditions.

PRIMES-IEM includes an advanced representation of power generation technologies, including future
energy solutions such as carbon capture, storage, and utilization (CCS/U), synthetic fuels, and
renewable fuels of non-biological origin (RFNBO). It inherits the core characteristics of PRIMES,
ensuring compatibility with EU policy instruments and climate targets, making it a valuable tool for
analyzing the impact of climate change on the European electricity market.
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2.2.2 Al-Based hydro generation Profiles

Run-of-river (ROR) hydropower and reservoirs are weather-dependent energy sources that rely on
river discharge to generate electricity. Understanding the relationship between inflow and generation
from ROR and lakes is crucial for assessing future hydropower potential, particularly in the context of
climate change. ML techniques have increasingly been applied to predict weather-dependent
electricity generation, offering a non-parametric approach to model the complex relationship
between river discharge and hydro generation.

Building on previous work, this study applies the datasets developed with the ML method (XGBoost
model) to analyze climate driven effects on hydropower generation at a European scale. The approach
expands upon the methodology introduced in Deliverable D6.2, using ML to analyze hydrological data
and project ROR and reservoirs’ generation patterns for individual countries. The generated time
series are then integrated into the PRIMES-IEM energy model to assess future energy under different
projections of climate.

The dataset used in this study consists of daily river discharge estimates at the sub-basin level across
Europe, derived from the E-HYPE (Europe Hydrological Predictions for the Environment) model. Future
projections of hydro generation are available for the period 2025-2100, considering three
Representative Concentration Pathways (RCPs; RCP2.6, RCP4.5, and RCP8.5). The uncertainty in these
projections is assessed using the EURO-CORDEX climate model ensemble. To explore extreme hydro
generation patterns, the median and the 95th percentile range of the ensemble are analyzed, ensuring
consistency of generation patterns on a daily basis.

In this deliverable, we present the results of the ML-based generation projections and their integration
into PRIMES-IEM. The analysis provides insights into the potential evolution of hydropower across
different climate scenarios, supporting energy system planning and policy development at the
European level.

2.2.3 Evaluation metrics for the scenarios in the Energy Sector
Table 2 - Evaluation metrics for assessing climate-induced impacts on power generation and hydropower availability.

Description of

. Evaluation metric Interpretation
the variable P
Annual sum of hydropower Evaluates the dependence of
Annual hydropower . . :
eneration generation per country, change in [GWh / year] power generation on
& power generation by plant type hydropower
Annual sum of fossil - fueled power Evaluates the dependence of
Fossil generation generation per country, change in [GWHh / year] power generation on fossil
power generation by plant type fuels

Annual total system costs for power
System costs generation (investment, energy [EUR/year]
purchase, network costs)

Balancing, flexibility and fuel
costs included in the metric

Change in annual emissions from
Emissions power generation sector (5-year [MtCO2]
steps)

Emissions from the power
generation sector
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2.3. Food sector — The surrogate crop growth model

2.3.1. ECroPS crop growth model

Crop growth models are fundamental tools for understanding how climate and management practices
influence agricultural productivity. Models like ECroPS (https://github.com/ec-jrc/ecrops/, Toreti et
al. 2022) and WOFOST (de Wit et al. 2019; Ceglar et al. 2019) integrate a variety of biological,
physiological, and environmental processes to simulate crop development over time. They offer
valuable insights into the effects of temperature, precipitation, soil moisture, and nutrient availability
on crop performance, which helps farmers, policymakers, and agribusinesses make informed decisions
and risk assessments.

ECroPS, which is built on the WOFOST framework, simulates essential physiological processes such as
photosynthesis, respiration, and transpiration. It monitors the entire crop life cycle through thermal
time and tracks key growth stages. The model consists of interconnected modules that integrate water
and nutrient balance calculations, and predict biomass and yield, providing time series of crop
development under various conditions.

Considering climate change, ECroPS can be critical in assessing agricultural vulnerability and
supporting adaptation/mitigation strategies. It simulates various production scenarios, including
potential, water-limited, and nutrient-limited conditions, and accounts for spatial variability across the
greater European domain. This enables the prediction of crop responses to extreme weather events
and aids stakeholders in developing adaptive measures. For further details refer to deliverable D6.2.

The overall pipeline of the surrogate modeling commences from the deployment and running of the
crop growth model itself. The ECroPS version 1.5.0 is installed and set in the High-Performance
Computing (HPC) environment at the Deutsches Klimarechenzentrum (DKRZ) in order to utilize the
hardware resources of the HPC and the parallelization/distribution capacities built both within the
HPC and ECroPS itself. This system ensures scalability and the automated repetition of the
experiments in a parallel workflow.

ECroPS integrates multiple datasets to assess crop performance under varying climatic conditions (see
Deliverable D6.2 for details and schematics). The process workflow involves the acquisition of
essential input data, including year, crop type, location (longitude and latitude), sowing date, weather
variables, soil characteristics (i.e., field capacity, wilting point, saturation concentrations and soil
maximum thickness for root depth), and crop-specific growth parameters. The static soil and crop-
specific gridded datasets required to run ECroPS at a spatial resolution of 0.25° are provided by EC
JRC.

In order to illustrate the added value of the Al surrogate model we focus on grain maize. Grain maize
is a crucial crop in the EU, primarily used for animal feed, biofuel production, and industrial
applications. In 2023, the EU produced approximately 61.0 million tons of grain maize and corn-cob-
mix, marking a 15.2% increase from the drought-hit 2022 season, despite a 6.1% decrease in harvested
area to 8.3 million hectares (Eurostat, retrieved 15/04/2025). ECroPS simulates maize growth
dynamics across the timeline, providing biomass accumulation, soil moisture variations, and the
impact of climatic factors on crop development. The weather data stem from the ERAS reanalysis,
consisting of daily minimum and maximum temperature, precipitation, radiation, wind speed, and
relative humidity, and are preprocessed to extract the relevant spatial and temporal subsets for
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simulation (per latitude and longitude and timestep). More specifically, the simulation covers the 1993
to 2023 period in order to align with the reforecast period of the seasonal forecasts (see Chapter 5).
The spatial bounding box for grain maize within the greater European domain, as defined by the EC
JRC for grain maize production, includes longitudes from 17.19° W to 48.99° E and latitudes from
32.76° N to0 56.01° N (see also Deliverable D6.2).

ECroPS simulates each grid cell individually, determining the crop growth based on a sowing date. The
model is executed in parallel for each grid cell, spanning the entire growing season, simulating crop
growth, yield potential, and water balance dynamics. The model simulates phenology, biomass
accumulation, and soil moisture balance, incorporating predefined workflows. Finally, following the
simulations for attainable production, a post-processing pipeline is employed to refine the output. The
simulation results are transformed into standardized NetCDF files, aligning geographic coordinates
with reference datasets.

2.3.2. Al-based surrogate modelling

ECroPS, like most complex crop growth models, is highly demanding in computational resources and
the calculations are quite time consuming. As a result, the democratization and wider accessibility of
such models is currently quite difficult both in terms of deployment complexity and in resources. This
is one major aspect that is currently addressed, with respect to the service-oriented goals in CLINT.

We have successfully developed an Al-based surrogate model to complement traditional mechanistic
approaches such as ECroPS and WOFOST (see also D6.2). The newly developed surrogate model
harnesses the deep learning capacities to directly capture the nonlinear and dynamic relationships
between environmental variables and crop responses, overcoming the complexity and high
computational demands that limit the broader use of conventional crop models.

The surrogate model leverages advanced computational techniques, including parallel GPU processing
and distributed computing, to quickly analyze the input datasets, train the model and then swiftly
predict. This capacity enables real-time decision support and risk assessment in agricultural
management. Our surrogate model replicates the behavior of resource-intensive simulations while
drastically reducing computational costs. This advancement allows the easy integration of crop growth
modeling into operational decision support systems, allowing stakeholders to make better-informed
decisions and effectively adapt to environmental uncertainties.

The surrogate model is based on Recurrent Neural Networks (RNNs), a class of neural networks
specifically designed for processing sequential data. Unlike traditional feedforward networks, RNNs
have internal feedback loops that retain and utilize information from previous time steps, making
them particularly well-suited for tasks such as time series forecasting, language modeling, and the
simulation of complex dynamical systems. This ability to capture temporal dependencies has
established RNNs as indispensable tools across many fields where dynamic modeling is essential.

Building on the basic RNN architecture, LSTM networks were developed to overcome limitations of
standard RNNs (such as the vanishing gradient problem) by employing gating mechanisms to regulate
the flow of information. An evolution of this concept is the nested LSTM, in which LSTM cells are
embedded within other LSTM cells to create a hierarchical memory structure. This approach enables
the network to capture multiple layers of temporal abstraction, modeling both fine-grained details
and broader trends in complex data sequences. The idea of incorporating hierarchical or nested
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memory structures is exemplified by the work of Chung et al. (2017), who introduced hierarchical
multiscale recurrent neural networks, laying the groundwork for these advanced architectures.

In terms of training (90%) and testing (10%) of the surrogate model, the feature space consists of a
number of features both raw and engineered. Each sample from the datasets corresponds to a specific
location and contains daily weather observations as independent variables across multiple years with
the yield simulation from ECroPS being the dependent variable. The model uses three meteorological
variables as its primary features: Temperature (maximum & minimum), total precipitation and
engineered features including temporally lagged weather variables and day of the year (DOY).

A key aspect of this approach is the use of lagged features, which provide historical weather context,
allowing the model to learn from past trends and improve prediction accuracy. The generation of
lagged features provides substantial inferential torque relying mainly on three major rationales: (i)
weather persistence, (ii) delayed crop responses to the cumulative impact of precipitation and
temperature on crops, and (iii) improved pattern recognition capacity learning the effects of recurrent
weather patterns, such as a dry spell followed by rainfall. For each day in the dataset, past weather
conditions from the previous 1 to 5 days are included, which is expected to enhance the predictive
power by allowing the model to link past weather fluctuations with future trends.

Overall, the feature space consists of 19 features: the 3 weather input variables, 5 lag features per
weather variable and the DOY. The output dependent variable is the grain maize yield in terms of total
weight of storage organs (TWSO).

2.3.3. The Architecture

Time-series Al models like RNNs require structured input sequences to capture meaningful temporal
representations. In our model, fixed-length 6-day batches are created to infer short-term variability
and long-term dependencies across multiple batches. This batching methodology is based on the
rationale that each sample contains a meaningful time window, allowing the model to identify local
fluctuations in the independent variables from the input feature space while maintaining the ability
to track broader trends over time. By processing non-overlapping sequences, the model avoids
redundant information while ensuring that patterns within each batch are independent, leading to
more accurate learning. The 6-day window reflects a balance between preserving memory efficiency
and providing the network with enough contextual information to infer relevant weather-driven
dynamics, specifically for crop development.

This batching process is critical for the nested RNN architecture, as it enables the inner LSTMs to focus
on intrinsic patterns within each batch, while the outer LSTMs look at the bigger picture, connecting
sequences over time. This time-series partitioning strategy allows the model to efficiently process
sequential dependencies across time scales and enhances the model's ability to recognize the
underlying patterns.

The model is built using a hierarchical recurrent structure designed to process time-dependent data.
The overall architecture and the components are shown in Figure 1. The surrogate model consists of
two levels of LSTM networks: an inner TimeDistributed LSTM responsible for capturing short-term
patterns within each 6-day batch and an outer LSTM that processes the sequence of batch outputs to
capture long-term dependencies. The inner LSTMs focus on short-term variability, condensing
patterns within each batch into a summarized representation, while the outer LSTMs track transitions
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and relationships between consecutive time windows, enabling the model to identify temporally
varying effects of weather on crop development, ultimately providing time-series of yield prediction.

The final fully connected layer, which is a TimeDistributed-wrapped dense layer, maintains the
sequential nature of the predictions, while a Rectified Linear Unit (ReLU) activation function
guarantees non-negative predictions, aligning with the needs of the target variable. Finally, the use of
dropout layers confines potential overfitting.

The surrogate model was trained using the Adam (Kingma and Ba 2014) optimizer. All LSTM layers
consist of 128 units, the dropout layer has a setting of 0.3. Additionally, a Huber loss function (Huber
1964) is employed, ensuring a more stable training than e.g. regular mean absolute error (MAE), using
a loss delta of 0.5.

All aspects of the modelling are implemented in Python >=3.7, using the Tensorflow Keras framework
(Chollet 2015; Abadi et al. 2016).

TimeDistributed TimeDistributed TimeDistributed
LSTM LS Dropout Layer
128 cells 128 cells P v
TimeDistributed LSTM LSTM
[ Dense 128 cells 128 cells
Output TWSO

Figure 1 - Surrogate model architecture.

2.3.4. Model evaluation

The Al surrogate model is trained on ERA5-forced yearly crop yields from ECroPS for the years 1993 to
2023. More specifically, the crop yield target variable is the Attainable Total Weight of Storage Organs
(ATT_TWSO), which quantifies water-limited scenarios without human intervention for harvestable
yield. The temporal resolution is daily while on the spatial domain the model is agnostic, and like
ECroPS it performs per grid cell. ATT_TWSO is measured in kilograms per hectare (kg/ha), representing
the total weight of storage organs such as grains per hectare.

The model evaluation lies in a two stage process: Firstly, the actual training and testing process, using
the ECroPS ATT_TWSO output (using ERAS and the static EC JRC gridded datasets) to train and test the
prediction pipeline. Secondly, once the Al surrogate is trained, and since ECroPS cannot be utilized
with SEAS5.1 or CMIP6 weather data due to the different resolution of the input data (soil
characteristics, crop-specific data and agromanagement data), the evaluation is performed between
the ERA5-forced benchmark Al model output and the target Al surrogate yield (using SEA5.1 or
CMIPS6).
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A series of metrics are used to provide visual and numerical aspects:

(i) Pearson correlation chart: yearly correlation values (one value per year) between the ERA5-based
TWSO and SEAS5.1-forced TWSO simulations;

(i) correlation map: correlation per grid cell between two datasets for all the years;

(iii) probability density functions (PDFs) overlaying: visual similarity metric which indicates whether
the distributions share similar central tendencies, spreads, and overall shapes;

(iv) MAE, RMSE and mean bias maps calculating the agreement between the two TWSO datasets over
all the years and for each grid cell;

(vii) yearly MAE, RMSE and mean bias for each cell and year.

A summary of the performance metrics employed for the assessment of the RNN prediction (ym), with
respect to a target variable (yo) is presented in Table 2 and Table 3.

Table 3 - Evaluation metrics employed for the experiments of the food sector.

Metric Description Equation Interpretation
Average deviation
based on the squared
Root Mean difference between T Lower RMSE
Square error predictions and the ke/ha lz(yg — yb)? indicates better
(RMSE) target variable. T prediction.
Penalizes larger errors
more strongly, making
it sensitive to outliers.
Average deviation
based on the absolute
Mean difference between T Lower MAE
absolute error |  Predictionsandthe | yg/ha lzwg -yt indicates better
(MAE) target variable. More T = prediction.
robust to outliers due
to the use of absolute
differences.
Values close to 1
indicate strong
Pearson Measur.es linear . =1 (y§ _ y(f) (yfn _ yfn) reF::;S::hliI:,e:r:d
. dependencies between | Unitless — —
correlation WO samples. \/ZT— ( t t) T ( t Tt ) values close to -1
p t=1\Yo = Yo t=1\Ym = Vm strong negative
linear
relationship.
Values close to 1
indicate a strong
Cbased | monotonic
Rank-based correlation ) association of the
CS:rerZ[::iaor; coefficient meafsuring Unitless Same as Pearson,ab:; \:(/\I/t)h ranked data r(x;) ranked variables,
monotonic ' and values close
relationships. to -1 indicate a
strong negative
monotonic
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association of the
ranked variables.

Average raw deviation
between predictions T Values close to
Mean Bias and the target variable. | yg/ha lz yt —yt2 zero indicate low
Includes the sign of the T0=1 bias.
deviation and can be
positive or negative

The training process includes only data from cells that actually produce vyields after they reach
Development Stage (DVS) 1 to DVS2. The Development Stage is a key phenological indicator in crop
growth modeling, representing the progression of a crop through its life cycle from sowing to maturity.
In ECroPS, DVS1 marks the transition from vegetative growth to the reproductive phase, when the
crop begins flowering and shifts energy from leaf and root development to grain production. As the
plant continues to develop, it moves toward DVS2, the stage of physiological maturity. At this point,
grain filling is complete, and the crop is ready for harvesting.

The overall results of the comparison of the test dataset (excluded from the training phase) with the
corresponding ground truth from ERA5-driven ECroPS simulations, are shown in Figure 2 and Figure
3. Both figures show that the model performance is very good, with the emulator capturing accurately
both the evolution of the crop and the actual time of harvest reaching DVS2.

Histogram of Spearman Correlation Coefficients per Sample
7000 -

6000
5000 -

4000 -

Frequency

w
o
=1
S

2000 - —

1000 -

" ] T ]
0.2 0.4 0.6 0.8 1.0
Spearman Correlation Coefficient

Figure 2 - The histogram shows the frequency of values for the spearman correlation coefficient between the predictions of
the test dataset and the actual ERA5-forced TWSO.
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Figure 3 - Random samples (grid points) of crop growth timeline from DVS1 to DVS2 in terms of actual and predicted TWSO
(kg ha-1).

2.3.5. Model deployment

The surrogate model exhibits great computational performance: the prediction time for a single year
for one grid cell amounts to a total of approximately 0.008 seconds CPU time in DKRZ’s Levante HPC.
Comparatively, the ECroPS CPU time for one year and one grid cell is approximately 70 seconds, 4
orders of magnitude slower than the surrogate model. Due to its efficiency, the model composes an
efficient service to digest climate datasets and thus provide yield predictions in an operation mode.

The surrogate model was deployed for ERA5, six CMIP6 Earth System Models (ESMs) (Table 4) and the
ECMWF SEAS5.1 seasonal forecasting system (Johnson et al.,, 2019). The CMIP6 ESMs were bias
adjusted using ERAS reference data (1940-2014) and the quantile delta mapping methodology
(Cannon et al. 2015) using the MBC R-package. In terms of spatial extent, the EC JRC data for maize
cultivation in the European domain is bound by a box with the following edge coordinates: Latitude:
32.7° N to 56.0° N; Longitude: 17.2° W to 49.0° E.
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Table 4 - The CMIP6 ESMs that were used in the Food sector.

Approximate
nominal

Model name Historical realizations resolution in Reference
degrees (latitude,

longitude)
o , R R (Voldoire et al.
CNRM-CM6-1-HR rlilplf2 0.5% 0.5 2019)
'r11ilp1f1’, 'r13ilp1f1’,
'r15i1p1fl’, 'rlilp1fl’, R R (Doscher et al.
EC-Earth3 'r3i1p1f1’, 'r4ilp1fl’, 'r6ilplfl’, 0.7%,0.7 2022)
'r9ilp1fl’
GFDL-ESM4 'rlilplfl’ 1°,1.25° (Dunne et al. 2020)
HadGEM3-GC31-MM 'rlilp1f3’ 0.56°, 0.8° (Ridley et al. 2019)
'r10i1p1f1’, 'rlilp1f1’,
'r2ilp1fl’, 'r3ilp1fl’, 'r4ilp1fl’, o a0 N
MPI-ESM1-2-HR tSI1p1fl’ 6ilplfl’ T7ilplfL' 1°,1 (Miiller et al. 2018)
'r8ilplfl’, 'r9ilp1fl’
NorESM2-MM rlilplfl’ 1°,1.25° (Seland et al. 2020)

2.3.6. Areas of Concern

The Al surrogate model TWSO output is additionally used to determine AoC. AoC for agricultural
production are regions within the European domain that are prone to substantial impact and require
targeted attention. EC JRC applies this term to areas facing challenges such as yield reductions and
crop losses, water deficits and droughts (Ridoutt et al. 2016; Seguini et al. 2019). By marking these
areas, AoC can be viewed as service-oriented forecasts that help focus research, preparedness and
guide mitigation actions.

To figure out which areas need attention, an EC JRC council of experts considers multiple sources of
information such as ground observations, satellite imagery and weather data among others, fusing
them in a comprehensive way. The EC JRC creates scientific reports with AoC, transforming this
information into bulletin updates for decision-makers, interested stakeholders as well as the public.

In CLINT, we introduce the AoC concept to build a similar Al-based product with the potential of
extending the product to various lead times, from 1 to 7 months into the future as per the SEAS5.1
lead times implementation. Al-based AoC enhance the potential of an operational system providing
CSs into the next seasons for different crops. AoC are derived from impact classification at the crop
yield surrogate model output. AoC are herein defined as those grid cells exhibiting a 5% or greater loss
with respect to the mean yields of a reference period.
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3. Presentation of the Al-enhanced Climate Services for Extreme
Impacts - Water sector

3.1. Model evaluation

Figure 4 shows the performance distribution of Al-enhanced approaches under different gauged and
ungauged conditions. The figure presents cumulative distributions of performance metrics across the
stations. The analysis considers two dimensions: Space (referring to station locations) and Time
(representing temporal periods), with Train indicating training data and Test indicating testing data.
For gauged stations, where Space: Train, Time: Test represents the testing period, both single-basin
and multi-basin approaches show comparable baseline performance during training. In temporal
validation, the multi-basin approach exhibits marginally superior performance compared to the single-
model approach. This enhancement may be attributed to either increased sample size or the model's
ability to learn complex patterns when data from multiple stations are pooled together during training.
In ungauged scenarios (Space: Test, Time: Test), where the single-basin approach calculated on each
gauged station serves as a reference, the multi-model approach shows modest but notable
improvements in performance with respect to raw E-HYPE.

Space: Train Space: Train Space: Test Space: Test
Time: Train Time: Test Time: Train Time: Test
1.004 pmr e R L it | pempemmmemes ===cd
0.751
Raw
0.504
= = Single
0.25
== = Multi
oo00{ -~— W = = e
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Space: Train Space: Train Space: Test Space: Test
Time: Train Time: Test Time: Train Time: Test
1.004 > e
0.751
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0.501
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0.251
== = Multi
uoo.—' "'7“.‘- . . . . . . . . --."""7 . . . . . . . .
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Figure 4 - Performance distribution of Al-enhanced approaches at different gauged and ungauged conditions. For SMAE, the
perfect performance is 0 on the x-axis, therefore the model with better performance will appear with higher curve position
(e.g. closer to 0); while for NSE and logNSE, the perfect performance is 1 on the x-axis, the model with better performance
will appear lower in the plot (e.g. closer to 1).
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Further analysis of different hydrological regimes reveals varying degrees of effectiveness across
different basin types, categorized by their hydrological signatures, as shown in Figure 5. Particularly
noteworthy is the performance in snow-dominated, baseflow-controlled catchments, where the
multi-basin approach achieves considerable improvement in ungauged basins. This suggests the
model's capability to effectively capture residual patterns in these catchment types. In precipitation-
driven catchments with rapid response characteristics, the Nash-Sutcliffe Efficiency (NSE) shows
minimal improvement for ungauged stations. This limited improvement is likely due to the inherent
complexity and high variability of quick-response systems, which make their behavior patterns
challenging to capture and generalize.

Precipitation-driven

Space: Train Space: Train Space: Test Space: Test
Time: Train Time: Test Time: Train Time: Test
1.00- - - =
0.75-
0.50- )
0.25-
..... - Raw
U'Du . ”.-. » . . . . . N . . .--. N . . . . . . .
000 025 050 075 1.000.00 025 050 075 100000 025 050 075 100000 025 050 075 100 -~ Single
Snow -dominated ~ = Mutti
Space: Train Space: Train [ Space: Test Space: Test

Time: Train Time: Test Time: Train Time: Test
1.00+ - . v

0.75
0.50
0.25-

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

Figure 5 - Performance distribution of NSE of Al-enhanced approaches at different gauged and ungauged conditions in

specific hydrological regimes.

3.2. Enhanced simulation of hydrological signatures

To assess model performance in capturing hydrological signatures, particularly high and low
streamflow extremes, we compare Al-enhanced results with observations and raw E-HYPE outputs.
Here only the multi-basin approach is used for Al enhancement, as the Single-basin approach lacks
applicability to ungauged stations later.
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Figure 6 - Spatial comparison of streamflow characteristics across Europe showing observations, E-HYPE, and Al-enhanced
predictions (multi-basin approach), with runoff values in mm represented by the color scales.

The spatial patterns of mean flow and flow quantiles (Q20 and Q90) across European catchments
demonstrate the comparative performance of the E-HYPE model and our Al-enhanced approach
against observation data (Figure 6). Both models effectively capture the general spatial distribution of
flow characteristics of the observations, with notable patterns observed in northern Europe and along
western coastal regions.

The mean flow distribution (top row) reveals that both modeling approaches successfully reproduce
the observed spatial patterns. The Al-enhanced approach shows particular skill in representing the
higher flow regions, especially in Scandinavian countries and along the Atlantic coast, where values
frequently exceed 4.5 mm/day. These areas typically correspond to regions with significant
precipitation and snowmelt contributions. Low flow conditions, represented by Q20 (middle row),
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show more subtle spatial variations. The Al-enhanced model maintains consistency with observational
patterns, particularly in capturing the gradual transitions between flow regimes. High flow
characteristics Q90 (bottom row), demonstrate the models' capabilities in representing extreme flow
conditions. The Al-enhanced approach shows notable improvement in capturing the intensity and
spatial extent of high-flow regions. This enhanced performance is most evident in coastal Norway and
the Alpine region, where complex terrain and diverse precipitation patterns influence flow regimes.

In summary, Al-enhanced approach shows superior performance in representing local variations and
extreme values, suggesting that the Al enhancement effectively captures additional spatial and
temporal dependencies that may be oversimplified in the E-HYPE model.

Figure 7 presents a scatterplot comparison of model signatures before and after Al enhancement,
illustrating improved alignment with observations following post-processing. For mean flows, the Al-
enhanced model shows a closer match to observations compared to the raw E-HYPE output, with
reduced scatter and better adherence to the 1:1 line. This improvement is consistent across both
training and testing periods and extends to ungauged stations. The enhancement is particularly
evident for high flows (Q90), where the raw E-HYPE model systematically underestimates streamflow.
The Al-enhanced version significantly reduces this bias, capturing flow variability more accurately. For
low flows (Q20), both models perform similarly, though the Al-enhanced approach provides slightly
better predictions, especially for gauged stations. Colors of the points denote different hydrological
regimes of that station, with further details on the cluster classifications can be found in Pechlivanidis
et al. (2020). The performance improvements remain robust across both temporal validation (testing
period) and spatial validation (ungauged stations), confirming that the Al enhancement improves
predictive accuracy rather than simply overfitting to training data.
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Figure 7 - Scatter plots comparing observed versus predicted streamflow signatures (Mean, Q20, and Q90) for raw E-HYPE
(left panels) and Al-enhanced (right panels) results. Results are shown for both training and testing periods, and for gauged
and ungauged stations. Different colors represent distinct hydrological clusters (1-11). The dashed line indicates the 1:1
perfect prediction line.

3.3. Updated streamflow signature pattern

Based on the results above, the Al-enhanced multi-basin approach is applied to all ungauged
catchments across the pan-European area, generating updated streamflow simulations. The Al-
enhanced streamflow signature patterns are presented in Figure 8, offering insights into the spatial
distribution of the streamflow.

A comparison between the raw E-HYPE runoff estimates and the Al-enhanced runoff data (Q90)
reveals significant differences in spatial patterns and variability. The E-HYPE model (top panel) appears
to produce a more smoothed representation, potentially missing finer-scale hydrological features. In
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contrast, the Al-enhanced model (bottom panel) provides a more detailed and heterogeneous
distribution, particularly in hydrologically complex regions such as mountainous areas, northern
Europe, and major river basins. One key improvement is the enhancement of high-runoff regions,
where the Al-processed data reveals more pronounced localized hotspots, particularly in high-altitude
and coastal areas. This refinement allows for a more accurate representation of extremes, improving
the ability to capture small-scale variability.
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Figure 8 - Spatial patterns of simulated extreme high streamflows (90th percentile; Q90) before and after the Al
enhancement.

This study introduces a multi-basin post-processing approach that combines data from multiple river
systems to train a single, regionalized model. Unlike previous methods that develop separate models
for each gauged basin in D6.2, this approach integrates static basin characteristics, e.g. climatic
conditions, physiographical attributes, and hydrological regimes, into the model inputs. This enables
the method to capture common hydrological patterns across basins and extend its applicability to
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ungauged or data-scarce locations by transferring knowledge from hydrologically similar gauged
systems.

A key contribution of this work is its potential to improve forecast skills in operational applications.
Hydrological forecast skill depends on two main factors: the initialization of hydrological states and
the forcing with bias-adjusted meteorological forecasts. Biases in both components can compromise
forecast quality, as meteorological skill declines with lead time and errors propagate from the initial
hydrological conditions. By applying the proposed post-processing framework on reforecasts and
observations at each lead time, lead time-specific correction factors can be generated and then can
be applied to new forecasts, to improve accuracy throughout the forecast horizon. These
advancements align with global efforts, such as the IAHS HELPING scientific decade and the UN’s Early
Warnings for All initiative, which aim to reduce the impacts of hydrological hazards. Achieving these
goals depends on accurate forecasts, highlighting the need to operationalize enhanced modelling
frameworks.

4. Presentation of the Al-enhanced Climate Services for Extreme
Impacts - Energy sector

4.1. Al-enhanced hydro inflows projections for the European energy sector

This chapter analyzes seasonal run-of-river (ROR) inflow patterns for a historical baseline (2015-2024)
compared to projected medium-term (2025-2035) and long-term (2045—-2055) periods under three
climate scenarios: RCP2.6, RCP4.5, and RCP8.5. Key aspects discussed include analysis of changes in
ROR inflow potential, such as alterations in seasonal variability between the medium-term and long-
term climate projections. We discuss potential impacts on hydropower generation reliability. Finally,
we present the results of the PRIMES-IEM model run for the long-term (2045-2055) periods under
three climate scenarios: RCP2.6, RCP4.5, and RCP8.5.

The analysis estimates the climate variability at different time scales on the European power system,
contributing to the EU climate neutrality target by 2050 using the PRIMES IEM model. We demonstrate
the projections for the power generation sector, taking into account climate variability under current
and planned policies at the European scale to demonstrate the impact of extreme events in the energy
sector. We analyze the potential vulnerabilities arising in specific periods of the year due to projected
climate variability. We discuss the opportunity to mitigate the impact of climate-related events on the
European power system that undergoes the transition under the plan of the European Union to reduce
greenhouse gas emissions and reach emissions neutrality by 2050 (European Commission, 2019).

We analyze hydropower generation: changes in hydropower generation at the national or regional
level induced by climate change. The analysis focuses on the ROR-dominant European countries and
presents data and findings on the country’s level. We simulate European countries and focus our
assessment on the ROR-dominant power systems under 3 different climatic scenarios (RCP2.6, RCP4.5,
and RCP8.5) available from 9 GCM models’ ensemble. The analysis focuses on the impact of annual
and interannual variability hydropower under different realizations of climate projections.

4.1.1. Overview of changes in the hydro inflows: historical and climate projections

The availability of water for hydropower is crucial for assessing risks in a future decarbonized energy
system under varying climate conditions. Decarbonizing the power sector requires a more flexible
energy system, relying on options such as long-term storage, batteries, and pumped storage.
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Maximizing hydropower resources, particularly in hydro-dominant countries, can enhance system
reliability. We discuss the effect of changes in annual and intra-annual inflow patterns, affecting the
run of river power generation and generation from river based reservoir capacities.

In our previous work (D6.2), we identified European countries where hydropower plays a dominant
role in the power generation mix: Austria, Croatia, Finland, France, Germany, Italy, Latvia, Portugal,
Romania, and Spain (Table 5). Errore. L'origine riferimento non é stata trovata.Machine learning (ML)
techniques used to project future inflows performed best in countries where ROR contributed over
5% of total generation or exceeded 0.5 GW of installed capacity in 2020.

Fitting ML models for countries where hydropower is produced in small quantities proved more
challenging, often leading to overfitting during training. The model struggled to identify meaningful
sub-basin combinations to represent the limited number of generators in the dataset, resulting in low
accuracy. This is because small hydropower generators are usually not driven by weather patterns but
mostly by economic signals and system’s flexibility needs.

Table 5 - Run-of-river generation share and capacity in each country (2020). Source: ENTSO-E.

Country ‘ ROR % of overall generation (2020) ROR capacity (GW, 2020)
Austria 27.6% 5.25
Croatia 20.3% 0.93
Finland 11.4% 1.85
France 1.4% 1.71
Germany 2.4% 4.01
Italy 7.0% 3.12
Latvia 48.2% 1.59
Portugal 13.9% 3.05
Romania 15.5% 3.62
Spain 6.4% 451

Note: In Sweden, run-of-river hydropower also plays a significant role in the national power mix. However, the incompleteness of time series
data in the ENTSO-E database poses a limitation for effectively training the ML models used in the analysis and is therefore not included in
the results.

Future projections of hydro inflows for each country were generated using a supervised machine
learning regression model XGBoost!. We found the relationship between river basins and the ROR
annual generation profiles. These inflows represent the availability of water resources for hydropower
generation. ROR generation patterns have been projected for the period 2025-2100 under three
climate scenarios: RCP2.6, RCP4.5, and RCP8.5. Simulations were conducted using nine EURO-CORDEX
models’ ensemble. The following paragraphs describe the next steps towards constructing the
hydropower generation profiles for run of river and lakes. We provide the descriptive analysis of
changes in the hydropower inflows for the selected countries and discuss observed seasonal changes

1A detailed description of the method is provided in Deliverable D6.2 and is not discussed here for the sake of
conciseness. In the D6.2 we analyzed performance of XGBoost and Neural Networks models. The XGBoost was
found to be more balanced in its prediction in relation to the ground truth and was chosen to construct the
annual generation profiles.
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in the projected hydropower inflows. We follow up with the analysis of climate-enhanced scenarios
for the European power generation system under 2050 emissions neutrality target.

Trend for Austria in 2020-01-01-2025-12-30 for different RCP scenarios
RCP26 |

180000
120000

80000
v Projections 2020-01-01-2025-12-30
40000 — Historic 2015-01-01-2023-12-31

RCP4.5 |

= |CHEC-EC-EARTH_r12i1p1_CCLM4-3-17

160000 — ICHEC-EC-EARTH_r12i1p1_RACMOZZE
120000 = |CHEC-EC-EARTH_r12i1p1_RCA4
= ICHEC-EC-EARTH_r3i1p1_HIRHAMS

80000 == MOHC-HadGEM2-ES r1i1p1_RACMO22E

Value [MWh]

== MOHC-HadGEM2-ES_r1i1p1_RCA4

40000 MPI-M-MPIESM-LR_r1i1p1_RCA4

| MPI-M-MPI-ESM-LR_r1i1p1_REMO2009
MPI-M-MPI-ESH-LR_r2i1p1_REMO2008

180000

120000

B0000

40000

2015 2020 2025

ENSTSOE - monthly sum of daily ROR genearion
PROJECTIONS: Monthly ROR inflow - a sum of median daily inflows of models' ensemble

Figure 9 - Historical and projected inflows for Austria: models’ ensemble and scenarios: RCP2.6, RCP4.5, RCP8.5 (Note:
Graphs for the rest of hydro-dominant countries are available in the Appendix).

Figure 9illustrates the projected ROR inflows for Austria, showing historical inflow variability alongside
ML-projected inflows for each RCP scenario and the models’ ensemble. The variability in ROR
generation patterns for each considered country is assessed by analyzing projections for each RCP
scenario and variation in the models’ ensemble of the annual hydropower availability. Figure 10
illustrates the percentage deviation in annual hydropower inflow from the historical average (2015-
2023) for the period 2020-2060 using the Al-enhanced annual inflow projections. For projections,
annual inflows are estimated for the climate models’ ensemble mean and 95th percentile. The
comparison of the median and the 95th percentile ensemble projections, highlights the range of
potential ROR inflow variations within the analyzed period. While the analysis of ensemble’s median
projection suggests moderate fluctuations with respect to the long-term historical average, the upper
bound (95th percentile) reveals the possibility of extreme hydropower inflow reductions for the
RCP8.5 scenario, particularly in southern European countries.

These findings emphasize that the management of hydropower availability and the plans for future
resilience need region-specific adaptation strategies and consider climate scenarios and model
ensembles to manage hydropower availability under future climate conditions. In particular we
observe that:

- In the RCP2.6 scenario, hydropower inflow variability remains relatively moderate, with
noticeable deviations in Spain, Portugal, and Latvia, where periods of increased and decreased
inflows alternate. Similar changes are observed across the selected hydropower dominant
countries, and we illustrate this in the example of Austria in section 0.

- Under RCPA4.5, variability intensifies, particularly in Romania and Spain, where inflows
frequently deviate by more than £10% from the historical average.
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- The RCP8.5 scenario exhibits the highest fluctuations, with several regions—including Spain,
Portugal, and Latvia—experiencing prolonged periods of reduced inflows (below -15%) and
occasional extreme increases (above +15%).

Change in annual variability (percentage deviation from the historic average 2015-2023)
of annual hydropower inflow. Ensemble median: 2020-2060
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Figure 10 - Projected changes in annual ROR hydropower inflow variability (2020-2060): median vs. 95th percentile ensemble
estimates.

4.1.2 Implications for hydropower inflow variability: Case Austria

This section presents an overview of the ROR inflow variability on the hydropower generation profiles
on the example of Austria. The historical period (2015-2024) shows a pronounced seasonal cycle in a
ROR-dominant country - Austria. Winter months (Dec—Feb) exhibit the lowest flows of the year,
reflecting typical alpine conditions where precipitation is stored as snow and natural runoff is minimal.
February is generally the lowest point of the year in terms of ROR inflow. Flows begin to increase in
early spring (March—April) as temperatures rise and snowmelt commences.

In the medium-term future (2025-2035), projected under RCP2.6, RCP4.5, and RCP8.5, Austria’s
seasonal inflow pattern still resembles the historical cycle, but with subtle shifts emerging. Under all
three scenarios, winter and spring inflows tend to increase slightly relative to the 2015—-2024 historical
average, while summer inflows show slight decreases, especially under higher-emission scenario
(RCP8.5). The overall shape of the seasonal distribution remains, but the timing and magnitude of
flows’ low and peak points begin to adjust:

e Winter (Dec—Feb): By 2025-2035, winter ROR inflows are higher than in the historical period,
particularly under RCP4.5 and RCP8.5. Winter inflows show a substantial increase by mid-
century: in RCP8.5 (2045-2055), monthly flows in December, January, and February are
considerably higher than the historical level.
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e Spring (Mar—May): Spring inflows rise noticeably in the 2025-2035 period across all RCP
scenarios, with the effect growing from RCP2.6 to RCP8.5. Spring flows are projected to
become much larger, with peak inflow arriving earlier by 2045-2055, especially under RCP8.5:
May inflow exceeds June as the month with the highest inflow in the historical period,
representing the new annual peak.

e Summer (Jun—Aug): During early summer, June in 2025-2035 still tends to be a high-flow
month. Mid-summer inflows are starting to decline, possibly due to earlier depletion of the
snowpack and drier summer conditions. Under RCP4.5, July—August declines are present but
modest, and under RCP2.6 they are minimal (summer flows remain close to historical levels).
By 2045-2055 The decline in mid-summer flows becomes very pronounced for July and
August. The median June inflow under RCP8.5 is lower than the historical median June (and
also lower than May’s in this scenario).

e Autumn (Sep—Nov): September and October inflows in 2025-2035 remain relatively low,
similar to the historical baseline. By mid-century, autumn flows remain relatively low, with
RCP8.5 introducing a slight extension of the summer dryness into early autumn.

In summary, the medium-term projections show that Austria’s peak inflow timing is beginning to shift
earlier (from June to May). Under RCP2.6, the peak remains centered on June (only a marginal
advance). Under RCP4.5, peak flows are distributed between May and June. By 2045-2055, Austria’s
peak runoff clearly shifts from early summer to late spring in the projections.
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Note: Historic period 2015-2023 and ensemble median monthly ROR production. Graphs for the rest of ROR-dominant
countries are available in the Appendix.

Figure 11 - Projected changes in annual ROR hydropower inflow variability (2020-2060): median vs. 95th percentile ensemble
estimates.

Deviations of the occurrence of the peak inflow are modest in 2025-2035 but become more significant
in 2045-2055. If electricity demand patterns do not align with this (for instance, if summer demand
is higher due to cooling needs), there could be a mismatch in timing leading potentially to periods of
deficit of ROR generation within each year. If Austria or neighboring regions (e.g. Germany) face peak
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electricity demand in July-August, the hydropower supply might be contributing less to the power
balance with river flows below historical levels. The earlier spring peak may also overlap with periods
when reservoirs are full due to snowmelt, limiting the potential to store electricity during surplus of
ROR generation.

4.2. Long-term trends of hydropower generation variability in Europe

4.2.1 Hydropower variability and capacity factor assumptions for hydropower systems

As a next step, the analysis investigates trends in 5-year changes in ROR hydropower inflows for
selected European countries identified as ROR-dominant. Historical inflow data (2015-2023) is
compared to projected future inflows under three climate scenarios (RCP2.6, RCP4.5, and RCP8.5) to
identify long-term trends in hydropower availability, Table 6. The use of 5-year intervals aligns this
inflow analysis with the time resolution of the PRIMES-IEM model horizon, facilitating integrated
assessments of climate impacts on future hydropower availability.

Table 6 - Change in potential hydro generation for RCP scenarios for selected countries for climate scenarios: RCP2.6, RCP4.5,
RCP8.5.

Average annual inflow  Change in annual five-year average ROR inflow compared to

(historical period) historical period”
[Mwh] [%] Bl | e 1%
Country 2015-2023 2025 2030 ‘ 2035 2040 2045 2050
RCP2.6 | 1,121,087 16 11 0.5 1.5 -03 |-04
Austria | RcP4.5 | 1,138,844 -3.1 0.4 -1.3 -2.4 -3.9 -4.6
RCP8.5 | 1.119.161 2.6 1.2 2.2 1.4 1.0 1.4
RC2.6 22 470 0.0 -1.3 1.7 0.0 02 |11
Croatia RCP4.5 73,100 -2.8 -3.1 2.1 -2.5 -5.2 -8.9
RCP8.5 | 74.198 2.4 2.9 2.3 3.6 -15 | -0.4
RC2.6 573 184 -1.6 0.8 0.7 0.8 0.2 2.6
Finland RCP4.5 568,171 3.0 2.8 2.7 0.6 -1.4 2.3
RCP85 | 568136 -1.3 -1.8 3.3 0.2 0.5 -4.1
RC2.6 1.804.906 1.6 0.9 -1.6 2.2 20 |-7.8
France | RcP4.5 | 1,805,637 0.2 -1.0 0.2 03 |-36 |-10.2
RCPS.5 | 1857247 -43 -1.2 -1.0 3.5 -19 | -3.9
RC2.6 646.567 0.8 0.6 0.7 0.0 24 |-26
Germany | RCP4.5 | 649,689 -0.4 0.0 -0.3 -0.5 -1.3 -4.9
RCPS.5 | 643821 0.8 0.4 1.2 0.4 24 0.3
RC2.6 1482 194 4.7 1.2 3.7 0.5 0.4 3.1
RCP8.5 | 1,503,412 3.4 -1.2 0.3 0.5 04 |-16
RC2.6 135289 -1.6 5.7 34 0.4 1.9 5.5
Latvia RCP4.5 138,804 -3.5 -3.9 15.3 -2.6 -6.4 1.1
RCP8.5 147,013 -8.6 -8.5 -7.0 -11.6 -9.7 9.4
RC2.6 216.929 1.7 -1.1 5.3 3.6 24 15.5
Portugal : :
ortuga RCP4.5 213,074 11.5 -4.2 8.2 7.9 9.3 9.2
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RCP8.5 230711 -5.6 -0.6 -17.6 -5.5 -2.7 1.9
RC2.6 392 457 -0.3 0.8 3.6 -3.6 -3.8 7.5
Romania | RcP4.5 | 384,860 4.2 4.7 7.2 8.1 65 |03
RCP8.5 408 160 1.1 5.1 -4.5 -1.2 1.8 -1.9
RC2.6 263.630 5.4 6.2 4.1 -1.2 3.6 8.3
RCP8.5 291,093 -8.6 -2.2 -17.2 -4.4 -4.7 1.1
*Changes in annual run-of-river (ROR) inflows relative to the historical period are presented as five-year averages,
corresponding to the modeled time steps.

Country-specific details for ROR hydropower inflow variability in changing climate conditions:

Austria: Under RCP2.6, slight positive changes in the medium term are projected (+2.6%), stabilizing
towards mid-century. In contrast, under RCP4.5 and RCP8.5, inflows are projected to decline by
approximately 4.6% by mid-century, reflecting increased drought conditions.

Croatia: Moderate negative inflow changes are consistent across all RCP scenarios, worsening
significantly under RCP4.5 (-8.9%) by 2055.

Finland: Under RCP4.5 and RCP8.5, inflows initially rise moderately but show some fluctuations and
declines by mid-century.

France: Notably reduced inflows projected under RCP8.5, especially pronounced by 2050 (-10.2%).

Germany: Stable to slightly negative inflow changes appear in medium to long-term periods,
becoming most significant under RCP4.5 and RCP8.5 (-4.9%).

Italy: Short-term increases under RCP4.5 and RCP8.5, followed by stabilization or slight declines
approaching mid-century.

Latvia: Significant positive variability appears in the medium-term under RCP4.5 (+15.3%) but
diminishes substantially by 2055.

Portugal: Fluctuations occur, with notable increases under RCP4.5 in the medium term (+11.5%)
followed by significant declines in long-term scenarios, particularly under RCP8.5 (-17.6%).

Romania: Consistent moderate-to-strong positive changes in the medium term under RCP4.5 (+8.1%)
contrast sharply with significant negative trends under RCP8.5 in mid-century (-4.5%).

Spain: Negative changes dominate, especially under RCP8.5 scenario by 2050 (-17.2%), indicating
substantial future vulnerability in ROR inflows.

With the aim to focus on the 2050 horizon, we estimate capacity factors for (the 5-year period related
to) this year under the climate scenarios for each ROR-dominant country?. These factors serve as an
input for interconnected PRIMES-IEM modeling, assessing the reliability and operational flexibility of
hydropower under projected climate-driven inflow changes. Capacity factors for ROR in the identified

2 From now on we indicate the 5 year period related to 2050 as '2050'.
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countries for the year 2050 have been developed using ensemble median projections across the RCP
scenarios. The resulting hourly capacity factors illustrate the anticipated operational performance of
hydropower plants, allowing integration into broader energy system models. Notably, these
projections indicate an effect of climate scenarios on ROR generation potential.

Capacity factors for ROR plants in 2050 - hourly
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Figure 12 - Estimated ROR capacity factors: projections for 2050 for climate scenarios: RCP2.6, RCP4.5, RCP8.5.
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4.2.2 Impact of climate variability on hydropower generation and cross-cutting effect across
European power generation sector under emissions neutrality target

Scenario design

In order to assess the cross-cutting effect of hydropower variability, we simulate the future European
power system that is aligned with long term EU energy and climate targets (i.e. reaching the climate
neutrality target by 2050). We focus on the years 2030 and 2050 to analyze the behavior of the
European power system under different projected climate conditions. Projections on the inflows for
3 RCP scenarios are available from the E-HYPE model: RCP2.6, RCP4.5, RCP8.5. For each RCP scenario
we analyze the 9 EURO-CORDEX models ensemble’s median. To assess the impact of extreme climate
realizations, we model the 5th and 95th percentile ensemble projections of hydropower inflows under
the RCP8.5 and RCP4.5 scenarios.

The main focus of the analysis is to show difference in the response to climate events with the
decarbonized energy system described by the climate neutrality scenario, meeting the EU energy and
climate targets in 2030 and the emissions neutrality target in 2050. Figure 13 and Figure 14 show the
power mix in 2030 and 2050 respectively. At this point of the close future, decarbonization of the
power generations sector is driven by the EU Renewable Energy Directive®. Long term emissions
reduction in energy in energy sectors ensured by EU emissions trading system (ETS) and 2050 EU
emissions neutrality target. National coal and nuclear phase out policies announced by the European
member states form the power mix by 2030 and beyond. The 2050 emissions neutrality target drives
further reduction in fossil run power generation capacities, increasing the share of intermittent
renewable generation (solar and wind) in the power mix.

The following paragraphs present the results of a model-based scenario analysis of the European
power system along a decarbonization pathway. The discussion focuses on key system-level
parameters to highlight the cross-cutting effects of hydropower variability. The main evaluation
metrics, summarized in Table 2, include: annual hydropower and fossil generation, total system costs,
fuel purchase costs, and total GHG EU emissions. Additionally, we examine changes in net electricity
imports between modelled regions to illustrate the impact of hydropower variability on cross-border
power exchanges and system balancing needs. In the following chapters, the analysis of climate-
related hydrological variability encompasses both ROR generation and generation from lakes,
representing a mix of ROR and large reservoir operations.

As shown in Figure 1, the analysis follows five-year time steps, in line with the model’s temporal
resolution. Furthermore, we assess climate impacts using a set of RCP scenarios, incorporating the
ensemble median as well as the 5" and 95" percentile projections to capture a broad range of possible
climate outcomes. From a scenario design perspective, the analysis is guided by the overarching
objective of achieving climate neutrality by 2050 and is structured accordingly to reflect this long-term
target.

3To the time of the scenario design, 2030 policy landscape was designed under the framework of 2021 legislative
proposals for Fit for 55 policy package: 38-40% renewable share in the Final energy consumption: Proposal
Renewable Energy Directive COM (2021/557).
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Figure 13 — Power mix in 2030. Emissions neutrality scenario under the historical median weather years. Source: PRIMES-
IEM.

Tidal
Romania Geothermal
Portugal - SolarTh
SolarPV
Latvia 4 Wind off
ind_or
Italy 4 Wind_on
P
E Germany . e
8 RunOfRiver
France . Biomass
Hydrogen
Finland A l = s
Solids
Croatia - - Gas
ustria -
B o
0.25 0.50 0.75 1.00 B nuctear

Share in total generation [%]

Figure 14 - Power mix in 2050. Emissions neutrality scenario under the historical median weather years. Source: PRIMES-
IEM

Climate-enhanced scenarios — projections of ensemble median

As fossil-based power generation declines by 2050, the power system becomes increasingly reliant on
flexibility options to balance electricity supply and demand. These include various storage
technologies, cross-border electricity exchanges, and the utilization of power generation capacities
with fast ramp-up capabilities.

With relatively small variations in annual hydropower generation projected for 2030, and seasonal
shifts in inflow peaks (as discussed in Section 4.2.1), the energy system must identify cost-optimal
solutions to maintain balance under changing hydropower availability due to future climate conditions
across European regions.
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The system’s response differs between 2030 and 2050, reflecting evolving infrastructure and
constraints. In 2030 (see Figure 15, left), the system compensates for hydropower variability primarily
through remaining gas-fired power generation, leading to increased fuel costs and higher total power
generation costs, including ETS-related payments. Under the RCP2.6 scenario, higher annual
hydropower generation compared to the long-term historical median results in lower fossil fuel use,
reduced emissions, and lower system-wide costs. However, to manage seasonal hydropower
shortfalls, the system relies more heavily on electricity imports from neighboring regions, reflected in
higher net imports.

By contrast, in 2050, (see Figure 15, right), with more advanced system flexibility and reduced fossil
fuel capacity, the optimization strategy shifts further toward renewables integration, storage, and
cross-border coordination, underlining the critical role of climate-informed energy planning.

Hydropower @ RCP2.6 Hydropower w—— RCP2.6

Generation RCP4.5 Generation RCP4.5
RCP8.5 RCP8.5
13% historic 7% historic
Net 6.5% 5 Net 3.5% o o
Emissions Emissions
Imports Imports

-1%

Battery
Capacity

Total Battery
Costs Capacity

Total
Costs

Fuel Fossil Fuel Fossil
Costs Generation Costs Generation

Note for this and following Figures: Hydropower includes power generation from run-of-river power plants and reservoirs.
Fossil generators include natural gas, oil, and coal. The axes represent the percentage difference of the climate neutrality
scenario for the historical median weather years and RCP scenarios. Results are presented for the aggregated region
France, Portugal, Spain.

Figure 15 — Comparing 3 climate scenarios for 2030: RCP2.6, RCP4.5, RCP8.5. Source: PRIMES-IEM.
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Central Europe: Austria, Belgium, Luxembourg, Netherlands, Germany. Eastern Europe: Czech Republic, Estonia, Latvia,
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Cyprus, Greece, Italy, Malta. Iberian Peninsula: France, Portugal, Spain.

Figure 16 — Relationship between hydropower generation and fossil run generation for 3 climate scenarios for 2030:
RCP2.6, RCP4.5, RCP8.5 Source: PRIMES-IEM.

Changes in hydropower generation—based on the median of the model ensemble projections by 2030
under the RCP climate scenarios—have a noticeable impact on fossil-based power generation, which
at that point consists mainly of gas-fired capacities. These changes enable lower fossil-fired power
generation (Figure 16), contributing to lower emissions and fuel purchase costs.

By 2050, however, the influence of hydropower variability on emissions and fossil generation becomes
marginal, as fossil-based generation is nearly eliminated from the EU power system. At this stage, the
system's flexibility is largely ensured through various storage options and interconnection capacity
between the member states and regions.

Climate scenarios — projections of lower and upper percentile of models’ ensembles

To capture the full range of potential impacts, the ensemble’s median projections can be
complemented by an analysis of the 5th and 95th percentiles, representing less likely but more
extreme climate realizations. The following paragraphs provide a detailed assessment of the power
generation system a tightly interconnected regional cluster comprising France, Portugal, and Spain.
Within this region, Portugal and France have been identified as ROR dominant countries, with the
most reliable inflow projections. The analysis focuses on the structure and response of the power
system under two climate scenarios—RCP4.5 and RCP8.5—including their 5th and 95th percentile
realizations, which capture the range of potential climate impacts on hydropower availability and
broader system performance.
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Plots for other countries are available in the appendix. Plot is shown for the interconnected regional cluster comprising France,
Portugal, and Spain. Plots for selected EU regions are provided in the Appendix.

Figure 17 - Comparing climate scenarios for: RCP8.5 in 2030: median, lower 5% and upper 95%. Source: PRIMES-IEM.
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Plots for other countries are available in the appendix. Plot is shown for the interconnected regional cluster comprising France,
Portugal, and Spain. Plots for selected EU regions are provided in the Appendix.

Figure 18 — Comparing climate scenarios RCP4.5 in 2030 and 2050: median, lower 5% and upper 95%. Source: PRIMES-IEM.

The analysis of the differences between lower and higher inflows projections under different climate
scenarios on the interconnected regional power system, reveals that hydropower generation
variability strongly influences system performance in 2030. In scenarios with higher hydropower
inflows—such as the 95th percentile projections under RCP4.5 and RCP8.5—we observe reduced
reliance on fossil fuel generation, leading to lower emissions and fuel costs (Figure 17 and Figure 18).
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These scenarios also show reduced battery storage capacity and net imports, indicating that abundant
hydropower can contribute to lower need for other flexibility mechanisms. Conversely, in low inflow
scenarios (5th percentile), limited hydropower availability forces the system to heavily rely on gas-
fired generation and storage, resulting in increased emissions and total costs.

By 2050, when the system undergoes the transformation towards decarbonization of the power
generation sector, see Figure 18, the differences between climate projections become less
pronounced, particularly in emissions and fossil use. However, hydropower variability continues to
affect system dynamics. Higher inflow scenarios still lead to slightly lower battery capacity and
imports, while low inflow scenarios necessitate greater use of flexibility options available. These
trends illustrate how, even in a deeply decarbonized system, climate-driven hydrological variability
continues to shape infrastructure needs and cost structures—especially through its influence on
seasonal balancing discussed in Section 4.1.2.

The comparison between 2030 and 2050 highlights a transition in system flexibility: from fossil-based
backup in the near term to a greater reliance on storage and interconnectors in the long term. By
2050, with natural gas fired power generation nearly absent, the system becomes reliant on
deployment of batteries and cross-border electricity exchanges to manage seasonal and climate-
related fluctuations. These findings underscore the importance of integrating climate resilience into
long-term power system planning.

Even in fully decarbonized scenarios, climate variability—particularly shifts in hydropower inflows—
can significantly affect system costs, storage needs, and power exchanges between the regions and
countries. Integrating climate risk into energy planning is essential to ensure the stability and
affordability of future power systems, under the risk of climate variability.

Using percentile-based hydropower inflow projections (5th-95th) under different RCP scenarios
reveals how extreme, less likely climate outcomes could shape the ongoing transformation to the
decarbonized power generation system. This approach enables more resilient, cost-effective
infrastructure investment decisions—especially in regions with strong seasonal hydro dependencies.

5. Presentation of the Al-enhanced Climate Services for Extreme
Impacts - Food sector

5.1. Performance

We assess the Al model performance of the observation-level quality of the SEAS5.1-forced and
CMIP6-forced surrogate yield outputs by comparing those with the ERA5-forced surrogate yield
outputs. Hereafter, we show example metric outputs that are used, with the same process applied to
all considered datasets.

5.1.1. SEAS5.1

Crop yield simulations with SEAS5.1 are generated using the surrogate model both for the reforecast
period (1993-2016) comprising 25 ensemble members and the forecast period (2017-2023)
comprising 51 ensemble members, focusing on the first lead time component. This choice is due to
the known heavy deterioration of model accuracy after the one-month lead time.
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Figure 19 - shows the year-by-year Pearson correlation plot between all SEAS5.1 ensemble members
and ERA5-forced yields from 1993 to 2016. In most years, correlations lie above 0.5, often clustering
between 0.6 and 0.8. This indicates that, on average, the first-time lead SEAS5.1 ensembles capture a
reasonable fraction of the year-to-year ERA5 TWSO variability. Some years (e.g. the mid-1990s) show
better agreement than other years (e.g., early 2010s) greater uncertainty among members. Temporal
variations in the correlation can denote internal climate variability, model biases, or sensitivity to
initial- conditions.

TWSO ERA-SEASS.1 Yearly Correlations for all 25 Ensembles

0.8

0.6

Correlation

0.2

o A o A o & > o
o 9 & S & S5 o &
55 K o » » 3
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Figure 19 - Annual Pearson correlation plot for an ensemble of 25 SEASS5.1 reforecasts and ERA5-forced yields from 1993 to
2016.

Figure 20 and Figure 21 represent the output metrics for the reforecast period using the SEAS5.1
ensemble member 01 (SEAS5.1_ens01).

Figure 20 shows two pronounced peaks in the simulated (1993-2016) crop yield distribution (one near
low TWSO values and another around 12,000 kg/ha), whereas the ERA5 has broader peaks around
2,000-3,000 kg/ha and 10,000-11,000 kg/ha. This suggests that the SEAS5.1_ens01 is producing more
frequent very-high TWSO occurrences compared to ERAS. In terms of the degree of overlap, the curves
overlap substantially e.g., near 10,000-11,000 kg/ha.
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Figure 20 - Overlaid probability density functions (PDFs) of TWSO (kg/ha) simulations forced with ERA5 and the SEAS5.1
ensemble member 01 (SEAS5.1_ens01)

Figure 21 a displays the correlation between ERAS and the SEAS5.1_ens01 TWSO. Overall, much of
the domain shows moderate to strong positive correlations suggesting that this ensemble member
generally captures the patterns in ERA5-forced TWSO reasonably well. Some localized patches of
lower correlation indicate where the ensemble diverges from ERAS5, possibly due to local-scale
processes or/and poorer performance of the SEAS5.1 ensemble.

The Mediterranean coastline and the mountainous areas such as the Alps show consistently higher
errors (e.g. very high and very low mean bias values in these areas), whereas the western
Mediterranean near the lberian Peninsula and mainland Europe show smaller errors and better
agreement with ERAS (Figure 21b, c and d). This suggests that in regions with complex topography
and heterogeneous surface processes such as the land-sea interaction, the SEAS5.1 has greater
difficulty reproducing accurately observed TWSO. Although regions such as the Alps and other
mountainous areas generally yield misaligned results, they can be disregarded as most of these
regions are not used for cultivation.
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Figure 21 - Comparison of the ERA5 and SEAS5.1_ens01 TWSO simulations over the period 1993-2016: (a) Pearson
correlation; (b) MAE; (c) RMSE; (d) Mean bias.

The assessment of annual metrics through the analyzed period confirms spatial variations in model
performance, with reduced error over the Mediterranean and larger discrepancies in northern and
eastern parts of the continent. In terms of mean bias, yield simulations exhibit persistent (almost
systematic) overestimation in some northern and central regions, whereas the Mediterranean
generally experiences a more mixed, occasionally negative, bias.

The combined analysis of MAE, RMSE, and mean bias suggests that yield estimation discrepancies are
greatest and most consistently noticeable across Northern and Eastern Europe, with Central Europe
exhibiting intermediate, variable patterns. Conversely, the Mediterranean region generally shows
lower deviations.

5.1.2. CMIP6

In respect to the CMIP6 models, we ran the surrogate model and generated yield outputs for the
historical simulations shown in Figure 22. The considered period is from 1993 to 2014, which is the
same period used for SEAS5.1. This is a reasonable period for the monitoring of agricultural activity,
since it is not affected by extreme underlying diversity in practices and production schemes. In Figure
22 and Figure 23 we present sample metrics.

As an example, Figure 22a shows the PDF of ERA5-forced and GFDL-ESM4-forced vyields. The
distributions of TWSO values match reasonably, except for the highest-ranking yields. The ERAS
distribution peaks at lower yields (around 0-3000 kg/ha), whereas the GFDL-ESM4 model strongly
peaks at high yields (around 12,000-14,000 kg/ha), indicating a tendency towards higher yield
estimations compared to ERAS reanalysis.
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Figure 22 - Probability density functions (PDFs) of TWSO (kg/ha) Al-based surrogate simulations forced with ERAS5 and (a) raw
GFDL-ESM4 (r1i1p1f1) / (b) bias-adjusted GFDL-ESM4 (r1ilp1f1) for 1993-2014.
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The performance in terms of PDFs similarity is evidently better in the bias adjusted version of that
CMIP6 model than in the raw data as seen in Figure 22b.

The panels of Figure 23 illustrate the performance metrics of GFDL-ESM4 with respect to ERA5-forced
TWSOs. High RMSE and MAE values consistently appear over the Mediterranean and certain eastern
European regions. These errors correspond to negative mean biases, especially in southern and
southeastern areas, revealing an overestimation of yield by the CMIP6-forced yields. Conversely,
northern and central European areas show comparatively small differences, although localized
discrepancies do appear. The left panels of Figure 23 shows the raw (non-bias corrected) error maps,
which show comparatively larger departures than the bias adjusted CMIP6-forced TWSO outputs as
depicted in the right panels.
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Figure 23 - Comparison of the ERA5 and raw GFDL-ESMA4 (r1i1p1f1TWSO simulations over the period 1993-2014: (a) MAE; (b)
RMSE; (c) Mean bias. Comparison of the ERA5 and bias adjusted GFDL-ESM4 (r1ilp1fl) TWSO simulations over the period
1993-2014: (d) MAE; (e) RMSE; (f) Mean bias.

5.2. Areas of Concern

5.2.1. SEAS5.1 — probabilistic AOC

Detecting the AoC for the surrogate SEAS5.1-forced yields is based on a probabilistic pipeline. The full
ensemble of reforecasts (1993 — 2016) is used as the reference yields. First, the procedure computes
the mean over time and the ensemble members of TWSO from this reference dataset. Deviations are
then defined as relative anomalies, as a percentage change of the reference value, with only negative
anomalies retained. Dynamic thresholds are derived by computing the lower percentile (0.33 quantile)
and the upper percentile (0.66 quantile) of the relative anomalies over the reference period and all
ensemble members. The relative anomaly of the forecast (2017 — 2023) is then calculated using the
same reference period, and again only negative anomalies are selected.

For each ensemble member in the forecast, the anomaly is classified into one of three categories:
above-normal if the forecast anomaly is greater than the upper tercile, normal if it falls between the
lower and upper terciles, and below-normal if it is less than the lower tercile. The percentage of
ensemble members in each category is then calculated to determine the associated probabilities.
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Finally, we develop decision rules to be applied with the aim of assigning a “most probable forecast”
category for each grid cell and forecast time. These rules are: (i) inconclusive, when the probabilities
of below-normal and above-normal are equal, (ii) above-normal, when the probability above-normal
exceeds the rest, (iii) normal to above-normal, when the probabilities of above-normal and normal are
equal, (iv) normal, when the probability of normal exceeds the others, and (v) below-normal, when
the probability below-normal exceeds both above-normal and normal.

The results in terms of annual AoC forecasts for each year of the 2017-2023 period are shown in Figure
24. During the period 2017-2023, Europe experienced substantial variability in agricultural conditions
linked to climatic patterns, as depicted by the probabilistic Areas of Concern derived from seasonal
forecasts. In 2017, southern European regions, notably the Iberian Peninsula and ltaly exhibited
predominantly below-normal conditions, contrasting with central and northern Europe's mixed
patterns. The year 2018 exhibits widespread below-normal conditions across central and northern
Europe, including France, Germany, and much of eastern Europe, suggesting significant agricultural
stress, while parts of southern Europe, notably the Iberian Peninsula, experienced more favorable
conditions. In 2019, below-normal conditions intensified, particularly affecting the Iberian Peninsula,
north-eastern Europe and central Europe. The year 2020 presented a fragmented distribution of
impacts, with persistent below-normal conditions in southern Spain and southeastern regions such as
Greece, whereas central Europe displayed a mix of normal, above-normal, and inconclusive
categories, emphasizing regional variability and uncertainty. By 2021, below-normal conditions
expanded across eastern Europe, particularly impacting the Balkans, while western Europe, including
western France and the Iberian Peninsula, showed notable improvements. The year 2022 again stood
out, with extensive below-normal conditions dominating much of western, central, and southeastern
Europe, including Spain, France, Germany, Italy, and Greece, signaling widespread agricultural stress.
Finally, 2023 is characterized by highly fragmented conditions and spatial variability, with stress
conditions affecting mainly central Europe. Overall, from 2017 to 2023, Europe’s agricultural regions
encountered substantial climatic variability, with pronounced episodes of widespread agricultural
stress, particularly in 2018 and 2022. Southern Europe consistently exhibited greater vulnerability,
emphasizing the necessity of targeted agricultural management and preparedness strategies in these
regions.
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Figure 24 - Probabilistic Areas of Concern for each year of the 2017-2023 period based on 51 ensemble members of SEAS5.1
and the surrogate TWSO simulations.

5.2.2. CMIP6

Forthe CMIP6 models, we performed the AoC analysis for different realizations of two selected Shared
Socioeconomic Pathways (SSP), namely SSP3-7.0 and SSP5-8.5 as shown in Table 7. Model runs are
required to extend up to year 2050 and have a corresponding historical realization which is used to
generate the reference yield dataset. Current national pledges under the Paris Agreement aim to limit
warming to below 2 °C, ideally 1.5 °C. Even with full implementation of current policies, the global
temperature is likely headed towards 2.4-2.8 °C by 2100, which is closer to SSP3-7.0 than SSP5-8.5
(Intergovernmental Panel on Climate Change, 2023; Climate Action Tracker: 2024 warming projection
update).

Table 7 - CMIP6 models historical simulations used to simulate TWSO with the surrogate model for AoC generation, 1993-
2014.

Model name SSP3-7.0 SSP5-8.5
CNRM-CM6-1-HR - 'rlilp1f2'
'Y11i1p1fT, 'M3i1p1fl, r15i1pify, | Lo PLfL,rI3ilplfl) riSilplfL,
EC-Earth3 '1ilolfl' r6ilplfl’ 'r9ilp1fl’ rlilp1fl’, 'r3ilp1fl’, 'rdilp1fl’,
PEIL, THIERIEL, T2IIP 'r6i1p1fl’, 'r9ilp1fl’
GFDL-ESM4 'rlilp1fl’ 'rlilp1fl’
HadGEM3-GC31-MM - 'rlilp1f3'
'rl0ilp1fl’, 'rlilp1fl’, 'r2ilp1fl’,
'r3ilp1fl’, 'rdilplfl’, 'r5i1p1fl’, A . ,
MPI-ESM1-2-HR 6ilplfL', T7ilp1fl" tBilplfL' rlilplf1’, 'r2ilp1fl
'r9ilp1f1’
NorESM2-MM 'rlilp1fl’ rlilp1fl’
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An example of 10-yearly averages of AoC for GFDL's ESM for SSP5-8.5 (Figure 25) illustrates the
concept of the AoC service based on the surrogate model. One strong model assumption for ECroPS
and the surrogate model is the lack of any factor other than the climatological information provided
by the ESM in any part of the process, such as land cover and land use, irrigation,
adaptation/mitigation measures. This assumption is also the rationale behind limiting the yield
projections and AoC to the year 2050.

During the first decade (2015—-2024), areas of agricultural concern identified by the raw projections
are predominantly limited to the southern Mediterranean region, notably southern Spain, Italy and
Greece, while central and northern Europe remain largely stable. Conversely, bias-corrected
projections reveal a significantly broader extent of stress, affecting also central Europe, particularly
France, and eastern Europe.

In the following decade (2025-2034), non-bias corrected data indicate a moderate northward
expansion of impacted areas, especially across southern and southeastern Europe, with growing
intensity in Spain, southern Italy, and Greece. Scattered stress emerges in central Europe. The bias-
corrected scenario, however, demonstrates a more pronounced geographic expansion of concern,
highlighting extensive impact across central and eastern Europe, including major agricultural regions
in France, Ukraine, and the Balkans.

By the period 2035-2044, non-bias corrected scenarios show similar climate-induced agricultural
stress as the previous decade, extending into France, central Italy, and further into eastern Europe.
The bias-corrected projections exhibit an even more severe and widespread distribution of stress,
significantly affecting nearly all southern European regions, including intensified impacts in Spain,
France, Italy and eastern European countries.

For the final years (2045-2050), non-bias corrected results depict even more severe climatic concerns
across the Mediterranean basin, southern, and eastern Europe, with further expansion into France
and central Europe. The bias-corrected scenario projects an even greater severity and geographical
coverage, with almost all agricultural areas in southern, central, and eastern Europe under significant
climatic stress, including previously less affected northern regions.

Overall, the bias-corrected scenarios consistently illustrate broader, and more intense agricultural
vulnerability than the non-bias corrected projections. The bias correction clearly underscores that
climate risks to agricultural productivity, particularly in southern and eastern Europe, could be
significantly underestimated without such adjustments, highlighting the importance of incorporating
bias adjustment for impact assessments.
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Figure 25 - 10-yearly average AoC maps for GFDL-ESM4 under SSP5-8.5 based on the surrogate model; Left: raw
projections; Right: bias adjusted projections.

6. Summary and conclusions

This deliverable demonstrates how Al/ML significantly enhance CSs by addressing core challenges
ranging from hydrological patterns reconstruction to the development of surrogate models towards
trustworthy, fast and economically viable CSs products. Sector-specific applications such as multi-
basin LSTM streamflow post-processing in the water sector, ML-based hydropower projections in the
energy sector, and RNN surrogate models for crop yield in the food sector—highlight how Al improves
accuracy, scalability, and operational relevance across diverse contexts. These innovations support
climate services along the full temporal spectrum: real-time monitoring, seasonal forecasting, and
long-term scenario-based projections. Beyond individual sectors, the integration of Al across the
water-energy-food nexus offers a powerful pathway to address compound risks and cascading
impacts, addressing the competing nature of those sectors, aligning with the overarching goals of CSs
to transform complex climate data into actionable, sector-specific insights, and thus providing science
informed policy information.
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6.1. Al-enhanced climate services for the water sector

In this work, we develop an Al-enhanced post-processing framework using a multi-basin LSTM model
to improve streamflow predictions from the process-based E-HYPE model. By learning from residual
errors, the Al model refines streamflow estimates across both gauged and ungauged catchments in
the pan-European region. The results demonstrate that Al post-processing significantly reduces biases,
particularly for high flows (Q90), where the raw E-HYPE model tends to underestimate runoff. The Al-
enhanced model provides a more detailed and spatially heterogeneous representation of streamflow,
particularly in hydrologically complex regions such as mountainous and coastal areas. The robustness
of these improvements is confirmed through temporal and spatial validation, indicating that Al-
enhancement increases predictive accuracy. Overall, this approach can be applied to other ungauged
basins and provides Al-enhanced streamflow simulations in these ungauged basins, making
hydrological assessments more reliable and spatially refined.

6.2. Al-enhanced climate services for the energy sector

The analysis underscores that hydropower is not only central to Europe's clean energy transition but
also highly sensitive to climate-induced inflow variability. To ensure long-term system reliability,
especially in regions exposed to pronounced extremes, investments in adaptive infrastructure, flexible
storage, and regional cooperation will be essential. The divergence across RCP scenarios highlights the
need for robust planning approaches that integrate uncertainty, ensuring that power systems can
respond effectively to a changing climate while advancing toward net-zero targets.

e Regions such as Austria, Finland, and Germany generally experience moderate shifts in inflow
and ROR generation patterns.

e Southern European countries (e.g., greater lberian Peninsula including Portugal, Spain and
France) and some Eastern European countries (e.g., Romania, Croatia) face higher variability
and more pronounced extremes, necessitating further adaptation of flexibility options in
power generation sector.

e The notable divergence in projections between different RCP scenarios underscores the
importance of adaptive capacity, robust infrastructure, and diversified flexibility measures to
maintain reliable hydropower operations in the face of climatic uncertainties.

6.3. Al-enhanced climate services for the food sector

We developed and presented a well-functioning Al surrogate crop growth model which performsin a
low cost and resource effective way, emulating yield growth, from flowering to harvest time, as
simulated by the ECroPS model. The output consists of grain maize simulations for ERA5, six CMIP6
ESMs and SEAS5.1 seasonal forecast system from ECMWF. We illustrate potential applications of the
Al model in historical (reanalysis) and retrospective forecasts (SEAS5.1). Regarding future projections,
we present and evaluate the sub-service for Areas of Concern, showing the potential of the model to
estimate areas that exhibit high probability for elevated risk in comparison to past yields. The Al
surrogate model can be deployed for various datasets within the European domain it was trained with
and can easily be adapted by stakeholders.
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