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LIST OF FIGURES
Figure 1.1: Schematic representation of D3.3 and its interconnection with previously completed D and MS of
WP2 and WP3.

Figure 2.1 Top: spatial distribution of TC genesis according to observed data (IBTrACS, panel A) and to the
ENGPI (panel B). Bottom: Interannual variability curves for the ENGPI.

Figure 2.2 Top: spatial distribution of TC genesis according to observed data (IBTrACS, panel A) and to the oGPI
(panel B). Bottom: Interannual variability curves for the oGPI.

Figure 2.3: Sub-basin domains extension.

Figure 2.4: Interannual variability curves for the Tropics domain comparing the observed cyclogenesis to the
ENGPI, the oGPI, and the AI-GPI.

Figure 2.5: Spatial distribution of TC genesis in the Tropics according to (a) observed data, (b) ENGPI, (c) oGPI,
and (d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.

Figure 2.6: Interannual variability curves for the North Atlantic domain comparing the observed cyclogenesis to
the ENGPI, the oGPI, and the AI-GPI.

Figure 2.7: Spatial distribution of TC genesis in the North Atlantic according to (a) observed data, (b) ENGPI, (c)
oGPI, and (d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.

Figure 2.8: Interannual variability curves for the Northeast Pacific domain comparing the observed cyclogenesis
to the ENGPI, the oGPI, and the AI-GPI.

Figure 2.9: Spatial distribution of TC genesis in the Northeast Pacific according to (a) observed data, (b) ENGPI,
(c) oGPI, and (d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid
point.

Figure 2.10 Interannual variability curves for the Northwest Pacific domain comparing the observed
cyclogenesis to the ENGPI, the oGPI, and the AI-GPI.

Figure 2.11: Spatial distribution of TC genesis in the Northwest Pacific according to (a) observed data, (b)
ENGPI, (c) oGPI, and (d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per
grid point.

Figure 2.12: Interannual variability curves for the South Pacific domain comparing the observed cyclogenesis to
the ENGPI, the oGPI, and the AI-GPI.

Figure 2.13: Spatial distribution of TC genesis in the South Pacific according to (a) observed data, (b) ENGPI, (c)
oGPI, and (d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.

Figure 2.14: Interannual variability curves for the North Indian domain comparing the observed cyclogenesis to
the ENGPI, the oGPI, and the AI-GPI.

Figure 2.15: Spatial distribution of TC genesis in the North Indian according to (a) observed data, (b) ENGPI, (c)
oGPI, and (d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.

Figure 2.16: Interannual variability curves for the South Indian domain comparing the observed cyclogenesis to
the ENGPI, the oGPI, and the AI-GPI.

Figure 2.17: Spatial distribution of TC genesis in the South Indian according to (a) observed data, (b) ENGPI, (c)
oGPI, and (d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.

Figure 3.1: (a) Mean and (b) variance of relative frequency of TC occurrence (%) calculated for 1980-2015,
which is used as training period. Note that interval boundaries are not equidistant. The blue box encloses the
area in the Southern Indian Ocean, for which the ML models are trained.
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Figure 3.2: (a) Brier skill score (BSS) (in %) of TC activity probability with respect to the climatological model as
function of lead time. (b) BS decomposition into uncertainty (grey), miscalibration (blue), and discrimination
(red) for the two benchmark models. Resulting BSs are displayed by the black asterisks.

Figure 3.3: Example of U-Net, a state-of-the-art convolutional-based architecture considered for the task. Each
feature is a channel of the input image and the output represents the spatial probability of occurrence of a TC.
Credits for the image: (Serifi et al. 2021).

Figure 3.4: Schematic illustrating the purely data-driven (orange arrow) and hybrid (combination of red arrows)
modelling approach for the example of predicting TC activity at 120h lead time.

Figure 3.5: Same as in Figure 3.2a but including the baseline ML models.

Figure 3.6: Same as in Figure 3.2a but including the CNN-based ML models (solid lines) and the hybrid model
approach (dashed line).

Figure 3.7: Same as in Figure 3.2b but for the original (left) and hybrid (right) versions of the best-performing
U-Net.

Figure 3.8: IBTrACS positions cyclones in the extratropical stage for April 2016-December 2022.

Figure 3.9: Brier score (BS) decomposition into uncertainty (grey), miscalibration (blue), and discrimination
(red) for the two benchmark models. Resulting BSs are denoted by the vertical black lines.

Figure 3.10: (a) ROC curves for all models with AUC scores in the legend. (b) As in Figure 3.9, but including the
results for the ML models sorted by BS.

Figure 3.11: Results of the sequential predictor selection applied to the logistic regression. Mean (line) and
standard deviation (shading) of the negative log loss, the AIC, and the BIC as a function of the number of
features. The dotted vertical line marks the optimal number of features identified for the corresponding score.

Figure 4.1: Scatter plot of the most relevant heatwave/drought indices and crop yield.

Figure 4.2: PRIM results in terms of scenario boxes navigating the trade-off between coverage (x-axis) and
density (y-axis) of crop failure with respect to heatwaves/drought indices. Circled points are the scenario boxes
analyzed in detail.

Figure 4.3: Composite maps of WR10, WR09, WR05 and WR12, where red isolines indicate higher-than-average
pressure anomalies and blue isolines indicate lower-than-average pressure anomalies.

Figure 4.4: Histogram of extreme events (May to August, 1940-2022), defined using standard heatwave
definition (left) and the EHF (right), with given WRs and corresponding tests of statistical significance (sig.level
= 0.05) .

Figure 4.5: Annual number of heatwave days (May to August, 1940-2022) based on NDQ90, HW_occ and EHF
severity > 1 (severe and extreme heatwaves) over the period 1940-2022 during the summer season (May to
August) selected for a grid of ERA5 representing Stockholm. The bold lines represent the 10-year moving
average.

Figure 4.6: HW clusters over the European domain, coloured by their average intensity (contours correspond to
0.3 oC intervals). Clu1 corresponds to no HW. Variability (in parentheses) explained by each cluster is also a
measure of dataset imbalance.

Figure 4.7: Example feature selection for Clu6 (British Isles). Maps of each cluster can be found in the appendix.
Letters correspond to the following climate indices and dummy variables: a - ENSO, b - NAO, c - IOD, d -
atmospheric CO2 concentration, e - day of year.

Figure 4.8: Recreation of HW cluster 6 indices from 2015-2022 (test period) from optimal features input into
different models (Logistic Regression and Gradient Boosting Classifier). Values in the legend correspond to
F1-score (left) and correlation of total summer days each year (right).
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Figure 4.9: Time series of t2m temperature anomaly in Europe cluster 2 in ERA5 (black), ECMWF-SEAS5
ensemble members (red) and ensemble median (red dashed). Units in oC. In the hybrid framework, predictor
data from May onwards (black vertical line) is taken from dynamical system (e.g. ECMWF-SEAS5) forecasts.

Figure 4.10: F1-score for HW occurrence over training period (1951-2004) cross-validation and test period
(2004-2022).

Figure 4.11: Correlation skill score of NDQ90 (May-July) in the period 2004-2022 between detection/forecast
systems and ERA5. Detect uses only ERA5 predictors, while Hybrid replaces predictor data after May 1st with
ECMWF-SEAS5 forecasts. Black stippling indicates statistical significance. For Dynamic and Hybrid, forecasts are
initialised in May.

Figure 4.12: Sub-sample of past2k target data (number of May-June-July HW days) over the period 1750-1850,
defined relative to diverse climatology periods.

Figure 4.13: Example optimisation and feature selection for grid cell (East Mediterranean Sea).

Figure 4.14: NRMSE of optimised solutions across the European domain for recreation of past2k HW indicators.
Left: training period cross-validation 0-1600. Right: test period 1600-1850.

Figure 4.15: Identification of selected predictors for the whole European domain. Percentage of grid points
which use cluster and lag in optimal solution. Weeks from initialisation (May 1st).

Figure 4.16: Percentage of grid points which select features based on lag time.

Figure 4.17: Anomaly correlation of skill scores over Europe for the period 1993-2016 for the dynamical system
ECMWF-SEAS and data-driven approach implemented in two ML models (LR - Logistic Regression; RF - Random
Forest). Black stippling indicates statistical significance.

Figure 5.1: mean MAE across all sub-basins, obtained from utilising centroid (a) and average linkages (b),
respectively. Both linkages are implemented within hierarchical clustering and hierarchical NonLinCTFA
algorithms.

Figure 5.2: Results from local models. The hierarchical clusterings with the lowest mean MAE and the
NonLinCTFA clusterings, considering centroid and average linkages, with their respective MAEs on the right.
The clusterings visualized on the left are the ones generate in the first split of cross-validation, while the MAEs
consider the entire reconstructed FAPAR Anomaly time series.

Figure 5.3: Impact of CMI filter and nested forward wrapper as feature selection methods on model
performance metrics with increasing numbers of selected features. The linear regression models are trained on
data aggregated by hierarchical clustering with average linkage and a threshold of 0.4.

Figure 5.4: Estimated number of optimal features in each region, obtained by averaging the number of optimal
features for each cluster from the 17 clusterings (one for each cross-validation split).

Figure 5.5: Regions where SPEI-1, SPI-3, and SMA-1 are selected by the nested forward wrapper and the CMI
filter. Each map indicates where and how many times, during cross-validation, the feature was selected.

Figure 5.6: Comparison of global models considering individual sub-basins as baseline. The maps on the left
show the granularity of the input features, while the maps on the right the corresponding model’s accuracy.

Figure 5.7: Comparison of local and global models on a specif area in northern Italy. The left map shows the
clusters obtained in the local case, with the associated models’ accuracy visualized in the middle panel. The
right panel shows instead the accuracy of the global model trained on clustered features.

Figure 5.8: Accuracy of global models combined with CMI and wrapper feature selection methods in terms of
average MAE (left panel) and correlation (right panel).

Figure 5.9: Most selected features for the global model, considering wrapper feature selection with 6 selected
features in 17-fold cross-validation.
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Figure 5.10: SSI drought index computed for inflow into Lake Como in the historical period 1946-2021. The
hydrological droughts are highlighted in red.

Figure 5.11: 3-dimensional space (persistence, intensity, frequency) with three hundred LHS samples (orange
circles) and points representative of the historical period (black square) (a). Examples of SSI time series for
some extreme cases (b-e).

Figure 5.12. Decision tree classifier structure.

Figure 6.1: Retained spatial pattern of soft winter wheat anomalies (top panel) and corresponding time series
(bottom panel).

Figure 6.2: Top panel: variable importance obtained for the 70th conditional quantile of the crop yield
anomalies using the vine copula based quantile regression model. Bottom panel: preimages spatial patterns for
the NPSPEI -1 and SATS-1 corresponding to the first component of the crop yield anomalies displayed in Figure
6.1.

Figure 6.3: Marginal effects of warm May (a) and spring drought (b) on yield anomalies. Interaction effect of
NPSPEI-1 and the SATS-1 in May is shown in (c).

Figure 6.4: Obtained agroclimatic regions used for grouping winter wheat crop yield anomalies and the local
climate variables from February to May described in the text.

Figure 6.5: Global surrogate model for the imbalanced random forest.

Figure 6.6: Schematic Visualisation of multivariate thresholds taken from Salvadori et al. 2016.

Figure 6.7: Explained Variance by regressing the nonparametric indices on grain maize anomalies using d-vine
copula-based quantile regression. Blue lines correspond to the explained variance (R2) of this model, while the
superimposed orange lines describe the increase of the latter in comparison to the CSI. The x-axis displays the
evaluated NUTS3 regions.

Figure 6.8: Model diagnostics from the QUINN model used for predicting grain maize anomalies. Panel (a) and
(b) show Q-Q-plots of the model and (c) and (d) compare the QUINN prediction with the CSI and non-linear
extension (section 6.3.2.2.1).

Figure 6.9: Variable importance for the grain maize based QUINN model utilizing the 90th Percentile. SSM
denoted soil moisture in layer 1, 2, 3 and 4.

Figure 6.10: Large-scale component extracted for the analysis of outages. Panel (a) shows the component of
the outages obtained from glmPCA and KRGCCA. Panel (b) and (c) correspond to preimages of the first
component of the KRGCCA for the (b) soil moisture layer 4 and (c) total precipitation. The Figure on the down
right shows ALEplots obtained for total precipitation and soil moisture in the fourth layer.

Figure 6.10: Large-scale component extracted for the analysis of outages. Panel (a) shows the component of
the outages obtained from glmPCA and KRGCCA. Panel (b) and (c) correspond to preimages of the first
component of the KRGCCA for the (b) soil moisture layer 4 and (c) total precipitation. The Figure on the down
right shows ALE plots obtained for total precipitation and soil moisture in the fourth layer.

Figure 6.11: The first two extracted components from the KRGCCA approach taking the E-Hype model as
output.

Figure 6.12: Variable importance for the river discharges using the QUINN model based on the 90th percentile.
Whiskers indicate 95 % credible intervals

Figure 6.13: Constructed preimages for the second component of the KRGCCA analysis reflecting Total
Precipitation for (a) MAM and (b) DJF. (c) and (d) correspond to preimages of maximum temperature taken in
MAM and JFM.

Figure 6.14: Second order interaction of MAM Total Precipitation and JFM maximum temperature.
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Figure 6.15: Q-Q-plots of the considered SPEI version for eleven representative regions in the world.

Figure 6.16: Identification of dependencies through the AI-based J-function interpreter.

Figure 6.17: All classified J-functions of figure 15 plotted with respect to their identified class. The dotted lines
correspond to pointwise 10th and 90th percentiles, indicating that most of the identified functions follow their
theoretical trajectories.

Figure A4.1 Correlation skill of Data-Driven HW Seasonal Forecasts over 2004-2022, for comparison with
equivalents from the dynamical (ECMWF-SEA5) and hybrid systems (Fig 4.11). LR - Logistic Regression; RF -
Random Forest.

Figure A4.2 Night-time HW clusters over the European domain, coloured by their average intensity (contours
correspond to 0.3oC intervals).

Figure A4.3: Differences between the correlation maps of the multi-model seasonal predictions for the ATn and
the corresponding correlation maps but for (a) Tmin, (b) Tn, and (c) Tmax for the 1993–2016 period in the
15MJJA season. These correlation maps are computed with ERA5 as an observational reference. Hatched areas
indicate where the four individual prediction systems agree in the positive (green lines) or negative (purple
lines) correlation differences. The seasonal forecasts are issued on the 1st of May.

Figure A6.1: Connection matrix used for the KRGCCA employed for the analysis of the relatively wet and warm
late winters followed by dry springs.

Figure A6.2: Density histogram of correlation of residuals from the NUTS3 regions utilized for the SUR model.

Figure A6.3: Histogram for the number of observations in the NUTS3 regions.

Figure A6.4: Interaction Effect of Minimum Temperature with (a) Total Precipitation and (b) Soil Moisture Layer
4.

Figure A6.5: Q-Q-plot of the estimated QUINN model for the river runoffs for the first component displayed in
(a) and (b) and the second component in (c) and (d).

Figure A6.6 Displayed in blue is the second component of discharges (Figure 6.13) and overlaid in gray shadows
the reported outages from ENTSO-E for (a) 2020 and (b) 2016. R corresponds to the biserial correlation and p
denotes the p-value. Both correlations have been calculated for a lag of three days for which the maximum
lagged correlation is observed.Figure A6.7: Number of non-extrapolatable points of SPEI using the log-logistic
distribution.

Figure A6.8: Same as Figure A6.6, but for the NPSPEI.

Figure A6.9: Difference of Anderson Darling statistics for SPEI and NPSPEI. Positive values indicate that the
NPSPEI produces a smaller statistics and hence a better fit with respect to the standard normal distribution.
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to what extent a change has been beneficial (green plus symbols), neutral (grey circle) or detrimental (red
minus symbols).

Table 3.2: Total and train-test-split number statistics of all TCs and TCs reaching extratropical stage.
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Table 4.1: Quality of recreation of HW cluster occurrence (cross-validation F1-score) with optimal solution (0
lowest, 1 highest).
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Table 5.2. Confusion matrix assessing the accuracy of the decision tree classifier.

Table 6.1: Scores obtained from the test set (2010-2020) using the imbalanced RF approach.

Table 6.2: Likelihood of grain maize crop yield failures. The Reference ratio is defined as the median likelihood
(column 1) of observing the desired event divided through the likelihood of observed a failure in the REF
scenario.
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NPSPEI: Nonparametric Standardised Evapotranspiration and Precipitation Index
NSGA-II: Non-dominated Sorting Genetic Algorithm
NUTS: No-U-Turn-Sampling
NUTS3: Nomenclature des unités territoriales statistiques 3
NWP: Numerical Weather Prediction
oGPI: optimized Genesis Potential Index
OLR: Outgoing Longwave Radiation
PCA: Principal Component Analysis
PDO: Pacific Decadal Oscillation
PIT: Probability Integral Transform
PMIP4: Paleoclimate Modelling Intercomparison Project phase 4
PV: Potential Vorticity
QBO: Quasi Biennial Oscillation
QUINN: Quantile Regression using I-spline Neural Network
REDS: Reflection Via Data Splitting
RF: Random Forest
RH: Relative Humidity
ROC: Receiver operating characteristic
RWB: Rossby Wave Breaking
SA: Simulated Annealing
SANDRA: Simulated Annealing and Diversified Randomisation
SATS: Standardised Active Temperature Sum
SDTW: Soft-Dynamic Time Warping
SIC: Sea Ice Concentration
SIS: Sure Independence Screening
SK: Survival Kendal Function
SMA: Soil Moisture Anomaly
SMHI: Swedish Meteorological and Hydrological Institute
SPEI: Standardised Precipitation and Evapotranspiration Index
SPI: Standardised Precipitation Index
SSI: Standardised Streamflow Index
SST: Sea Surface Temperature
SUR: Seemingly Unrelated Regression
SVR: Support Vector Regression
TC: Tropical Cyclone
TCG: Tropical Cyclone Genesis
TC-GPI or TCGI: Tippett Genesis Potential Index
Th: Thickness asymmetry
TNR: True Negative Rate
TPR: True Positive Rate
UNC: Uncertainty
WAIC: Widely Applicable Information Criterion
W-QEISS: Wrapper for Quasi-Equally Informative Subset Selection
WM-GPI: Wang & Murakami Genesis Potential Index
WP: Work Package
WPS: Web Processing Service
WR: Weather regime
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EXECUTIVE SUMMARY

Detection of extreme events is of primary importance in climate science. The concept of EE

detection includes their definition based on physical processes or impacts, the identification

of features and phenomena which determine or pre-date them, and forecasting - detection

with early warning. All these aims are linked; identifying the features that contribute to the

occurrence of these phenomena can impact how we describe and measure EE, and can

ultimately help improve early actions and prompt communication to institutions and

stakeholders. On the one hand, new studies on EE can corroborate expected relations. On

the other hand, they may shed light on unexplored behaviours among various features, such

as the events themselves, the indices that are used to define them, and the (observed or

forecasted) values of weather variables at various temporal and spatial scales.

The role of WP3 in CLINT has been to advance traditional EE detection methods through the

use of novel ML algorithms and tools developed (in WP2), and to then generate AI-enhanced

forecasts (to be assessed in WP6-7). This chain of work has included the refinement of

existing detection techniques/indices using ML, building on and creating knowledge of the

complex relationships between EE and large-scale fields, the development of new

(data-driven) forecasting systems or the enhancement of existing systems. The focus has

been EE at short-term to S2S to seasonal time scales based on the most extensive climate

data records available (e.g. ERA5, S2S forecasts, CMIP5/6 simulations).

This deliverable presents the main highlights of work performed on the selection of drivers

and machine learning algorithms to detect and predict the four types of climate Extreme

Events (EE) considered in CLINT: tropical cyclone genesis and extratropical transitions;

heatwaves and warm nights; extreme droughts; and compound events and concurrent

extremes.

For each type of EE, a description of the datasets used, considered indices, and inspected

models is provided. This is followed by a discussion on which of the candidate features

indicated in D3.1 have been found to be the most relevant and effective. The skills of the

implemented methods were compared to pre-existing ones and climatological baselines,

obtaining indications about which methods to select and how to implement them most

effectively. Finally, it is possible to highlight the implications of these findings on the physical

understanding of the phenomena.

The advancement in the detection of Tropical Cyclone Genensis (TCG) at long time scales has
focused on developing new Genesis Potential Indices (GPI). The original Emanuel and Nolan
Genesis Potential Index (ENGPI) has been enhanced to an optimized version, oGPI, which
has shown improvements in both spatial and temporal correlations with observed TC
activity. Moreover, a new machine learning based index has been developed, the Artificial
Intelligence enhanced Genesis Potential Index (AI-GPI). This model utilizes data from the
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ERA5 reanalysis dataset and observed TC genesis data from the IBTrACS project, employing a
Convolutional Neural Network (CNN) paired with a spatial redistribution operator to predict
monthly TC activity. The AI-GPI outperforms the ENGPI and, in certain sub-basins, the oGPI,
particularly in terms of spatial correlation and identifying cyclogenesis hotspots. However,
challenges remain in matching the interannual variability with observed data, notably in
sub-basins with fewer cyclogenesis events, which impacts the training dataset's robustness.

To enhance the detection of TC activity on the medium range, efforts have been made to
test a variety of AI model architectures on a large pool of feature variables. Despite the
provision of various influencing variables and the optimisation of their representation, the
largest skill improvements have resulted from adding previous predictions of the target
variable, near real-time observations, or from using daily-averaged instead of instantaneous
feature values. Among the purely data-driven approaches, the U-Net architecture has turned
out to be most useful, exceeding the skill of climatological predictions out to day four. This
architecture has been further tested in a hybrid mode, where the ERA5-trained model for
predicting TC activity has been fed with IFS control forecasts as input. This approach has
resulted in a much slower decline in prediction skill with lead time, and therefore paves the
way for future developments.

For existing TCs in the North Atlantic, the probability of extratropical transition is another
application for which ML models have been developed. Their performance has been
evaluated against forecasts based on the ECMWF ensemble and climatological probability.
The decomposition of the Brier score has revealed why no ML model is able to outperform
the ECMWF ensemble. Even though the ML models have been all better calibrated, they
considerably lack discriminative ability with respect to the binary outcome. The genesis
position has been identified as the most relevant predictor and logistic regression as the
best model, indicating that non-linear dependencies are not yet sufficiently represented in
predictor data and/or modelling approaches.

The work on extreme temperature events has employed traditional and ML-based methods
to tackle a diverse range of problems. First, alternative health-based heatwave indices, such
as humidity-based night-time temperatures (warm nights), have been studied to
complement existing knowledge on (daytime) heatwaves. Driver detection and seasonal
forecast validation analysis. ML approaches have been used to define potential predictors
(such as weather regimes) as well as identifying indicators which explain agricultural
impacts. Analysis of HWs in a paleo-climate simulation has supported ML-based approaches
which required longer-term training datasets than available in reanalysis. Meanwhile, a
spatio-temporal optimization-based feature selection framework, developed in T2.4, has
been applied to three problems: (1) the identification of HW predictors, (2) production of a
data-driven and (3) a hybrid seasonal forecast systems, which both add value over existing
dynamical systems either through computational resources used or forecast skill.
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The detection of Extreme Droughts has been the subject of extensive research in the past
decades, with the development of a comprehensive set of indices (e.g., SPI, SPEI, and SMA).
However, these methods failed to properly reproduce drought impacts, such as the Fraction
of Absorbed Photosynthetically Active Radiation (FAPAR) used to capture drought-induced
stress on crops. The analysis considered 35,408 sub-basins in the pan European domain. The
FRamework for Index-based Drought Analysis (FRIDA) has been used to construct new
composite drought indices that consider drought impacts. In particular, it has helped identify
the basin characteristics and extract the most relevant features. This process has helped
detect the relevant drivers for each cluster and enhanced the impact-based drought indices.

Our studies have examined the impact of compound climate events on Europe’s food, water,
and energy sectors. A case study on winter wheat in France has revealed significant crop
losses caused by a combination of wet and warm conditions in January and February,
followed by dry conditions in April and warmth in May. Random forests and decision trees
have provided accurate local-scale predictions, with critical thresholds often being lower
than traditional extreme event thresholds, indicating that severe damage can result from
non-extreme conditions. We have shown that the impact of hot summers on agriculture and
energy can be significantly accelerated when preceded by dry winters. The risk of crop
failure is notably higher with the inclusion of dry winter soils. The state of winter soils also
increases the predictability of hydropower availability. Finally, our third study has revealed
that extreme flood risk in the Alpine region increases when wet springs follow cold winters.

The analysis of concurrent extremes has focused on detecting dependencies between
heatwaves and droughts, which are known to cause severe impacts across agriculture,
energy, water resources, and health. Leveraging methods from point process theory and
Deep Learning, we analyse global interdependencies of these extreme events, accounting
for their changing frequencies due to climate change. This developed tool enables the
analysis of interdependencies between thousands of extreme events within seconds in a
changing climate, demonstrating that European droughts and heatwaves are connected to
those events in many other regions of the world. Additionally, a nonparametric version of
the Standardized Precipitation and Evapotranspiration Index (SPEI) has been proposed,
offering enhanced extrapolation during reference periods and improved performance for
extreme event detection.

Finally, many of the detection methods presented here are being applied across the project
in either pan-European (WP6) or local-scale (WP7) case studies. Others are being prepared
for deployment in the Climate Services Information Systems (WP8), or in the demonstration
of prototype operational prediction services (WP9). The application and operationalisation
of these tools will ensure their continued development within and beyond the project.
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1 INTRODUCTION

The detection of extreme events is an important step towards understanding the
mechanisms that drive these phenomena. This includes the exhaustive identification of
indices that help define the events or their potential occurrence, and the analysis of which
weather variables influence the development of the phenomena themselves. ML algorithms
help these processes, enhance the existing methods and develop new approaches that can
improve detection and prediction of extreme events. ML models require a thorough prior
inspection of which drivers and algorithms to use. This helps to avoid overparameterization
and reduces the computational time.

Good ML models need to be trained on large and consistent datasets. In climate sciences
these characteristics are provided by reanalyses (e.g., ERA5). Although reanalyses are partly
built upon model approximations, they provide spatial and temporal consistency which is
not guaranteed by observations. At the same time, some other variables which can provide
more specific information about the EE can be retrieved from specific datasets (e.g., IBTrACS
and FAPAR). They can also be used as a benchmark for the training of ML models.

As a first step in ML development, it is fundamental to properly select the drivers (or
predictors) that are given as inputs to the models and to assess which model is the most
appropriate for the characteristics of the problem at hand. A thorough selection of these
aspects allows one to build a solid algorithm to avoid over-parameterization and reduce the
computational time. The resulting models may improve or compete with existing models.

Furthermore, the training process benefits from an accurate driver selection. Identifying the
best drivers requires a different approach according to the physical and statistical
characteristics of each phenomenon considered. In addition, the detection and the
prediction of events imply the use of different drivers. While the former requires only local
predictors, the latter also needs the inclusion of temporally and spatially remote predictors.
In this deliverable, this selection is discussed, in combination with the evaluation of the
algorithms and ML techniques that performed best in each case.

For each of the following Extreme Events (EE):
● Tropical cyclones: in terms of genesis and activity on different timescales (Chapter 2)

and extratropical transitions (Chapter 3).
● Heatwaves and warm nights (Chapter 4)
● Extreme droughts (Chapter 5)
● Compound events and concurrent extremes (Chapter 6)

The report provides an overview of the problem, summarises the data used, describes the
features of the inspected algorithms, explains the results, and finally analyses the physical
and statistical implications.

This report builds on the previous milestones and deliverables from WP2 and WP3, as
illustrated in Figure 1.1.
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Figure 1.1: Schematic representation of D3.3 and its interconnection with previously completed D and MS of WP2 and

WP3.
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2 TROPICAL CYCLONES: INDICES

2.1 Introduction

Tropical Cyclones (TCs) form at a rate of about 80-90 per year globally in the tropical latitude
bands on both sides of the Equator (Walsh et al., 2016). TCs making landfall are among the
costliest and deadliest natural disasters, due to the strong winds, heavy precipitation and
risk of storm surges associated (Mendelsohn et al., 2012). Therefore, it is of paramount
importance to be able to accurately predict their activity at several timescales, ranging from
a few days, to the seasonal, up to the climate projections scale. Unfortunately, a complete
theory of TC formation is so far lacking.

Over the years, several indices have been developed to either directly forecast the genesis of
TC, or estimate how prone the atmosphere in a given region is to the formation of TCs (see
Milestone MS6, “Indices, Datasets, and Candidate Drivers for Tropical Cyclones”, Table 1, for
an overview). The most widely used of these indices—developed by (Emanuel & Nolan,
2004)—is known as the Emanuel and Nolan Genesis Potential Index (ENGPI) and aims at
describing the climatological distribution and seasonal variations of TCs. Its functional form
is given by:

(2.1)𝐸𝑁𝐺𝑃𝐼 = 105η| |
3/2 𝐻

50( )3 𝑀𝑃𝐼
70( )3

(1 +  0. 1 𝑉)−2 
where η is the absolute vorticity at 850 hPa, H the relative humidity at 600 hPa, V the
vertical wind shear between 200 hPa and 850 hPa, and MPI (Maximum Potential Intensity) a
theoretical estimate of the maximum sustained wind speed a TC could reach in a given
environment.

As discussed in D3.2, “Preliminary AI-enhanced extreme events detection”, the ENGPI
performs well in terms of spatial correlation (Cavicchia et al. 2023), with observed data (i.e.,
it correctly identifies zones prone to the formation of TCs), but poorly in terms of
interannual correlation (i.e., it fails to correctly estimate the exact number of TCs forming
each month) in both historical simulations and future projections (Figure 1).

The findings reported in this Chapter will be part of Dainelli et al. (in preparation).
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Figure 2.1 Top: spatial distribution of TC genesis according to observed data (IBTrACS, panel A) and to the ENGPI (panel B).
Bottom: Interannual variability curves for the ENGPI.
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2.2 AI-enhanced indices for TC detection

2.2.1 Optimization of the ENGPI: the oGPI

As already described in D3.2, our first step towards the formulation of AI-enhanced indices
for TC detection is to use a genetic algorithm (NSGA-II) to optimize the coefficients that
enter the definition of the ENGPI in Eq. (X), as well as the pressure levels at which the
variables are taken. We refer readers to D3.2 for further details on this method, and limit the
discussion here to just the salient points regarding the performance of this method, to be
compared with the next method we developed.

The best combination of parameters for the improved ENGPI formula is identified by
selecting those that showed a good improvement in spatial and temporal correlations; we
call the resulting optimized index oGPI (Ascenso et al., 2023). Its functional form is given by:

(2.2)𝑜𝐺𝑃𝐼 = 105η
600

|||
|||

2.01 𝐻
700

43.67( )3
𝑀𝑃𝐼

68.39( )1.77
(98. 9 +  23. 51 𝑉)−2.91 𝑒2.98

The oGPI performs better than the original ENGPI in terms of both spatial and interannual
correlation with observations (Figure 2.1). However, the interannual correlation is still
relatively poor. Therefore, we moved forward to more advanced ML methods to further
improve these initial results.

2.2.2 AI-enhanced Genesis Potential Index (AI-GPI)

This work aims at further improving the detection of TC occurrence, and in particular their
interannual variability and future trends, by foregoing the more classical numerical
formulation of indices and replacing it with a ML algorithm.

2.2.2.1 Data

As data to train our ML-based model, we considered the monthly mean maps of the
environmental factors used to compute the ENGPI and the monthly maps of observed
Tropical Cyclone Genesis (TCG). The source for the predictors of our algorithm is the ERA5
reanalysis dataset (Hersbach et al., 2020, Scoccimarro et al., 2024), with a spatial resolution
of 2.5°x2.5°. The source for the predictand is the best-track data from the International Best
track Archive for Climate Stewardship (IBTrACS) project (Knapp et al., 2010), at a temporal
resolution of 3h, from 1980 to 2021. We refer readers to section 3.2.4 of D2.3 for more
details regarding the data and their processing.
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Figure 2.2 Top: spatial distribution of TC genesis according to observed data (IBTrACS, panel A) and to the oGPI (panel B).
Bottom: Interannual variability curves for the oGPI.

23
AI-ENHANCED EXTREME EVENTS DETECTION



CLINT - CLIMATE INTELLIGENCE
Extreme events detection, attribution and
adaptation design using machine learning

EU H2020 Project Grant #101003876

2.2.2.2 Methods

The ML-based model we develop is composed of two components, a Convolutional Neural
Network (CNN) and a spatial redistribution operator. The CNN performs a linear regression
task by estimating the total amount of TC occurrences in a specific month given the
predictor maps. The operator spatially redistributes this total number across the domain by
a random assignment of the position based on the monthly frequency maps of cyclogenesis.
We have developed seven different models: one covering the global region of the tropics
(40°S-40°N) and the rest covering each tropical sub-basin experiencing cyclone activity. The
boundaries of the sub-basins are defined following Fudeyasu (2014) and shown in Figure
2.2. We refer readers to section 3.2.4 of D2.3 for more details regarding the CNNs
architectures and the details of the spatial redistribution operator.

In line with the methodologies outlined in D2.3, we further develop the model training
process by integrating K-fold cross-validation to partition the dataset into training and test
sets. This cross-validation technique is employed to address the shortcomings of calculating
the interannual correlation between two time series consisting of seven values each,
thereby improving the metric's robustness. This method enables us to calculate the
interannual correlation between observations and the AI-GPI’s predictions across the entire
dataset spanning from 1980 to 2021, excluding training data from the metric computation.
We divide the dataset into five folds and train five distinct models on different years. Table
2.2 details the years included in the training and test sets for each fold. By adopting the
approach of K-fold cross-validation for each of the seven basin we developed an ensemble of
5 models.

Table 2.1: Years of the dataset being part of the training set and the set for the five different folds of cross-validation.
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Fold 1 Fold 2 Fold3 Fold 4 Fold 5

Years in the
training set

1989-2020 1980-1988
1997-2020

1980-1996
2005-2020

1980-2004
2013-2020

1980-2012

Years in the
test set

1980-1988 1989-1996 1997-2004 2005-2012 2013-2020
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Figure 2.3: Sub-basin domains extension.

Table 2.2: Summary of interannual and spatial correlations for the ENGPI, oGPI, and AI-GPI across different domains
(Tropics and sub-basins).

Basin R ENGPI oGPI AI-GPI

Global Annual 0.162 0.380 0.262

Spatial 0.446 0.490 0.771

North Atlantic Annual 0.720 0.436 0.530

Spatial 0.320 0.324 0.681

Northeast
Pacific

Annual 0.616 0.669 0.563

Spatial 0.472 0.628 0.878

Northwest
Pacific

Annual -0.114 0.088 0.311

Spatial 0.480 0.428 0.693

South Pacific Annual 0.089 0.196 0,305

Spatial 0.372 0.429 0.606

North Indian Annual 0.205 0,154 0,118

Spatial 0.312 0.324 0.562

South Indian Annual 0.073 0.105 0.267

Spatial 0.454 0.509 0.690
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2.2.2.3 Results

We evaluate the AI-GPI by considering its performances in terms of spatial and interannual
correlation with respect to the observed cyclogenesis on the dataset (1980-2020), which we
then compare to that of the ENGPI and oGPI globally and on a per-basin level (Table 2.1).
The spatial correlation is defined as the cell-by-cell correlation between the maps of mean
TC genesis per year of the AI-GPI and the observations. The interannual correlation is
defined as the correlation between the curves of yearly TC genesis of the AI-GPI and the
observations. It is important to highlight that to calculate the annual mean TC genesis map
and the yearly TC genesis curve, we utilize predictions derived from the concatenated
outputs of the five ensemble models. Specifically, for each test set split, we calculate the
monthly TCG likelihood maps using the model trained on the corresponding training set. We
then concatenate these monthly predictions in accordance with the dataset's chronological
sequence, resulting in a time series of monthly TCG likelihood maps. From this time series
we obtain the mean genesis map and the yearly genesis curve.

Figure 2.4 reports the time series of yearly TC genesis in the Tropics based on the observed
data, the ENGPI, the oGPI, and the AI-GPI. Additionally, the figure includes the interannual
correlations for each index. The AI-GPI performance is higher than the ENGPI in terms of
interannual correlation, though it is lower than that of the oGPI. Generally, all three indices
capture the overall trend observed in the data. Our method more accurately aligns with the
peaks and troughs of the observation curve, despite some variations in magnitude. It is
crucial to note that the oGPI is optimised using the entire dataset simultaneously, whereas
our model ensembles are trained fold by fold, without ever analysing the complete dataset
entirely. We believe this approach contributes to the superior performance of the oGPI on a
global scale. The last three years of the test set present significant challenges for the
network to model, as these years exhibit the highest cyclone activity in our dataset (refer to
the observation curve in Figure 2.1).
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Figure 2.4: Interannual variability curves for the Tropics domain comparing the observed cyclogenesis to the ENGPI, the
oGPI, and the AI-GPI.

Figure 2.5 displays maps of the average number of cyclogeneses per year per grid point for
(a) observed data, (b) the ENGPI, (c) the oGPI, and (d) the AI-GPI. The figure also includes the
spatial correlation for each index. The AI-GPI shows superior performance in terms of spatial
correlation compared to the other two methods. The maps reveal that the AI-GPI more
accurately identifies the regions and hotspots of higher mean cyclogenesis. The extent of
these areas and the magnitude of the average cyclogenesis frequency show a closer
alignment with observed data compared to the ENGPI and oGPI.
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Figure 2.5: Spatial distribution of TC genesis in the Tropics according to (a) observed data, (b) ENGPI, (c) oGPI, and (d)
AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.
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Figure 2.6: Interannual variations of cyclogenesis in the North Atlantic domain comparing the observed cyclogenesis to the
ENGPI, the oGPI, and the AI-GPI.

Figure 2.7: Spatial distribution of TC genesis in the North Atlantic according to (a) observed data, (b) ENGPI, (c) oGPI, and
(d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.
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Figures 2.6 and 2.7 present the yearly curves and annual mean maps of TC occurrences for
the North Atlantic. Here, the AI-GPI outperforms the oGPI in terms of interannual correlation
with observations. Although the ENGPI exhibits higher interannual correlation overall, the
AI-GPI more accurately captures the peaks and troughs of the curve, particularly in the years
1991 to 1993, as well as in 1997, 2008, and 2009. The AI-GPI shows superior performance
also in terms of spatial correlation. Our method more accurately captures the irregular
distribution of genesis across the sub-basin and locates the regions with higher frequency of
cyclogenesis in the southeastern region and in the Caribbean Sea.

Figure 2.8: Interannual variability curves for the Northeast Pacific domain comparing the observed cyclogenesis to the
ENGPI, the oGPI, and the AI-GPI.

Figures 2.8 and 2.9 present the yearly curves and annual mean maps of TC occurrences for
the Northeast Pacific. In this sub-basin, all three indices demonstrate fair performance in
terms of interannual correlation. Both the ENGPI and oGPI exhibit higher values than the
AI-GPI. However, the AI-GPI successfully captures the overall trend identified in the
observations, which shows stronger cyclone activity from 1980 to approximately 1995, a
decline in activity until around 2013, followed by an increase in the final years of the
dataset. Considering the spatial correlation, the AI-GPI continues to excel, correctly
representing the cyclogenesis hotspot west of Mexico.
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Figure 2.9: Spatial distribution of TC genesis in the Northeast Pacific according to (a) observed data, (b) ENGPI, (c) oGPI, and
(d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.

Figure 2.10 Interannual variability curves for the Northwest Pacific domain comparing the observed cyclogenesis to the
ENGPI, the oGPI, and the AI-GPI.
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Figure 2.11: Spatial distribution of TC genesis in the Northwest Pacific according to (a) observed data, (b) ENGPI, (c) oGPI,
and (d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.

Figures 2.10 and 2.11 present the yearly curves and annual mean maps of TC occurrences
for the Northwest Pacific. The AI-GPI outperforms the other two methods in terms of
interannual correlation. From 1994 to 2010, the AI-GPI more accurately represents the
trend, displaying a pattern of decreasing, increasing, and again decreasing cyclone activity.
Considering the spatial correlation, the AI-GPI continues to outperform the other method,
with a more precise representation of the spatial distribution of the annual mean maps of
cyclogenesis.

Figures 2.12 and 2.13 present the yearly curves and annual mean maps of TC occurrences
for the South Pacific. The AI-GPI outperforms the ENGPI and the oGPI in terms of interannual
correlation, as it captures the decreasing trend observed in the first 10 years of observations
more accurately. Also, the AI-GPI is able to match some of the local peaks of the curve, as in
years 1983 and 1987. The AI-GPI demonstrates superior spatial correlation, more accurately
capturing the irregular distribution of genesis across the sub-basin and more precisely
representing the frequency and magnitude of cyclogenesis within the domain.

Figures 2.14 and 2.15 present the yearly curves and annual mean maps of TC occurrences
for the North Indian sub-basin. Considering the interannual correlation, the oGPI and ENGPI
outperform the AI-GPI, as the AI-GPI curve deviates more significantly from the observed
data than the other two. This performance gap likely stems from the lower record of
cyclogenesis in the North Indian sub-basin relative to others. The reduced dataset for
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training has limited the CNN's ability to accurately predict TC occurrences. The limitations
are also evident in the spatial distribution, where none of the methods accurately match the
observations.

Figure 2.12: Interannual variability curves for the South Pacific domain comparing the observed cyclogenesis to the ENGPI,
the oGPI, and the AI-GPI.
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Figure 2.13: Spatial distribution of TC genesis in the South Pacific according to (a) observed data, (b) ENGPI, (c) oGPI, and
(d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.

Figure 2.14: Interannual variability curves for the North Indian domain comparing the observed cyclogenesis to the ENGPI,
the oGPI, and the AI-GPI.
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Figure 2.15: Spatial distribution of TC genesis in the North Indian according to (a) observed data, (b) ENGPI, (c) oGPI, and
(d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.

Figure 2.16: Interannual variability curves for the South Indian domain comparing the observed cyclogenesis to the ENGPI,
the oGPI, and the AI-GPI.
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Figure 2.17: Spatial distribution of TC genesis in the South Indian according to (a) observed data, (b) ENGPI, (c) oGPI, and
(d) AI-GPI. The coloured map indicates the average number of cyclogeneses per year per grid point.

Figures 2.16 and 2.17 present the yearly curves and annual mean maps of TC occurrences
for the South Indian sub-basin. The AI-GPI outperforms the other two methods in terms of
interannual correlation. Also, the AI-GPI excels in spatial correlation, more accurately
capturing the irregular distribution of genesis across the sub-basin and identifying regions
with higher cyclogenesis frequency, with a similar magnitude to the observations.

In summary, the performance of the AI-GPI, oGPI, and ENGPI indices varies across different
metrics and regions. The AI-GPI demonstrates superior spatial correlation, accurately
capturing the irregular distribution and frequency of cyclogenesis in several sub-basins. On a
global scale, across the entire Tropics, the AI-GPI shows a higher interannual correlation with
observations than the oGPI. We attribute this limitation to the capability of the oGPI to
access the entire dataset for the optimization process. When examining individual
sub-basins, no index consistently outperforms the others. However, in sub-basins with
higher cyclone activity, such as the Northwest Pacific, the AI-GPI shows better performance
in terms of interannual correlation. Additionally, in other sub-basins with frequent
occurrences of TCG, such as the South Indian and the Northeast Pacific, our method exhibits
notable performance. The AI-GPI's limitations are particularly evident in the North Indian
sub-basin, where a reduced training dataset has diminished its predictive accuracy.

2.2.2.4 Future Developments

Our future development of the AI-GPI will focus on two goals: evaluating additional
predictors for estimating the number of cyclogenesis events per month and developing a
multi-spatial input to spatial output model.
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For the first goal, we plan to implement a Feature Selection (FS) algorithm to identify the
most significant factors influencing cyclogenesis estimation in each basin. We intend to
include candidate variables such as atmospheric, oceanic factors and climate indices that
have been previously studied in the literature or that represent processes linked to
cyclogenesis.

For the second goal, we plan to develop a more advanced ML model that better aligns with
the complexity of the problem. Our goal is to create a model capable of handling diverse
spatial inputs and producing a spatial output as a monthly map of TC genesis likelihood. To
achieve this, we will eliminate the use of monthly frequency maps and focus on developing
a more sophisticated architecture than the two-component model we have used so far.
Specifically, we aim to build an Autoencoder (Goodfellow et al., 2016), initially using
Convolutional Neural Networks (CNNs) for the encoder and decoder (LeCun et al., 1989),
with the intention of later incorporating Graph Neural Networks (GNNs) (Kipf & Welling,
2017).

As a final step, we aim to merge these two efforts by integrating the FS algorithm with the
Autoencoder-based model, resulting in a final version of the AI-GPI that directly estimates
monthly maps of TC genesis leveraging the information of the most significant variables per
basin.

3 DETECTION OF TROPICAL CYCLONES

3.1 Tropical Cyclone Activity

3.1.1 Overview

Tropical cyclones (TC) form at a rate of approximately 80-90 times per year globally, with
about 10 of them occurring in the Southern Indian Ocean (here defined as 0°-30°S, 20°-90°E,
and referred to as “SIO” hereafter). With a focus on the medium-range (i.e., up to two weeks
lead time) time scale, the goal of subtask 3.1.2. was to leverage AI to enhance the prediction
of TC activity. A number of large-scale atmospheric and oceanic factors are known to be
relevant for TC formation, such as a moist enough atmosphere in the lower and middle
troposphere, an incipient low-level vortex, moderate vertical wind shear, and SSTs high
enough for the TC to fuel its convection with energy. However, a comprehensive theory of TC
formation is still lacking so far. A useful predictor for TC activity is one that has a reasonable
correlation with the target and shows predictive skill. The latter certainly depends on the
predictor chosen and will also vary with lead time.

In the following, results are shown for the western part of the SIO, since heavy rainfall
events associated with TCs in this area can pose a major threat to the Zambezi River basin
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(Scoccimarro et al. 2024), one of the four selected climate change hotspots under
investigation in CLINT (WP7).

3.1.2 Datasets and Forecasts

3.1.2.1 Datasets

The IBTrACS dataset version 4 (Knapp et al., 2010, 2018), which collects estimates of TC
position and intensity for different ocean basins, is used in three ways, namely to i)
systematically verify the forecasts of all models considered, ii) serve as the target for training
ML models, and iii) calculate a reference model predicting climatological probabilities. In
addition, ECMWF ensemble forecasts provide an NWP-based benchmark and constitute the
dynamical component of the tested hybrid modelling approach. More details about the
individual datasets are given in deliverable D3.1.

Candidate drivers

Subtask 3.1.2 developed ML models to enhance TC activity detection and prediction on the
medium range. Such a goal requires defining candidate drivers that refer to local or remote
conditions and can be related to atmospheric or oceanic variables. In particular, local drivers
can include variables such as relative humidity, vorticity, and SST. On the other hand,
large-scale candidate drivers include tropical, equator-tied waves such as the convectively
coupled equatorial waves (CCEWs; Frank and Roundy 2006, Matsuno 1966, Kiladis et al.
2009, Schreck et al. 2012, Maier-Gerber et al. 2021, Lawton et al. 2022, Schreck et al. 2011),
empirical wave-like phenomena such as the Madden-Julian Oscillation (MJO, Klotzbach,
2014), African Easterly waves and, even though often rejected (e.g., Leroy and Wheeler
2008, Henderson and Maloney 2013), the Quasi-Biennial Oscillation (QBO, Gray 1984). Other
effects that have a role in TC genesis can be Rossby wave breaking (RWB, Zhang et al. 2016,
2017, Wang et al. 2020) or the baroclinic influence associated with the presence of an
upper-level trough. The former may be represented by a predictor that describes the
extratropical influence (for example, upper-level layer-averaged PV), and the latter could be
considered using the coupling index (CI; Bosart and Lackmann 1995). In addition, the
Q-vector convergence (Q) and the lower-level thickness asymmetry (Th), used by
McTaggart-Cowan et al. (2008, 2013), can be included to describe baroclinically influenced
development pathways of TC genesis. Finally, oceanic drivers present slow varying features,
where possible candidates are local SSTs and teleconnections (e.g., ENSO; Gray 1979, Gray
1984, Song et al., 2022). A more extensive discussion of the list of candidate drivers for this
problem formulation can be found in deliverable D3.1.

Target variable

The target variable is derived from the IBTrACS dataset by evaluating, at every grid point on
a 2.5°x2.5° grid separately, whether at least one TC occurred within a 48 h period and radius
of 300 km, to be consistent with the definition of TC activity used at ECMWF. The evaluation
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of occurrence is based on the original 3-hourly temporal resolution and only considered
cyclones that reached tropical storm intensity (i.e., ≥17 m/s). Given the extreme nature of
TCs, the ratio of grid points at which TCs are active and non-active should not be too
imbalanced for ML models to be able to learn a meaningful relationship between predictors
and the target variable. The regional focus in this study is on the SIO, where TCs occur over
ocean grid points at a rather low mean relative frequency of 0.56% (Figure 3.1a) but are
subject to a distinct annual variability (Figure 3.1b). As shown in many applications, such a
ratio in the target variable should still be sufficient to train meaningful models.

Figure 3.1: (a) Mean and (b) variance of the relative frequency of TC occurrence (%) calculated for 1980-2015, which is used
as training period. Note that interval boundaries are not equidistant. The blue box encloses the area in the Southern Indian
Ocean, for which the ML models are trained.

3.1.3 Skill and performance of existing forecasts

Since the target variable considered here is binary, all benchmarks and ML-based models are
defined to output probability values, which convey more information than if the models
predicted just the binary labels directly. However, this implies that the verification of
forecasts is more complex. To evaluate the predictive model performance on the test set,
different tools are combined to address various verification aspects. Receiver operating
characteristic (ROC) curves, which display the true positive rate as a function of the false
positive rate, allow the assessment of the potential predictive ability of a given model, with
the best (no) skill indicated by an area under the curve (AUC) of 1 (0.5). Because ROC curves
are insensitive to miscalibration, it is possible to obtain good performance even when the
distribution of the forecasts is statistically inconsistent with the observations. Therefore, we
also include the Brier score (BS), which averages the quadratic error over all forecasts, and
thus considers the calibration aspect in the evaluation. This means that the expected score
can only be minimised by predicting the underlying observed distribution. Following
Dimitriadis et al. (2021), we further decomposed the BS into three additive measures: MCB
represents the forecast miscalibration, DSC assesses the ability of the (re)calibrated forecasts
to better discriminate between the outcome of the target compared to the performance of a
climatology-based forecast, and UNC expresses the uncertainty inherent in the forecasting
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problem. The BS, MCB, and UNC are negatively oriented (i.e., lower is better), whereas the
DSC is positively oriented (i.e., higher is better).

In the past, TC activity forecasts were heavily based on dynamical models in the medium
range, while statistical models were mostly used for the seasonal predictions. Since Subtask
3.1.2 targets the medium range, ECMWF’s ensemble predictions (ENS) serve as a first
benchmark. The ensemble system consists of 50 perturbed ensemble members and one
unperturbed control member, all having a horizontal resolution of 18 km up to 15 days
ahead of the considered training and testing periods. In each ensemble member, TCs were
tracked (see Magnusson et al. (2021) for tracker description), including cases of genesis
during the forecast. Based on the TC tracks in each ensemble member, a gridded field of
probability of TC activity is calculated in the same manner as for the target variable.

A second type of benchmark is generated from TC activity statistics over the training period
from the climatology of the target variable, referred to as the climatological model (CLIM).
The simplest approach to generate a climatological forecast would have been to average
over the entire training period (as shown in Figure 3.1a). However, from the variance signal
in Figure 3.1b and previous studies (e.g., Maier-Gerber et al., 2021), it seems advantageous
to calculate climatological probabilities separately for each day of the year to reflect
seasonal variations. A 30-day window is then applied to the day-of-year dimension to
smooth out discontinuities resulting from undersampling issues. Because these statistics are
calculated over a set of past realizations drawn from the observational distribution,
climatological forecasts are inherently independent of the current state of the atmosphere,
unbiased if trends and/or regime changes are negligible, and thus, independent of lead time.
The resulting BS for CLIM is constant, which makes it a good choice as a reference for any
skill score, as it allows an easy comparison of predictive skill of models across lead times.

The years 1980-2015 serve as the period from which the climatological forecast probability is
derived and on which ML models are trained. All models are evaluated on the period 15
April 2016 to 31 December 2022 in terms of various aspects of their forecast performance.
All grid points in the SIO region are pooled for verification so that the conclusions drawn are
more robust. Grid points over land are not considered, as their inclusion would have further
worsened the existing imbalance in the target dataset.

The dynamical forecasts turn out to perform better than the climatological forecasts by
more than 40% in BS at 0-1 days lead time (Figure 3.2a). With increasing lead time, skill
decreases continuously and drops below the climatological reference beyond day 9. The
decomposition of the BS reveals that the DSC and MCB terms for CLIM are of the same order
as the UNC term, but almost cancel each other out, so that the BS is slightly lower (i.e.,
better) than the UNC (Figure 3.2b). In contrast, the ENS model results to be well calibrated
overall, except over the first two lead days, but it exhibits a good discriminative ability that yields
good BS values over the first week mentioned before. The generally low UNC term results from
the high imbalance of the target variables, which means that even the trivial approach of always
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predicting a zero probability (referred to as ZEROS) does not perform much worse than the CLIM
reference model.

Figure 3.2: (a) Brier skill score (BSS) (in %) of TC activity probability with respect to the climatological model as function of
lead time. (b) BS decomposition into uncertainty (grey), miscalibration (blue), and discrimination (red) for the two
benchmark models. Resulting BSs are displayed by the black asterisks.

3.1.4 Developed algorithms

The following three subsections present an overview of the ML algorithms that are
developed as part of the baseline models, a convolutional neural network-based approach,
and a hybrid model approach, respectively. For the first two categories, separate models are
trained for each time lag (0, 1, …, 13 days), including in the features the values of the
candidate drivers lagged by the selected number of days. In contrast, pre-trained lag=0
models are used for the hybrid model approach.

Baseline models

The first set of algorithms considered to perform this task are the classical methods
designed for tabular data: logistic regression (Kleinbaum et al., 2002), AdaBoost (Freund and
Schapire, 1997), and extremely randomised trees (Geurts et al., 2006). Subsequently,
different FFNN (Schmidhuber 2015) architectures are considered. These approaches focus
on different aspects and are designed to address different issues in ML. Indeed, these
tabular approaches do not consider spatial and temporal patterns. On the contrary, they
consider all samples to be independent and identically distributed, i.e., they assume that all
samples are drawn from the same joint distribution.

The main advantage of these models is that they train a single model with all the data
available for the region under analysis, with many samples and a reduced number of
features, thereby mitigating the risk of overfitting. Their disadvantage is that they do not
consider the spatial and temporal relationships among data, making them informed
baselines for testing more advanced ML approaches.

Convolutional neural network-based approach
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CNNs (LeCun et al., 1998) are ML methods designed to deal with image data with the aim of
exploiting the spatial location of pixels in an image; this technique is promising for TC activity
prediction because the spatial distribution of the meteorological features can be exploited to
extract meaningful patterns. In this context, each feature is considered as a channel of an
input image, and the target can be considered as a black-and-white image, where each pixel
assumes a value between 0 and 1, representing the probability of TC occurrence.

The CNN architecture designed for this forecasting problem follows the structure of
autoencoders (Baldi, 2012), with an encoder structure that extracts meaningful features in a
latent space and a subsequent decoder part that reconstructs an image from the latent
space, minimising the reconstruction error with respect to the target image. Given the
relatively small number of training images (11,323), the number of layers and nodes is
designed such that the parameter number did not exceed the order of magnitude of the
number of samples.

A U-Net (Ronneberger et al., 2015) is also considered to compare the relatively simple
structure of an autoencoder-based CNN with a more complex state-of-the-art CNN-based
architecture specifically designed for image segmentation. An example of the U-Net
architecture is shown in Figure 3.3.

These convolutional-based approaches are trained considering binary cross-entropy as loss
function, allowing to tune the number of iterations and topology of the networks.
Comparing the CNN approach with the U-Net approach in these terms, the U-Net shows a
slight improvement, with the cost of a much larger number of parameters. Therefore, both
architectures are considered similarly meaningful.

Figure 3.3: Example of U-Net, a state-of-the-art convolutional-based architecture considered for the task. Each feature is a
channel of the input image and the output represents the spatial probability of occurrence of a TC. Credits for the image:
(Serifi et al. 2021).

Hybrid model approach
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For the best-performing purely data-driven ML models, a hybrid forecasting approach is
tested, feeding the ML models with predictors extracted from NWP forecasts. The basic idea
behind it is to get the best out of both approaches, i.e., combining the skill inherent in
dynamical forecasts with the power of statistical or ML methods. This approach has already
been demonstrated to enhance skill in forecasting weekly TC activity on sub-seasonal
timescales (Maier-Gerber et al. 2021).

Figure 3.4: Schematic illustrating the purely data-driven (orange arrow) and hybrid (combination of red arrows) modelling
approach for the example of predicting TC activity at 120h lead time.

A fundamental issue that must be considered when implementing such a hybrid approach is
the extent to which the lead time step should be modelled by the dynamical and ML model
components, respectively. Assuming the goal is to predict TC activity with a lead time of, say,
120h, Figure 3.4 illustrates the two possible, and totally opposite, extreme cases. In the
purely data-driven (non-hybrid) approach, a ML model pre-trained with lag=5d is applied to
ERA5 data of the time when the forecast is made. In the most extreme form of the hybrid
approach, predictors would be taken from the NWP forecast of the lead time to be forecast
(i.e., at 120h) and fed into a pre-trained model trained for lag=0d. Between these extremes,
it is of course possible to combine any lead time at which the predictors are taken from the
NWP forecast with the remaining lead time that needs to be modelled by the ML model to
cover the entire lead time considered. In a first step, however, we implement the hybrid
model in the most extreme form to evaluate the largest contrast. ECMWF’s ensemble control
forecast served as the underlying NWP model component.

3.1.5 Results: AI-Enhanced forecasts and relevant drivers

As shown in Figure 3.5, the baseline models clearly perform worse than the dynamical
model and are found to have the following descending order in BSS: FFNN performs best,
followed by extremely randomised trees, logistic regression, and AdaBoost. Note that the
BSS of the latter is so low that it is not shown for the sake of readability.
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Figure 3.5: Same as in Figure 3.2a but including the baseline ML models.

Figure 3.6 presents the BSS over lead time for the best-performing versions of the
CNN-based ML methods plus the hybrid approach, comparing them with the dynamical
ensemble benchmark and the FFNN baseline model. The performance of the LSTM model is
similar to the FFNN, which, however, trailed behind the IFS ensemble by about 13 % and 8 %
at day 0, respectively. The best CNN model performed best at day 0 but then lost skill quickly
and dropped below the climatological skill after day 0, together with LSTM and FFNN. The
overall best-performing purely data-driven approach is the U-Net, which also slightly
exceeded the dynamical model skill, but then retained its skill a bit longer, crossing the
zero-skill climatological line on day 5. Given its outstanding performance relative to the
other ML models, the U-Net is the main candidate for testing and verifying the hybrid model
approach. The hybrid version of the U-Net clearly had less skill than the original U-Net at lag
0 but started a little better than the FFNN. Exploiting the value of the NWP-based
component, it is able to retain its skill much longer, thus extending the predictive skill
towards longer lead times, eventually dropping below climatology between lead day 5-6.
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Figure 3.6: Same as in Figure 3.2a but including the CNN-based ML models (solid lines) and the hybrid model approach
(dashed line).

It should be noted that, in its current implementation, no bias correction has been applied
to the control forecast, meaning that predictors are taken from the raw forecasts. Any bias
statistics would have to be calculated over a period different to the one used for verification,
i.e. for the time before April 2016. But because retrieving forecasts of this dataset are
usually slow, it poses a strong practical limitation, and we refrained from downloading
multiple years of data.

A decomposition of the BS for the two versions of the U-Net model indicates that forecasts if
the original version are usually well calibrated, independent of lead time. In contrast, the
hybrid version also starts well calibrated but then becomes increasingly miscalibrated,
effectively degrading BS mainly beyond day 5. On a positive note, it can be seen that, apart
from the miscalibration which could be corrected by post-processing, the hybrid U-Net
model better discriminates between TC activity and non-activity for lead times longer than
0, corroborating the great potential of the hybrid approach (Figure 3.7).
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Figure 3.7: Same as in Figure 3.2b but for the original (left) and hybrid (right) versions of the best-performing U-Net.

A major part of the work carried out in this subtask of WP3 is dedicated to the development
and improvement of model architectures and feature sets (see Deliverable D2.2 for the
details of these tests). Therefore, we had frequent iterations between the identification and
engineering of relevant features for TC activity prediction on the one hand and the
quantitative assessment of various forecast aspects on the other. The main lessons learned
from this process are summarised in Table 3.1 in a qualitative manner, indicating to what
extent a change had been detrimental, neutral or beneficial.

Low values of outgoing longwave radiation (OLR) in the tropics hint at deep convection,
which is why this variable is often used as a proxy. In an experiment, we test whether OLR
could be replaced by the total column water vapour variable, as the latter, in contrast to the
former, is an instantaneous (i.e. it refers to a specific point in time) parameter and hence
simplifies preprocessing in any real-time application. As BSs are very similar (not shown), the
change had a neutral effect but brought the aforementioned advantage. A neutral effect is
also found, each in a separate experiment, for the inclusion of climatological probability,
geographical information (latitude and longitude) and temporal information (year and day of
year) as additional predictors, as well as for the addition of predictors from previous days.

A degradation in skill scores is found when experimenting with oversampling techniques to
combat the imbalance in the target dataset and when training on global input fields. We also
test to guide the learning of the ML model by the provision of condensed information about
the large-scale flow and ocean state, represented by SST and geopotential-based climate
indices. We tested it by including them in two ways, as separate channels together with the
other input fields but also by ingesting them into the latent space after the encoder part of
the model architecture. All these tests, however, degrade scores significantly. Another
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experiment is to provide the input fields at a higher resolution (1°x1° instead of 2.5°x2.5°)
but this also turned out to be unsuccessful as the higher resolved data did not provide
enough new information to justify the considerable increase in the number of trainable
parameters that resulted from the adapted architecture.

Clear improvements are achieved by expanding the predictor set using real-time
observations (i.e., previous targets) and predictions for the previous day(s), highlighting the
strong persistence component in this forecasting problem. Although operationally preferred,
owing to the reduced data volume and lower pre-processing costs, the test to replace the
daily averaged (thus, non-instantaneous) predictor data with only the 00-UTC values results
in a non-desirable reduction in predictive skill and therefore is not being pursued further.
This means that the representation of the intraday variability of the predictor data is
important. To increase sample size and to allow for a better generalisation of the model, we
added six other sub-basins, where TCs occur, to the SIO region, also resulting in slightly
enhanced skill.

Table 3.1: Qualitative summary of results of a number of the feature engineering and selection tests indicating to what
extent a change has been beneficial (green plus symbols), neutral (grey circle) or detrimental (red minus symbols).

3.1.6 Summary and Outlook

In Subtask 3.1.2, ML models are developed for TC activity prediction on the medium range
and compared against predictive skill of dynamical ensemble forecasts and climatological
probability predictions. Various model architectures are trained, ranging from simple
baseline models, such as Logistic Regression and AdaBoost, to more advanced CNN-based
models, such as LSTM and U-Net. Trained on an extensive predictor pool, which combines
well-known influencing factors from the literature, the U-Net model proves to be most
useful for detecting and predicting TC activity, as in many other applications. This is certainly
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due to the advantageous characteristics of its architecture, namely its ability to exploit
spatial correlations in input fields through convolutions, and to compress and reconstruct
data through the encoder-decoder architecture, together with the possibility to pass
information through skip connections. The hybrid version of this ML model type further
increases skill out to day five by extracting predictors from the ECMWF ensemble control
forecast.

In conclusion, it can be stated that a broad set of features together with the testing of
different model architectures, as well as their optimisation, and finally the realisation of a
hybrid approach leads to successive improvements of the prediction skill in TC activity
forecasting. We deliberately decide not to include predictions of the target variable from the
IFS benchmark model to avoid turning it into a post-processing problem and also to be able
to better analyse the importance of other influencing variables. Further improvements in
skill are expected from the following work in progress. In the coming months, we would like
to do more tests with the hybrid approach, for example, to use the full NWP ensemble, to
remove biases from the NWP forecasts, or to optimise the split between the lead time
covered by the NWP and the ML model predictions, respectively. In terms of predictor types,
we would like to tap a source of predictability we do not consider explicitly yet, namely
adding information from tropical waves, which are known to modulate TC activity. Apart
from enhancing our own work, we plan to generate the target variable from ensemble
predictions made by some of the large-scale deep learning models (e.g., ECMWF's AIFS
model, Google DeepMind's GraphCast model).

The best-performing non-hybrid U-Net model has been deployed in close collaboration with
WP8 as a WPS prototype on the Levante server at DKRZ. The prototype app is called
Shearwater, a tribute to the bird species that combines two of the main predictors in its
name and has been found to occasionally fly into the eye of TCs to rest in the calm winds.

3.2 Extratropical Transition

Here, we summarise the work conducted and the results found in Subtask 3.1.3 of the CLINT
project. It concerns the topic of TCs undergoing extratropical transition (ET), a process that
makes TCs affecting also the midlatitudes. The goal is to improve the prediction of ET
through the use of AI by taking three different approaches to formulate and address the
problem.

3.2.1 Overview

At the end of their life cycle, some TCs curve away from the tropics and start to interact with
the waveguide in the mid-latitudes. Extratropical Transitions (ETs) can have a substantial
impact in the mid-latitudes, both if the cyclones directly (Evans et al., 2017; Baker et al.,
2021) hit a sub-tropical stage, soon after ET (e.g., Sandy 2012, Leslie 2018, Lorenzo 2019) or
indirectly (Keller et al., 2019) as the ETs can lead to downstream development (e.g., after TC
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Karl, 2016; Schäfler et al., 2018). Even if cyclones do not hit land, ocean waves can propagate
over long distances and hit the coasts of Europe.

Whether or not a TC approaches the extratropics is primarily determined by steering flow. If
a TC is close to a bifurcation point in the flow (Riemer and Jones, 2014), large track forecast
uncertainties and track errors can occur. Therefore, it is critical to correctly predict
bifurcations in the steering flow and TC track towards these points. Magnusson et al. (2014)
discussed an example of such sensitivity for TC Sandy (2012) and Magnusson et al. (2019) for
TC Joaquin (2015), where small changes in the subtropical ridge caused very large
differences in the future tracks of these TCs.

A related uncertainty is phasing with the mid-latitude wave guide, where an upstream
trough favours northward propagation into the extratropics. Correctly predicting the
mid-latitude waveguide is crucial for capturing ETs. This sensitivity was highlighted by
McNally et al. (2014), who found that satellite data over the northern Pacific influenced the
predictions of landfall of TC Sandy.

While TCs that undergo ET may create substantial impacts downstream over Europe, the
majority of TCs do not undergo ET. As was especially evident in 2020, several TCs could make
landfall in the deep tropics or subtropics, spinning down quickly into a remnant low-pressure
system. Other TCs weaken as they encounter high vertical wind shear or substantial
low-humidity air, which may occur in the tropics, especially in the extratropics. As a TC
moves into the extratropics, it encounters much colder waters, removing the supply of
thermal energy and moisture from the ocean, which is necessary to maintain the TC.

In CLINT, we approach the ET problem in three different ways:

1. Two-dimensional fields of TC activity in the northern part of the Atlantic can be
predicted based on a set of predictors (either two-dimensional fields or indices). The
solution to this prediction problem is similar to that described in Chapter 1.

2. Given that TC genesis is observed, the likelihood of it reaching high latitudes can be
determined based on a set of predictors.

3. Given that a TC reaches high latitudes, its impact in terms of weather extremes in
Europe can be estimated (seasonal hindcast and climate projections).

In this section, we focus on (1) and (2), as (3) will be reported later in CLINT WP7. In this
section, we focus on the Atlantic basin, but depending on the degree of generalisation, the
ML methods are potentially transferable to other ocean basins in which TCs undergo ET
(e.g., Northwest Pacific and Southern Indian Ocean).
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Figure 3.8: IBTrACS positions cyclones in the extratropical stage for April 2016-December 2022.

3.2.2 Datasets, candidate drivers and target variable

In this subsection, we describe the preprocessing of target values and predictors for the
problem formulation “Given a TC genesis, what is the risk for it to reach high latitudes”.

This method required:

1. Definition of genesis instance.

2. Definition of criterion to count if the target region is reached.

3. Definition of predictors at the genesis time.

The data periods are defined as 1980-2015 for training and validation and 2016–October
2021 for the test period.

For the observation dataset for TCs, the alternatives are either based on estimations from
the National Hurricanes Center (IBTrACS dataset) or from TCs tracked in reanalyses (e.g.,
ERA5; Magnusson et al., 2021). The advantage of IBTrACS is that the estimates are based on
the best knowledge obtained from observations and human judgements. The disadvantage
is the possible inconsistencies in time due to changes in practice. For ERA5, TCs are
automatically tracked in atmospheric reanalysis ERA5 (Hersbach et al., 2020). The advantage
here is the consistency of the method across time. One disadvantage is that the TC
maximum wind is known to be underestimated by the reanalysis due to limited resolution
and observation coverage. There could also be inconsistencies due to variations in the
observation coverage during the reanalysis period.
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In this report, we focus on the use of ERA5 as the observation dataset to keep the treatment
of the ETs constant. Following common practice, we defined the TC genesis point as the first
instance when the TC reached 17 m/s maximum wind speed at 10 m height. We define the
target region to be north of 40N and between 98 W-0W, which agrees well with reported ET,
as shown in Figure 3.8. If a TC at some point during its track passed inside that box, it
counted as a true event (i.e., a TC that underwent ET). While the target variable is binary, all
models produced a probability that indicated the likelihood that a given cyclone will undergo
ET.

For ERA5, the total number of TCs and the number that reached the target region in the
training and test periods are given in Table 3.2, together with the fraction. As can be seen
from these numbers, the proposed train-test split preserves the fraction of ET cases in both
subsets.

Table 3.2: Total and train-test-split number statistics of all TCs and TCs reaching extratropical stage (in North Atlantic target
region).

Total Train Test

Total 481 390 88

Reaching target 182 147 34

Fraction 37.8 % 37.7 % 38.6 %

The predictors are based on the TC properties at the genesis (position, intensity, day of the
year, etc.) and climate indices from the CLINT-TS dataset (see D3.1). Examples of climate
indices include SST averages, such as the Nino3.4 index and SST in the Tropical Atlantic
(“main development region for TC”), and Euro-Atlantic weather regimes based on 500hPa
geopotential height. There is an option to add a temporal filter to the indices beforehand.

To benchmark the ML-based methods, we use two fundamentally distinct forecasting
approaches. First, ECMWF ensemble forecasts (ENS) are used to compare the data-driven
ML model with a physical model. Between March 2016 and July 2023, the ENS has a
horizontal resolution of 18 km, but undergo several upgrades of the model and data
assimilation. Based on automatic tracking (same as for ERA5 above), we examine the
forecasts at the genesis time and count the number of ensemble members (50 in total) that
featured a TC in the target box during the next 15 days. The fraction of the ensemble that
fulfils the criteria determines the forecast probability. Second, the fraction of TCs undergoing
ET in the training dataset (37.7 %) can be considered as a climatological forecast (CLIM),
assuming the training sample represents the underlying distribution of the target variable
and that there are no trends.
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3.2.3 Skill and performance of existing forecasts

Because the target variable is binary and forecasts are probability values, for the ET
forecasting problem we use the same verification tools employed for the short-term TC
activity predictions. Therefore, we refer to the third paragraph of section 2.4.3.

A high ET fraction of 38.6% led to an equally high UNC of 0.237 (Figure 3.9), still close to
BS=0.25, which is the value that a random forecasting approach would have resulted
without any prior (e.g., climatological) knowledge. This demonstrates the large uncertainty
associated with the forecasting problem. The CLIM model, being constant, has no
discriminating ability; at the same time, it is by definition well calibrated, since its forecast
probability is calculated from the underlying distribution of the target variable. In contrast,
the ENS predictions exhibit considerable miscalibration, but their predictive ability to
distinguish between ET and no-ET cases offset this by more than a factor of two, reducing
the BS to 0.180.

Figure 3.9: Brier score (BS) decomposition into uncertainty (grey), miscalibration (blue), and discrimination (red) for the
two benchmark models. Resulting BSs are denoted by the vertical black lines.

3.2.4 Developed Algorithms

Decision trees and random forests

A decision tree builds a sequential chain of conditions that would favour one of the
outcomes. We used the “DecisionTreeClassifier” and “RandomForestClassifier” models from
the scikit-learn package in Python. The only degree of freedom we explored is the depth of
the tree (number of conditions). The choice of depth is a balance between stratifying the
sample to get the most out of the training data and the risk of overfitting.

Logistic regression

For binary target variables, logistic regression models (Hastie et al., 2009) are a commonly
chosen type of model that maps linear combinations of continuous predictor variables to a
probability via a logit function. Regression coefficients are estimated by minimising a cost
function maximum based on two terms: one corresponding to maximum likelihood
estimation and the other applying an l2-regularisation, which keeps the coefficients of the
predictors small and thus helps to prevent the model from overfitting.
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For the logistic regression model, a forward sequential predictor selection scheme is applied
to the predictor pool to determine a subset that maximises the predictive skill over the
training dataset. In each step, the predictor is added from the remaining pool, for which a
predefined score is optimised in a 5-fold cross-validation applied to the training data. We
test several scores and finally chose the AIC over the frequently used negative log likelihood,
since it penalises the model for including too many features and prevents overfitting. In a
context of training data scarcity this allows a better generalisation.

3.2.5 Results: AI-Enhanced forecasts and relevant drivers

The results of the ROC analysis show that the LOG model is the data-driven approach with
the best potential predictive ability, followed by random forests (Figure 3.10a). While CLIM
by definition follows the diagonal, indicating no skill, the use of a single decision tree does
not perform much better. A similar ranking is also obtained when miscalibration is
considered (Figure 3.10b). All ML-based forecasts obtain a BS higher (i.e., worse) than the
ENS, but lower (excluding the decision tree) than the CLIM. As revealed by BS
decomposition, the LOG and random forests are better calibrated than the ENS but are
much less able to discriminate between ET and no-ET. The fact that random forests are
usually superior to decision trees (owing to their ability to reduce overfitting without
massively increasing bias-related errors) can be seen by the highly reduced miscalibration
and enhanced discrimination. However, the best BS among all data-driven models is
achieved by the LOG model.

Figure 3.10: (a) ROC curves for all models with AUC scores in the legend. (b) As in Figure 3.9, but including the results for
the ML models sorted by BS.

From the statistics of the predictor selection process (Figure 3.11), conclusions can be drawn
regarding the optimal number of predictors needed. This should be large enough to provide
the model with the necessary predictive signals, but also small enough not to unnecessarily
increase multicollinearity between predictors. Our choice to use the AIC for scoring results in
only the latitude and longitude positions of TC genesis being included in the optimal subset
(red curve). Employing the negative log loss, optimization would have been reached
including the radius of maximum wind and standard deviations of anomalies of Nino3.4 and
NAO indices (black curve). However, the small improvements gained with their addition are
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a sign of overfitting, which the negative log loss is prone to. Using the BIC would lead to a
decrease in the number of selected features, so that the optimum would already be reached
with the latitude of the genesis predictor. Given that the dynamical model still clearly
outperformed the ML-based models, despite the larger miscalibration, and the generally low
number of predictors being selected, the final predictor pool seems to still lack relevant
predictors.

Figure 3.11: Results of the sequential predictor selection applied to the logistic regression. Mean (line) and standard
deviation (shading) of the negative log loss, the AIC, and the BIC as a function of the number of features. The dotted vertical
line marks the optimal number of features identified for the corresponding score.

3.2.6 Summary and Outlook

In the exploration of ML to predict whether a TC would reach high latitudes based on the
properties at genesis time, we find it difficult to improve the ECMWF ensemble forecast,
despite a positive frequency bias in the ensemble. The strongest influence is found to be
related to the latitude and longitude of the genesis, which is reasonable particularly if a
cyclone already forms at high latitudes. We find that mid-latitude flow and SST indices at the
genesis time had a small influence on the chances of the TC reaching the target region. So
far, the mid-latitude climate indices considered are based on principal component analysis,
which yields variance-maximising but rigid flow patterns. Since the prediction of ET is often
subject to subtle local deviations from these large-scale patterns (e.g., phasing with trough
and bifurcation points), we will develop and test more tailored indices.

However, there are many degrees of freedom to explore this prediction problem, such as the
choice of the model and model settings, index selection, and index smoothing. As a next
step, best practices and method applications coming out from work on the other extreme
events reported in this deliverable will be solicited to be tested on the ET prediction for TCs.

Another future direction is to use the prediction from a dynamical forecast as an input
predictor, which can either be a probability from the ENS or a binary result from a
deterministic forecast (e.g., ERA5-based). However, this limits the sample size, which is
already low.
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4 HEATWAVES AND WARM NIGHTS

As a result of the wide range of impacts of heatwaves (HWs), from excess human mortality
to agricultural losses and abrupt changes in energy demand (Thomas et al. 2020;
García-Martínez et al. 2021; Zuo et al., 2015), there are a growing number of indicators for
extreme heat events, such as warm nights (WNs - the equivalent for night-time
temperatures) and health-related indices (Fischer et al., 2013; Perkins-Kirkpatrick et al.
2015; Davis et al., 2016). Detecting extreme temperatures and identifying their drivers are
crucial to the development of prevention plans and mitigation strategies that can minimise
the risks associated with all types of heat extremes (e.g. Lowe et al., 2016).

The skill of forecast systems, from short-term to seasonal, in detecting HWs and warm nights
(WNs) has already been tested (e.g. Prodhomme et al., 2022; Torralba et al., 2024). Early
warnings provided by the current generation of operational seasonal forecast systems
remain inhibited by poor representation of European summertime conditions, such as the
representation of jet stream flows and persistence of weather patterns such as blocking
(Domeisen et al., 2023). As a consequence of limited reliability of dynamical models, efforts
in recent years have turned to exploiting the power of Machine Learning methods to extract
information on HW/WN drivers from observations/reanalysis. Such methods attempt to
reduce the dimensionality, and therefore the computational expense, of the forecasting
problem by using area-averaged time series (e.g. Zhang et al., 2022) or modes of variability
as predictors (e.g. Kämäräinen et al., 2019).

The work done in Task 3.2 has used traditional and novel ML methods to define heat
extremes, select definitions and indicators with most relevance to impacts, identify variables
and indices which determine HW occurrence and propensity, and to create data-driven and
hybrid approaches to seasonal forecasts. We explore modifications of HW indices to take
into account human sensitivities, such as humidity and ability to acclimatise (Section 4.1); an
ML-based detection of most impactful HW indices on agricultural crop yield (Section 4.2).
Then, we describe the applications of the feature selection framework developed earlier in
the project (Section 4.3). This flexible framework, depending on its set-up, can be used to
identify predictors of HW indices (Section 4.4.1), and make forecasts (Sections 4.4.2 and
4.4.3). In Section 4.4.2, we present a purely-data driven approach to forecast temperature
extremes based on climate-model training. In Section 4.4.3, a hybrid version of the
framework, which incorporates existing dynamical forecasts, is described. Finally, we include
a brief discussion on the differences between day and night heatwaves in Section 4.5.

4.1 Indices and Datasets

The characterization of extreme events is usually performed by employing specific indices
which describe the severity, magnitude and duration of the events. A comprehensive index
should allow a comparison of the event to other episodes or to typical conditions. As
evidenced in the literature and Deliverable 3.1, a wide range of indices exist, each with their
pros and cons.
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All indices here are built on the commonly used percentile-based method of defining HWs
(e.g Russo et al., 2015). A HW is typically defined as a temperature exceedance over the
daily 90th-percentile, with many studies also imposing a minimum duration of 3 days. All
indices can be applied to any daily temperature time series; for example, Tmax is used for
the most-commonly used definition of heatwave, Tmin to define nighttime heatwaves, and
average apparent (humidity-dependent) temperature at night used to define “warm nights”
(D3.1). We refer to all heat extremes generally as HW, until Section 4.5 when we provide
discussion on differences between temperatures from different parts of the daily cycle.
Beyond daily indicators of HW occurrence, we employ the Heat Wave Magnitude Index
(HWMI) and the number of days above the 90th percentile in a given season (NDQ90).

Indicators can describe various time scales, from precise daily information (e.g. HW
occurrence) to seasonally aggregated information (e.g. number of HW days in a month). In
addition, the Excess Heat Factor (EHF) is used to consider a HW metric that is related to
human health impacts (Nairn and Fawcett, 2014). It combines two indices describing two
different temporal characteristics: the significant deviation from the long-term mean and the
short-term anomaly.

The ERA5 reanalysis is used as the ground-truth against which HW indices in forecasts are
validated. Its hourly resolution permits the study of both day and night extremes with a
spatial resolution of approximately 30 km. This reanalysis provides a large set of variables
that are used as potential drivers for the detection of EE (see D3.1 and D3.2).

The “past2k” simulation is a reconstruction of the atmosphere and ocean climate over the
past two millennia. It has been performed with the MPI-ESM1.2-LR model, using ECHAM6.3
as its atmospheric component (2o horizontal resolution with 47 vertical levels) and the
MPIOM1.63 as its ocean component (1.5, reaching 30-40km in sub-polar North Atlantic,
with 40 vertical levels). A detailed description of the MPI-ESM model and the past2k
simulation can be found in Jungclaus et al. (2014 & 2017). The original reconstruction of
years 0-1850 has since been complemented by an extension period from 1851-2014. The
model is forced by reconstructions of greenhouse gases in the atmosphere, land-cover,
volcanic aerosols, solar forcings (with artificial 11 year cycle) and monthly average ozone
concentrations (Jungclaus et al., 2014 & 2017).

The current capabilities of the seasonal prediction systems to predict HWs have been
explored in the multi-system framework provided by the Copernicus Climate Change Service
(C3S) initiative. The ability of the C3S seasonal forecast systems to detect those EE at
seasonal timescales will be used as a benchmark to quantify the potential added value of
the ML methods developed in Task 3.2. In this deliverable, comparisons are made to the
ECMWF (European Centre for Medium-Range Weather Forecasts) SEAS5 system, as it
provides a longer continuous reforecast period until 2022. Previously (D3.1 & 3.2), other C3S
seasonal forecasts produced by different institutions were employed, namely DWD
(Deutscher Wetterdienst), Météo-France and CMCC (Centro Euro-Mediterraneo sui
Cambiamenti Climatici. The main specifications of these prediction systems are listed in
D3.1, but all the systems provide 6-hourly fields spanning six months into the future, with a
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spatial resolution of 1° and global coverage. The number of ensemble members (i.e. the
different realisations used to sample the seasonal forecast uncertainty) varies among the
different seasonal forecast systems.

4.2 ML-based identification of HW indicators for agriculture

In this section, the impacts of temperature extremes, including both HWs and WNs, on
agricultural productivity in the Lake Como Climate Change Hotspot are studied to support
the planning of adaptation strategies in view of mid-to-long-term climate change projections
(in WP7). Specifically, we first simulate historical crop yields using a detailed, process-based
model of the agricultural districts. Then, we use correlation analysis and the Patient Rule
Induction Method to identify the most relevant drivers of crop failure among different
indices describing the occurrence and intensity of HW and drought events. This method, as
well as an analysis of projected change of indices and crop yield in CMIP6 models, will be
published in Giuliani et al (in preparation).

4.2.1 Impact Model

The impact model simulating the dynamic processes in the irrigation districts served by the
Lake Como releases is the IdrAgra model. The model is composed of three distinct modules
devoted to specific tasks:

1. a distributed-parameter water balance module that simulates water sources,
conveyance, distribution, and soil–crop water balance, including the application of
irrigation (Facchi et al., 2004);

2. a crop phenology module that computes the sequence of growth stages as a function
of the temperature according to the Heat Units theory (Neitsch et al., 2011); and

3. a crop yield module that estimates the optimal and actual yields, accounting for the
effects of stresses due to insufficient water supply that may have occurred during the
agricultural season (Steduto et al., 2009).

The water balance module partitions the irrigation district with a regular mesh of cells with a
side length of 250 m (i.e., each cell covers an area of 6.25 hectares), which allows for the
representation of the space variability of crops, soil types, meteorological inputs, and
irrigation distribution. The study area consists of 32,820 grid cells, for a total cultivated area
that amounts to 205,125 hectares.

We used meteorological data from the ERA5 hourly reanalysis extracted for the box 46.5°
North, 10.9° East, 44.5° South, 8.65° West. Specifically, the impact model described in the
previous section requires the following inputs:

● Daily minimum and maximum temperature (Tmin and Tmax).
● Total precipitation.
● Daily minimum and maximum relative humidity.
● Daily average wind speed (derived from the V and U components).

57
AI-ENHANCED EXTREME EVENTS DETECTION



CLINT - CLIMATE INTELLIGENCE
Extreme events detection, attribution and
adaptation design using machine learning

EU H2020 Project Grant #101003876

● Daily total solar radiation.

Daily time series of observed levels, releases, and net inflows of Lake Como are available
from 1946 (the start of the lake regulation after the dam construction) to 2022. The release
data are here used to simulate the irrigation supply to the considered agricultural.

To capture the occurrence of HWs and WNs, we consider seasonal indices from April to
September which correspond to the agricultural season of the main crops cultivated in the
Po valley. These include the HWMI and NDQ90, alongside the daily heatwave occurrence
and intensity series, and the series of occurrences of temperature above the 90th percentile.
The reference period used to compute the indices is 1981- 2010.

The Standardized Streamflow Index (SSI) is also considered to verify the possible influences
of drought conditions on crop production. The index is computed from the monthly data of
Lake Como inflows cumulated over a six-month period.

In total, we considered 51 indices, which fall into the following categories:

● HWMI calculated with maximum (tmax) and minimum temperature (tmin);
● NDQ90 (tmax and tmin);
● Number of HW occurrences over the agricultural season (April to September) (tmax

and tmin);
● Sum of HW intensity over the season (tmax and tmin);
● Number of HW occurrences in the individual months over the season (tmax and

tmin);
● Sum of HW intensity in the individual months over the season (tmax and tmin);
● NDQ90 in the individual months over the season (tmax and tmin);
● Number of drought months each year;
● Average SSI during the year;
● Average drought intensity each year;
● September SSI, aggregated over 3, 6, 9 and 12 months.

4.2.2 Patient Rule Induction Method

The Patient Rule Induction Method (PRIM) is used as an aid in the analysis of the
relationship between crop production and heatwave-drought indices to complement the
findings obtained from a simple correlation analysis between HW indices and simulated crop
production. PRIM is a statistical clustering method originally introduced by Friedman and
Fisher (1999) that is often used in scenario discovery analysis (Kasprzyk et al., 2013; Giuliani
et al., 2022). It belongs to a group of algorithms called "bump-hunting" algorithms, which
are used to find regions, called scenario boxes, in the input variable space that are
associated with the highest or lowest mean value for the outcome (Nannings et al., 2008).
Boxes correspond to a simple square in a two-dimensional input variable space and to a
hypercube in a multi-dimensional space. This is unlike regression models, which seek to
model the whole population by optimizing a likelihood function. In this work, the input
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variable space is composed of the HW and drought indices, whereas the outcome is the
yearly yield. More specifically, what is of interest is the identification of the indices
associated with the low yields, which are labeled as crop failures. Therefore, a threshold has
to be set on the outcome variable so that the algorithm can distinguish between failures and
non-failures when building the scenario boxes.
The scenario boxes are constructed by optimizing several competing metrics, namely
coverage - how many failure scenarios are captured within a box - and density - how many of
the captured scenarios in each box belong to the failure set. Ideally, a scenario box should
have both a high coverage and density. This guarantees that the inputs used to build a box
are able to explain the highest number of failure points possible and that the noise
generated by uninteresting points is minimum, which happens when the density is high.

4.2.3 Results

To understand the link between yearly yield and extreme temperatures, and potentially
droughts, a correlation analysis is conducted and 27 out of the 51 correlations evaluated
proved to be statistically significant. As an example, the scatter plots in Figure 4.1 show the
correlations for the six most relevant indices (as determined by the factor mapping analysis
described below). As can be deduced from these scatter plots, there are obvious trends but,
in all instances, it is difficult to partition the variable space in a way that fully separates the
failure points from all the others. For this reason, we built on this preliminary correlation
analysis and ran a formal factor mapping using the PRIM method described in the previous
section. The aim of factor mapping is not to perfectly classify the data but to facilitate the
interpretation of the results and the identification of the most relevant drivers of the crop
failures. The candidate drivers considered in this analysis are the 27 statistically significant
indices, while the output variable is the crop yield labelled as failure/safe outcome using the
25th percentile threshold.

Figure 4.2 shows the PRIM results as a Pareto front of scenario boxes navigating the
trade-off between coverage (x-axis) and density (y-axis). Ideally, a good scenario box would
be positioned in the upper right corner, where both metrics have their highest values. This
case, however, does not exist because of the conflict between the two metrics. Moreover,
each point in the figure is assigned a colour based on the number of inputs used to build the
corresponding scenario box, ranging from zero inputs (dark blue) to eight variables (yellow).
The downside of considering too many dimensions is that the coverage values decrease
drastically, meaning that the drivers used to build the box are not good at explaining a high
enough percentage of all the failure yields.
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Figure 4.1: Scatter plot of the most relevant heatwave/drought indices and crop yield. Each point in the figure represents a
value of simulated yield (y-axis) associated with the corresponding value of the heatwave/drought index (x-axis). The blue
line corresponds to the least-squares regression line, while the red markers identify crop failures (i.e., yield values below the
25th percentile of the historical series). The values of Pearson linear correlation coefficient and corresponding p-values are

reported below each panel. The correlation values are statistically significant if the p-value is smaller than 0.05.
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Figure 4.2: PRIM results in terms of scenario boxes navigating the trade-off between coverage (x-axis) and density (y-axis)
of crop failure with respect to heatwaves/drought indices. Circled points are the scenario boxes analyzed in detail.

From these results, we select four scenario boxes relying on an increasing number of inputs
to be analyzed in more detail. The first two solutions are chosen to isolate the most relevant
drivers of crop failure, supporting the definition of scenario boxes with high coverage (but
low density); the 4-dimensional solution is chosen because it is characterised by a density
equal to 0.5 (but coverage equal to 0.74); finally, the 6- dimension box is chosen because it
further increases the density while simultaneously reducing the coverage only slightly below
0.5. The crop failure drivers selected by PRIM in the different solutions are the following:

● 1 dimension (89.5% coverage, 40.5% density): NDQ90 in June calculated with
maximum temperature (NDQ90_occ_june_tmax),

● 2 dimensions (89.5% coverage, 44.7% density): NDQ90_occ_june_tmax and HWMI
calculated with minimum temperature (HWMI_tmin),

● 4 dimensions (73.7% coverage, 50.0% density): NDQ90_occ_june_tmax, HWMI_tmin,
NDQ90 in Au- gust calculated with maximum temperature (NDQ90_occ_aug_tmax)
and the SSI aggregated over 3 months and calculated in September
(SSI_sept_3_months),

● 6 dimensions (47.4% coverage, 69.2% density): NDQ90_occ_june_tmax, HWMI_tmin,
NDQ90_occ_aug_tmax, SSI_sept_3_months, number of heatwave days in June
calculated with maximum temperature (HW_days_june_tmax) and number of yearly
heatwave days calculated with maximum temperature (HW_occ_tmax).

The PRIM results show that the most important drivers selected as responsible of crop
failures in the Adda River basin are the NDQ90 in June (tmax) and the HWMI (tmin). The
former, by definition, also includes days that are not necessarily part of a HW event,
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meaning that extreme temperatures in general are detrimental to crop yield. The latter is
particularly interesting because it shows the significant role that nighttime temperature
extremes and WNs play in the agricultural sector. A drought index also appears among the
HW indices, which means that water stress contributes to crop failure but not as much as
temperature stress since it is selected only starting from the 4-dimensional solution.

These findings have also been used in Task T7.4 to investigate the projected evolution of
these critical indices under climate change, in order to support local end users (farmers) in
better understanding future risks and explore the opportunity to replace some of the crops
currently cultivated in the area, primarily maize, in favour of heat-tolerant varieties, such as
soy or cereals, in order to ensure more reliable productions in the coming years (for details,
see Deliverable D7.2).

4.3 HW precursors: ML-defined weather regimes

Here, we assess atmospheric drivers related to HW indicators for the case study of Sweden
over the past decades. The analysis is based on ERA5 reanalysis data for the period of 1940
to 2022 using the pattern analysis method of weather regimes (WRs). The selected HW
indicators are the Excess Heat Factor (EHF) indicator which can be used for human health
impacts and the NDQ90_occ, which represents the 90th percentile of maximum
temperature. This study focuses on Stockholm city, where 985 HW events were detected
from 1940 to 2022, May to August.

EHF is a measure of HW intensity related to human health impacts and is a product of two
indices describing two different temporal characteristics: (i) the significant deviation from
the long-term mean (Excess Heat Index significance - EHIsig) and (ii) the short-term anomaly
(Excess Heat Index acclimatisation - EHIaccl). In EHIsig, the daily mean temperature averaged
over three days (DMT, daily mean temperature as the average between the daily maximum
and minimum temperature) is compared against the 95th percentile of DMT over a
climatological reference period (here 1981-2010). The EHIaccl index is a measure of how hot
a 3-day period of DMT is with respect to the previous 30 days. It follows the idea that human
bodies are in general able to acclimatise to their local climate but have difficulties in
adapting to sudden temperature rise (Nairn and Fawcett, 2014). The two indices are
multiplied (EHF = EHIsig × max (1, EHIaccl)), resulting in a quadratic measure of HW intensity
with a HW when EHF is positive. In order to describe HW across different regions compared
to its local climatology, a normalisation is applied of each daily EHF intensity value divided by
the 85th percentile of the climatology. This results in the EHF-severity index with different
severity thresholds: Low- Heatwave intensity: daily EHFsev > 0 and <1; Severe Heatwave:
daily EHFsev ≥ 1 and <3, and Extreme Heatwave: daily EHFsev ≥ 3 (Nairn and Fawcett, 2014).

Weather regimes (WRs) are classified based on the concept of fuzzy sets (Zadeh, 1965,
Bárdossy et al., 2002), using imprecise statements to describe the climate system. The
anomalies of daily mean 500hPa geopotential height (z500) from the reanalysis data (i.e.,
ERA5, ~ 0.5°), serve as a predictor to derive temperature-induced WRs. The daily anomalies
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at each grid have been computed as daily deviations from the long-term climatology (here
1981-2010) over the Euro-Atlantic region (24.75°-74.75°N, 135°W-45°E). Daily mean
temperature from 34 observation stations distributed in the whole Sweden serve as
predictand to reflect the variability of local climate. They help optimise predefined fuzzy
rules describing individual WR. Each of the classified WRs describes a recurrent and
persistent atmospheric state.

Figure 4.3: Composite maps of WR10, WR09, WR05 and WR12, where red isolines indicate higher-than-average pressure
anomalies and blue isolines indicate lower-than-average pressure anomalies.

A set of twelve temperature-induced weather regimes are classified (examples shown in
Figure 4.3). Type 10 (WR10) is found highly related to the detected HW events, which
explains nearly 40% of HW events detected from May to August during the period of 1940 to
2022 (Fig. 4.4 top), in particular, 47% of detected HW events in August. The overwhelming
high-pressure system situated over the North Sea and the southern Scandinavian likely
caused the warmer-than-average temperatures over northern and central Europe. The
pressure distribution of Type 5 (WR05) is found similar to that of Type 10 (WR10), but its
positive anomalies move further northward and causes warm weather over northern
Europe. Type 9 (WR09) is featured with positive height anomalies prevailing over northern
Germany. It favours anticyclonic dry and warm weather across the whole of Europe except
Northern Scandinavia and Iceland. The weather regime of Type 12 (WR12) is shown with
dominant deep anomalies covering the North Atlantic Ocean, while weaker positive
anomalies over the European continent from the Mediterranean region to the Norwegian
Sea, bringing warm air from northern Africa and the Mediterranean basin to the European
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continent. In comparison to Type 10 (WR10), the linkage of Type 5 (WR05), Type 9 (WR09)
and Type 12 (WR12) to the detected HW events are relatively weaker.

Also, it is found that if one among Type 5 (WP05), Type 9 (WR09), Type 10 (WR10) and Type
12 (WR12) occurs, on the same day a HW event is detected. A statistical test has been used
to study and approve the significance of occurrence of a given WR to the detected HW
events (see Figure 4.4), where the occurrence of these types of WRs on the day when the
HW events (presented as Observed in Figure 4.4 left) occurred are much higher in
comparison to their long-term average occurrence during the reference period (presented as
Expected in Figure 4.4 left). Similar results are found for the EHF (Fig. 4.4 right).

Figure 4.5 presents the annual number of HW days provided by different HW indicators for a
selected grid of ERA5 reanalysis data for Stockholm over the period 1940 to 2022.
NDQ90_occ (occurrence of T > 90th percentile) shows a clear upward trend in the annual
number of HW occurrences, higher than for HW_occ which has a requirement of 3-day
persistence. The EHF severity index greater than 1, presenting severe and extreme HWs,
shows a slight increasing evolution within the last decades with a strong HW summer in
2018, which is prominent in all three indicators presented here.

Figure 4.4: Histogram of extreme events (May to August, 1940-2022), defined using standard heatwave definition (left) and
the EHF (right), with given WRs and corresponding tests of statistical significance (sig.level = 0.05) .
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Figure 4.5: Annual number of heatwave days (May to August, 1940-2022) based on NDQ90, HW_occ and EHF severity > 1

(severe and extreme heatwaves) over the period 1940-2022 during the summer season (May to August) selected for a grid

of ERA5 representing Stockholm. The bold lines represent the 10-year moving average.

4.4 Optimisation-Based Feature Selection Framework: Driver Detection &
Forecasting

Here, we describe a spatio-temporal feature selection framework developed for HW direct
detection, and its applications to forecasting. The framework is composed of two steps: a
dimensionality reduction of global variables, followed by a feature selection that identifies
the optimal combination of drivers and lag times. The chosen variables are evidenced to
potentially play roles in European HW occurrence, and represent atmospheric circulation
(z500; Dong et al., 2018; Kornhuber et al., 2020; Kautz et al., 2022), ocean-atmospheric
interactions (SST), precipitation (Stefanon et al., 2012), soil moisture (Materia et al., 2021),
sea ice (Coumou et al., 2018) and more. Global clustering of specific variables (e.g. sea ice,
outgoing longwave radiation) allows the potential identification of teleconnections. A
k-means clustering is applied to each variable to extract 5 clusters per domain (Appendix
Figures A1-A4); the daily area-averaged means are taken as predictors. In the second step,
an evolutionary-type algorithm is employed to select the clusters of the different variables
which provide the optimal detection skill for the target time series. The framework allows us
to quantify the relative importance of each variable and cluster and, crucially, to identify the
time lag from short-term to seasonal time scales. The framework will be described in
Pérez-Aracil et al (in preparation).
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In CLINT, we apply this framework in three varied ways in order to produce:

1. A feature selection of regional HW cluster predictors.
2. A hybrid forecasting approach.
3. A purely data-driven forecasting system.

4.4.1 Identification of Regional HW Cluster Predictors

The first application uses the framework in a detection mode. Potential predictor data from
lag times up to 0 days are included, hence this method is more a “recreation” and not a
forecast. The aim is to understand how well represented HW occurrences are with reduced
dimensionality of their predictors in the framework. In initial experiments on local target
data over the Lake Como region, the framework could recreate the HW record from
2011-2022 with a high accuracy (F1-scores of roughly 0.7; D2.2), thus demonstrating strong
potential to be applied to other problems.

Here, we apply the framework to the time series of regional HW cluster occurrences.
Clusters of temperature exceedance over the 90th percentile are calculated for the wider
Europe domain using the Simulated Annealing and Diversified Randomisation (SANDRA)
method with ERA5 data (as described in D3.2); as in the HW definition, a minimum duration
of 3 days can be added as a post-processing step. Clusters represent common geographic
occurrence patterns of extreme temperatures, and each displays varying extents and typical
intensities (Fig. 4.6). For example, cluster 10 resembles the 2003 event over central-western
Europe, while the 2010 blocking-related event over Russia falls into clusters 7 or 9. Daily
time series of each cluster's occurrence is used as the target data for the feature selection.
The training/validation period is 1951-2014, while the test period is 2015-2022. The
imbalance of the datasets is shown by the contribution to the total variability of each cluster
(Fig. 4.6); cluster 1 corresponds to no HW occurrence and thus is the most common. Cluster
characteristics will be described by Hansen et al, (in preparation).

Figure 4.6: HW clusters over the European domain, coloured by their average intensity (contours correspond to 0.3 oC
intervals). Clu1 corresponds to no HW. Variability (in parentheses) explained by each cluster is also a measure of dataset
imbalance.
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The output of the feature selection is a large number of solutions, each using a different
combination of predictors and lags. Studying the most frequently used clusters in the top
10% of solutions (ranked by the training F1-score) is a means of quantifying the optimal
selected features. For cluster 6 (British Isles; Fig. 4.7), for example, soil moisture in Europe
(sm1Eur 3 & 5) and regional z500 (z500Eur4) appear in nearly all the best solutions. Clusters,
such as mean sea level pressure over Europe (mslEur2), are common but seemingly not
strictly needed for the recreation of the target. Otherwise, the vast majority of clusters
“chosen” (shown in Fig 4.7) represent noise; in D2.2, sensitivity analysis is shown to be
useful as an extra step to filter out noisy contributions. The key selected features have short
lag, nonetheless extending back to 20-30 days, implying that tendency, not just values from
the previous day, are important. In the case of cluster 6, the relevance of sm1Eur5 extends
from 45-75 days.

Figure 4.7: Example feature selection for Clu6 (British Isles). Maps of each cluster can be found in the appendix. Letters
correspond to the following climate indices and dummy variables: a - ENSO, b - NAO, c - IOD, d - atmospheric CO2
concentration, e - day of year.

Table 4.1: Quality of recreation of HW cluster occurrence (cross-validation F1-score) with optimal solution (0 lowest, 1
highest).

F1-score - training/test

Clu1 - No HW Clu2 - Scand_N Clu3 - Iberia Clu4 - Eur-SE Clu5 - Scand-S

- 0.50/0.32 0.47/0.35 0.50/0.32 0.5/0.38

Clu6 - British Isles Clu7 - Eur-E Clu8 - Central Clu9 - Scand Clu10 - Eur-W

0.5/0.36 0.43/0.32 0.28/0.22 0.44/0.32 0.39/0.27
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Figure 4.8: Recreation of HW cluster 6 indices from 2015-2022 (test period) from optimal features input into different
models (Logistic Regression and Gradient Boosting Classifier). Values in the legend correspond to F1-score (left) and
correlation of total summer days each year (right).

The optimisation of predictors represents the best combination related to the potential
predictors, which in this case has undergone an intense dimensionality reduction.
Consequently, the reconstructed targets may be inaccurate. For example, for cluster 6 the
F1-score of validation is 0.47. When applied to the test period, this drops to 0.35 (Fig. 4.8). A
model that selects random values returns a score of 0.22, so the optimal solutions
nonetheless provide some added value. The variability of detection skill strongly varies
between clusters (Table 4.1). Certain clusters may be rarer and thus translate to a more
imbalanced target (e.g. cluster 10 in Table 4.1), rendering detection a more difficult task. For
others, their driving phenomena may be more masked by the dimensionality reduction. The
cluster datasets are generally very imbalanced (i.e. typically less than 5% EE occurrence;
Table 4.1), especially compared to local-scale HW indices (up to 8%; as tested in Deliverable
3.2).

The framework has been further modified to improve re-creation skills. First, more complex
models are able to better leverage the same input information than, for example, the logistic
regression used in optimisation. For example, inputting the optimal solutions into a Gradient
Boosting Classifier increases the F1-score to 0.49. In both cases, the summer statistics
(NDQ90) agree significantly with ERA5 (see correlations in Fig. 4.8). Moreover, here we
purposefully remove clusters of European temperature in order to focus on less-obvious
predictors of HWs. Previously (e.g. D3.2), we found local T2M clusters are commonly
selected as a key feature on 0-20 days lag times, and that accuracy is higher. Including T2M
clusters for the optimisation of cluster 6 returns F1-score values for training and test at 0.65
and 0.49, respectively.

68
AI-ENHANCED EXTREME EVENTS DETECTION



CLINT - CLIMATE INTELLIGENCE
Extreme events detection, attribution and
adaptation design using machine learning

EU H2020 Project Grant #101003876

Identification of predictors warrants further study into the physical mechanisms detected by
the feature selection. For example, while previous studies have identified a role of soil
moisture in European summer temperatures, here we identify potential region-dependent
roles on different timescales. Alternatively, the framework can be used to quantify the
relative importance of known drivers. As we will show in the following section, the
predictors may also be exploited for forecasting purposes. These results can also be used to
boost computational efficiency; rather than repeat the FS for each local point over a domain,
clustering of events, a significantly more economical process than the optimisation
framework, can be performed first. When interpreting selected features, however, care must
be used. First, we are selecting from a predefined pool of potential predictors, and potential
drivers may be missing. Secondly, identification of clusters which contribute to skill does not
automatically lead to identification of key processes.

4.4.2 Hybrid Seasonal Forecasting

Dynamical seasonal forecasting systems have been validated for their skill in predicting
seasonal propensity of HW occurrence (Prodhomme et al., 2023; Torralba et al., 2024).
While in large areas of Europe skill has been shown to be significant, other areas remain
difficult to predict (i.e. central to northern parts of the domain). In principle, dynamical
forecasting systems should be more reliable when predicting larger-scale patterns and
averages (for example the cluster averages shown here), than for predicting local scale HW
indicators. In section 4.4.1, large-scale area averages of potential predictors
(dimensionality-reduction), when input into certain ML models, were used to recreate the
HW record to a high accuracy. Here, we attempt to leverage the skill of forecasts of cluster
averages by inputting forecasts of drivers, as identified by a feature selection process similar
to Section 4.4.1.

First, we modify the feature selection process described in Section 4.41; here, temperature
clusters are included as potential predictors and local HW occurrence is the target data. The
feature selection (optimisation) is applied to each point in a sub-domain covering central
Europe, despite its size, displays a homogeneity of skill (Prodhomme et al., 2023). Each
point, therefore, has specific optimal solutions for the detection of local HW occurrence. The
optimisation is performed over a training period of 1951-2004 and a test period of
2005-2022. The next step transforms this approach into a hybrid forecast system; ERA5 data
is used as predictor input up to the start time of the forecast (e.g. May 1st), and following
dates are covered by dynamical forecast ensemble members (e.g. Figure 4.9). All predictor
data are anomalies calculated with respect to dataset-specific climatologies (i.e. 1981-2010),
so biases between datasets are removed. The ML forecasts are trained in 1951-2004, with
2005-2022 used as a testing period (as for the optimisation); this choice represents a
compromise between allowing enough time for training and leaving a long enough period
for validation. The number of predicted summer HW days is calculated for each ensemble
member, and then averaged.
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Figure 4.9: Time series of t2m temperature anomaly in Europe cluster 2 in ERA5 (black), ECMWF-SEAS5 ensemble members
(red) and ensemble median (red dashed). Units in oC. In the hybrid framework, predictor data from May onwards (black
vertical line) is taken from dynamical system (e.g. ECMWF-SEAS5) forecasts.

The aim here, then, is to test whether forecasts of reduced-dimensionality drivers can
provide a more accurate prediction of HW indices than the dynamical system directly. There
are three possible outcomes of this analysis: (1) though HW occurrence is not directly
well-predicted, the links between large-scale clusters and local HW dynamics captured by
the FS framework allow a recreation via prediction of predictors in the dynamical system
(e.g. AI-enhancement); (2) no enhancement is achieved because even the large-scale
dynamics, shown to determine HW occurrence, are poorly predicted by the dynamical
system or (3) no enhancement is achieved because the replication skill of HW indices using
the optimal features is low. This method can serve as a (potential) AI-enhancement or an
extra form of validation specific to the target data (i.e. extreme events).

Figure 4.10: F1-score for HW occurrence over training period (1951-2004) cross-validation and test period (2004-2022).

First, we assess how the ability to recreate daily HW indices within the framework varies
across a reduced European domain (Fig 4.10, left). Overall, the training period validation is
fairly accurate, with an average F1-score of 0.52 and maximum values of 0.7 are reached
around 10E, 50N. HWs over the southern Mediterranean and North African coast are
relatively less well replicated than those over central Europe. This analysis provides a first
indication of where the selected predictors, once input into ML models, provide detection
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skill. There is a drop in recreation skill when selected predictors are applied to the test
period (Fig. 4.10, right). This in turn leads to a poor representation of interannual variability
of seasonal indices; accurate detection by the framework is found only in a limited zone
across western-to-eastern central Europe (Fig. 4.11, centre). The framework, in its current
set-up, performs insufficiently across much of Europe; this is indicative of an overfitting to
the training data, and possibly an overly imbalanced target dataset or insufficient
information in the potential predictors. We remind here that the potential predictors are
fewer than used in the previous section. The “detect” mode, using only ER5 data, provides
an upper bound of what is capable with the hybrid model.

Figure 4.11: Correlation skill score of NDQ90 (May-July) in the period 2004-2022 between detection/forecast systems and
ERA5. Detect uses only ERA5 predictors, while Hybrid replaces predictor data after May 1st with ECMWF-SEAS5 forecasts.
Black stippling indicates statistical significance. For Dynamic and Hybrid, forecasts are initialised in May.

The dynamical system (ECMWF-SEAS5) displays significant skill in NDQ90 forecasts across
France and north-western Mediterranean, and a zone of poor skill (weak negative
correlation) is present around 15E, 48N (Fig. 4.11, left). The hybrid system, on the other
hand (Fig. 4.11, right), displays no significant skill in the correlation score of the ensemble
mean. It could be expected from the analysis of the feature selection approach (Fig. 4.10),
that the central European zone displays skill but, even here, no significant skill is found.
Overall, the results demonstrate the current lack of capability for (AI-)enhancement of
forecasts of selected HW predictors. On the contrary, the data-driven approach (to be
introduced in the following section), displays similar skill patterns to the dynamical system.
Further discussions of added-value are included in the next section, once the data-driven
approach is introduced.

The difference between Detect and Hybrid is a function of the forecast skill of HW predictors
and the skill of the ML models linking predictors to local HW occurrence. More work is
needed to understand and quantify the added-value of AI-enhancement. In particular, a
validation of HW predictors in the dynamical system is needed.

4.4.3 Data-Driven Seasonal Forecasting

Alongside the hybrid approach, a data-driven forecasting system is developed, again within
the optimisation-based feature selection framework. In the hybrid approach, predictor data
from ERA5 is replaced with dynamical forecasts. Here, the framework is switched from a
detection approach (as in Section 4.4.1) to an inherently forecast-based approach by
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ensuring that potential predictors are restricted to certain lag times. In this way the system
resembles a dynamical forecast system, which receives climate information only on and
before the initialisation date and not after. The cut-off time for potential predictors
determines the effective “initialisation” time; for example, using predictor data prior to May
1st to target summer HWs is equivalent to a May initialisation of the dynamical system. Here
the framework is altered to target the number of seasonal HW days (e.g. May-June-July, Fig
4.12). We optimise the normalised RMSE (N-RMSE, normalised by interannual variability) of
the predicted number of HW days.

Given that ERA5 data provides an insufficient amount of training data (one value per year for
72 years), here we employ a multi-centennial paleo-simulation developed at MPI-ESM
(hereon in “past2k”). The past2k model is a reconstruction of the period 0-1850, using
realistic land-use change and atmospheric forcings reconstructed from polar ice cores
(Jungclaus et al., 2014 & 2017). The model climate is assumed to be stable enough for HW
drivers to be consistent throughout the model period, as demonstrated by the lack of
sensitivity of HW indicators to the climatology period chosen (Fig 4.12). Here, the period
1821-1850 (green) is used. Predictors are calculated by applying the cluster masks of ERA5
(D3.2) to past2k. Further details on past2k are found in Deliverable 3.2 and (Jungclaus et al.,
2014 & 2017).

The development of a working data-driven seasonal forecasting system can also provide
answers to several scientific questions. First, can the reduced dimensionality approach work
for monthly/seasonal aggregated indicators as it did for daily HW occurrence (Section 4.4.2)?
Second, how transferable is model-world ML training to the “real-world” (in our case,
represented by ERA5)? In other words, are the model-world drivers sufficiently similar to
those in the real world? Lastly, and of great practical importance, we will determine how the
data-driven approach compares to the dynamical and hybrid systems.

Figure 4.12: Sub-sample of past2k target data (number of May-June-July HW days) over the period 1750-1850, defined
relative to diverse climatology periods.

The first step is to determine the optimal HW predictors in past2k with the optimisation
feature-selection framework. We perform FS across the European domain, using a training
period of 0-1600 and a test period of 1601-1850. The optimisation of N-RMSE of the number
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of summer HW days for an example grid point (Fig. 4.13) is representative of the wider
domain; solutions converge to values below 1, albeit with some overfitting to the training
data, before roughly 15000 evaluations. N-RMSE below 1 indicates error magnitudes less
than the interannual variability, and as a rule-of-thumb corresponds to significant correlation
values. Training and test scores for the optimal solutions across the European domain show
that the framework provides skilful predictions of model-world HW indices (Fig. 4.14). Skill is
highest around the Mediterranean and North Atlantic regions, while a relatively low-skill
corridor stretches from Scandinavia to central Russia.

Figure 4.13: Example optimisation and feature selection for grid cell (East Mediterranean Sea).

Collecting the optimal predictors from across Europe provides an overview of the
model-world HW drivers at a regional level (Fig. 4.14). The most commonly picked predictors
across the domain are the European soil moisture, temperature and z500 clusters. Predictors
which represent more distant precursors include Arctic sea ice, and north Atlantic SST.
Interestingly, the most frequently picked lag times for predictors falls around six weeks prior
to initialisation (i.e. mid-March; Fig. 4.16). The key temporal lag, however, depends on the
variables. Temperature and z500 clusters are selected more in the run-up to initialisation
and decay gradually with lag, while soil moisture and sea ice selection peaks between 7-8
weeks prior to initialisation.
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Figure 4.14: NRMSE of optimised solutions across the European domain for recreation of past2k HW indicators. Left:
training period cross-validation 0-1600. Right: test period 1600-1850.

Figure 4.15: Identification of selected predictors for the whole European domain. Percentage of grid points which use
cluster and lag in optimal solution. Weeks from initialisation (May 1st).
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Figure 4.16: Percentage of grid points which select features based on lag time.

Using the selected optimised predictors, the data-driven forecast system is adjusted to train
on the entire past2k simulation period (0-1850) and then tested on ERA5. Data-driven
reforecasts of the 1993-2016 period, using ERA5 as a benchmark, highlight significant
correlations over central Europe and the Mediterranean Sea, with pockets of skill elsewhere
(e.g. in the Northern Atlantic). Patterns of skill in model-world test period (Fig. 4.14) align
with those of the data-driven forecasts (Fig. 4.17), in particular the insignificant skill over
northern central Europe and northwestern Africa and the better skill over central Europe
and the Mediterranean Sea, indicating the transfer of learning from the model- to the real
world.

Figure 4.17: Anomaly correlation of skill scores over Europe for the period 1993-2016 for the dynamical system
ECMWF-SEAS and data-driven approach implemented in two ML models (LR - Logistic Regression; RF - Random Forest).
Black stippling indicates statistical significance.
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In the dynamical system, the area of significant skill extends much more widely than in the
data-driven approach. Where the data-driven forecast displays skill, the dynamical does also,
indicating that in its current state the former provides added-value not in an increase of skill
but only through the reduced computational resources required. By inputting the predictors
into a Random Forest model, we see an increase in the area of significant skill over the
Linear Regression model; thus, more complex models are able to better leverage the same
predictor information. Overall, this demonstrates that model-world training using early
predictor information (i.e. at 4-8 weeks prior to the target season) can generate skilful
forecasts in certain regions. By changing the validation period to 2004-2002 and comparing
to the hybrid approach of Section 4.4.2 (A4.2), we find that significant skill is present across
the same region but with different spatial patterns. Thus, it is premature to state which
approach, data-driven or hybrid, adds more or any value over the dynamical system; instead,
both have demonstrated the ability to make seasonal forecasts of summer heat extremes.
The data-driven seasonal forecast system will be described in McAdam et al. (in
preparation).

4.5 Night-time extremes

The work of Task 3.2 also covers the extension of heatwave analysis to complementary
indices of heat extremes (described in D3.1 and Chapter 4.1). In particular, a focus has been
placed on night-time extremes. Given the extensive development work on feature selection
and new forecast systems performed in this task, we have not repeated all analysis for
night-time extremes. However, all techniques developed are applicable to night-time
extremes. Moreover, work on nighttime extremes has been covered in previous
Deliverables. Here, we summarise the results and provide a perspective on differences in
predictability and forecast skill.

As presented in D3.2 and in Torralba et al. (2024), records of heat extremes on the European
scale depend on the time of day used to determine the temperature. Even seasonal statistics
on nighttime heat waves (using Tmin) differ from those of daytime heatwaves (using Tmax).
Warm Nights, defined with apparent temperature based on humidity, were also studied for
their impact on both physiological productivity (i.e. comfort) and agricultural yield. D3.2
presented differences in the occurrence of day and night-time heatwaves, by means of a
clustering analysis (e.g. Fig. 4.6 and A4.2). Meanwhile, non-negligible differences were found
in seasonal forecast skill between day and night extremes (Torralba et al., 2024; Figure A4.3).
Night-time and day-time extremes are, therefore, influenced by similar but not identical
drivers, and their predictability is not equivalent. Future studies and operational systems
should strive to differentiate between the two.

76
AI-ENHANCED EXTREME EVENTS DETECTION



CLINT - CLIMATE INTELLIGENCE
Extreme events detection, attribution and
adaptation design using machine learning

EU H2020 Project Grant #101003876

4.6 Summary and Future Steps

In Task 3.2, a range of ML-based techniques have been used to tackle ongoing problems in
the field of heatwaves: identification of drivers, identification of key indicators, development
of data-driven forecasting systems to compete with existing dynamical systems, and
attempted enhancement of dynamical systems.

Regarding drivers, work has been done to achieve a reduction of dimensionality of key
atmospheric variables and explore how well ML can recreate HWs (within the feature
selection framework), from local to regional scales. This has implications for understanding
drivers and forecasting HWs on a large scale, particularly for achieving greater computational
efficiency. Other analyses have used ML to define particular phenomena (weather regimes),
which are then studied for their role in HW occurrence.

A purely data-driven approach has been developed using training data from a long-term
paleo-simulation. When applied to the “real” world (i.e. ERA5 data), large parts of Europe
are well predicted, and in some areas this approach beats the ECMWF-SEAS5 dynamical
system. These results imply that learning on model-worlds can be transferred. There is
added value in terms of computational efficiency as well; optimisation performed on
individual grid cell requires 4-5 hours of CPU time (total time found by multiplying by
domain size) and once complete, each forecast requires only minutes to be performed. The
next steps will explore whether the data-driven system skill can be boosted with
multi-model training; 1850 samples are perhaps too few, and zones of low skill have been
identified even in the recreation of model world.

A hybrid approach has also been developed, using forecasts of regional-scale HW predictors
selected by the feature selection framework. The AI-enhancement does not display
improved skill over the purely dynamical system in forecasting seasonal HW indicators.
Further tests may include extending the pool of potential predictors. The added-value of the
data-driven and hybrid methods, in terms of both skill and computational cost, will continue
to be studied in WP9.
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5 DETECTION OF EXTREME DROUGHTS

5.1 Introduction

Drought is a natural phenomenon mostly related to the reduction in the amount of
precipitation received over an extended period of time, such as a season or a year, and is
also influenced by other variables such as temperature, wind, humidity (Mishra and Singh,
2010). In contrast to aridity, drought is not permanent, although prolonged droughts may
propagate through the full hydrological cycle, resulting in significant long-term economic,
social, and environmental costs (Spinoni et al., 2016). Despite drought being a hot topic
extensively studied in the literature, there is still no unanimity on its definition. Depending
on the time horizon considered and the hydro-climatic variable used in drought
characterization, droughts are generally classified into three categories (Pedro-Monzonís et
al., 2015), namely meteorological, agricultural, and hydrological, respectively associated with
anomalies in precipitation, soil moisture, and streamflow. Just as there is no single definition
of drought, there is no single index that accounts for all types of droughts. Capturing the
evolution of drought dynamics and associated impacts across different temporal and spatial
scales still remains a critical challenge.

Here, we provide a final update on the activities of Task 3.3, in which we developed two
methods for advancing the detection of extreme droughts supported by ML algorithms. The
first method (described in Section 5.2) represents an improvement of the FRIDA
methodology presented in Deliverable D3.2 for the identification of impact-based drought
indices over the pan-European domain. The method aims to identify the relevant drivers of
observed drought impacts (e.g., vegetation stress) from a pool of candidate
hydro-meteorological predictors. The selected predictors are then combined into an index
representing a surrogate of the drought impacts in the considered area. The second method
(illustrated in Section 5.3) contributes a novel framework combining a synthetic generator of
drought events and factor mapping methods for supporting the identification of the most
critical drought features – i.e. intensity, duration, frequency – that produce the most severe
impacts. This method is demonstrated using the Lake Como Climate Change Hotspot.

Beside these results focused on drought detection, other methodologies and experiments
have been conducted in collaboration with WP2, WP6 and WP7 to produce also AI-enhanced
drought forecasts:

● Deliverable D2.2 describes a novel method for meteorological drought forecasting, a
streamflow forecasting approach based on Long Short-Term Memory models, and
ML-based post-processing of hydrological model predictions

● Deliverable D6.2 illustrates and discusses the application of the developed methods
for hydrological services at the pan European scale

● Deliverable D7.2 illustrates and discusses the application of the developed methods
for drought forecasting in the Rijnland, Duoro, and Zambezi hotspots
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5.2 AI-enhanced impact-based drought detection via multi-task learning

This chapter describes an AI-enhanced methodology that builds on the FRIDA methodology
presented in Deliverable D3.2 to address two key challenges:

1. the presence of spatially correlated drivers, but spatially heterogeneous impacts,
which can benefit from Multi-Task Learning methods;

2. the computational complexity of FRIDA due to its wrapper feature extraction process,
which can be mitigated using a filter-based method.

The proposed method, which is described in detail in Deliverable D2.3, is demonstrated
using the same pan-European case study presented in Deliverable D3.2.

5.2.1 Case study and data

This section presents the data used in our study of drought monitoring across the European
continent. We focus on the FAPAR Anomaly as a proxy for drought impacts, leveraging
satellite-derived data to assess vegetation health. Additionally, we detail the hydrological
predictors derived from the European Hydrological Predictions for the Environment model
(E-HYPE) and HydroGFD2.0 reanalysis data, which constitute the inputs for our models. The
integration of these datasets allows us to explore both regional and global perspectives on
drought dynamics.

5.2.1.1 FAPAR anomaly

FAPAR measures the fraction of solar radiation within the 400–700 nm spectral range that
vegetation absorbs for photosynthesis, represented as a unitless ratio from 0 to 1. A value
equal to 1 indicates that 100% of the incoming radiation is being absorbed by the vegetation
canopy, suggesting that the vegetation is dense and highly efficient in absorbing all available
light for photosynthesis and growth processes. It is a critical indicator for understanding the
water, energy, and carbon balance within vegetation and plays an important role in various
models including those for ecosystems, climate, and crop yield estimation (Qin et al., 2018).

Recognized as one of the 50 Essential Climate Variables (ECVs) by the Global Climate
Observing System (GCOS), FAPAR is crucial for global climate monitoring and supports
initiatives by organizations like the United Nations Framework Convention on Climate
Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC).
Satellite-based observations of FAPAR offer advantages over in-situ measurements due to
their global coverage, long-term data availability, various spatial resolutions, and consistent
data records (Peng et al., 2019).

The FAPAR Anomaly is monitored by the Copernicus Global Drought Observatory (GDO),
calculated from MODIS FAPAR products averaged over ten-day periods and spatially
represented at a 0.1-degree resolution from an initial 500m resolution. In our study, we
recalculated the FAPAR Anomaly at monthly intervals to align with meteorological indices
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such as SPI and SPEI, which are computed over monthly time scales. Furthermore, our
model utilises predictors from the E-HYPE model (see next Section), which provides data at a
sub-basin level across Europe, and the 0.1 degree pixels of the GDO FAPAR Anomaly often
overlap with these sub-basins.

To derive the FAPAR Anomaly for each sub-basin, we utilise the raw satellite images of FAPAR
(MOD15A2H, Collection 6) provided by NASA spanning from January 2001 to December
2018. Following the methodology outlined by GDO, we process the data as follows: we first
download the FAPAR images along with metadata rasters. These enable us to mask out pixels
affected by adverse conditions, such as cloud cover or high solar zenith angles. As a result,
we retain only good quality pixels. Next, to derive monthly FAPAR values, we interpolate the
original 8-day FAPAR images using a weighted average approach. This interpolation method
assigns weights proportional to the number of days each pixel contributes to within the
month. GDO also performs a temporal smoothing with an exponential filter (α=0.5), but
since we are dealing with broader (monthly) FAPAR averages, we skip this step. We then
spatially aggregate these monthly FAPAR values to align with sub-basins defined by the
E-HYPE model. This aggregation involves calculating the average FAPAR values from the
500m resolution MODIS pixels falling within each sub-basin.

The original good quality 500m pixel measurements are not always present everywhere in
the area under analysis. As a consequence, in order to maintain the integrity and
significance of our derived FAPAR data, we implement specific quality heuristics: we exclude
observations where the original MODIS pixels cover less than 25% of the sub-basin area. This
criterion ensures that our dataset retains sufficient spatial coverage for meaningful analysis.
Additionally, sub-basins are excluded if MODIS pixels never cover more than 50% of their
area. This step aims at avoiding the characterization of sub-basins predominantly composed
of non-vegetative surfaces, such as urban areas or lakes, with vegetation indices. Following
these steps and quality checks, our study focuses on analysing FAPAR data for 34,066
sub-basins that meet those criteria.

The FAPAR anomalies are calculated by comparing the derived 1-month FAPAR values with a
consistent baseline of FAPAR statistics, covering the period from 2001 to 2018. For each
1-month period, starting from January 2001, the FAPAR anomalies Yt are computed as Yt =
(Xt-Xm)/σ where Xt is the FAPAR for the 1-month period t of the current year, Xm is the
long-term average FAPAR and σ is the standard deviation (both calculated for the same
1-month period t using the available time series). Due to missing satellite data from the
MODIS sensor in June 2001, we exclude FAPAR Anomaly values from 2001 and consider in
our analysis data from 2002. Furthermore, we only consider FAPAR Anomaly values from
April to September, resulting in a maximum of 102 observations per sub-basin. The focus on
the summer months is due to two main reasons: first, high-quality satellite data from the
MODIS sensor are not available in winter months for high-altitude regions due to low light
reflectance (caused by a large solar zenith angle); second, the vegetative activity during

80
AI-ENHANCED EXTREME EVENTS DETECTION



CLINT - CLIMATE INTELLIGENCE
Extreme events detection, attribution and
adaptation design using machine learning

EU H2020 Project Grant #101003876

winter is low in absolute value, but varies in the anomaly, which could negatively impact the
calculations.

Since we are considering supervised models with one observation per month, we consider
only sub-basins with sufficient observations. The maximum number of missing (NA) values
allowable for retaining a sub-basin is set equal to 4, as this value corresponds to the elbow
of the distribution of the number of sub-basins over the number of NA observations. This
results in 30,007 valid sub-basins, each with 98 to 102 observations.

5.2.1.2 Hydroclimatic predictors

In this study, we consider some of the most widely used drought indices among the set of
candidate predictors. These indices represent various components of the hydrological cycle,
such as precipitation, soil moisture, and river flow, each associated with a specific type of
drought. They reflect statistical anomalies relative to the long-term climatology at a given
location and time, providing a measure of the probabilistic severity of a drought event. By
fitting the long-term record of the considered variable to a probability distribution, drought
is identified when observed values significantly and persistently fall below normal conditions
(Mishra and Singh, 2010).

The eight indices considered in this work are:
● Standardised Precipitation Index at 1-month scale (SPI-1) and 3-month scale

(SPI-3);
● Standardised Precipitation and Evapotranspiration Index at 1-month scale

(SPEI-1) and 3-month scale (SPEI-3);
● Soil Moisture Anomaly Index at 1-month scale (SMA-1), 3-month scale

(SMA-3) and 6-month scale (SMA-6);
● Standardised Streamflow Index at 6-month scale (SSI-6).

The accumulation time for each index is chosen based on the characteristics of the drought
and its potential impacts (for further details, see Deliverable D3.1). SPI and SPEI, which are
indicators of meteorological droughts, are computed for short accumulation periods (1 and 3
months) to indicate immediate impacts. SSI-6 is directly linked to streamflow and refers to
long-lasting hydrological droughts (6 months). SMA represents agricultural droughts,
typically a medium-term process, and is calculated over 1, 3, and 6 months of accumulation
periods.

In addition to these eight indices, we also consider the raw hydrological variables from
which these indices are derived. Although these variables exhibit strong seasonality, they
can be advantageous in complex models. Specifically, the monthly observations of each raw
variable for each sub-basin are obtained from the European Hydrological Predictions for the
Environment model (E-HYPE; Lindstrom et al., 2010), combined with the HydroGFD2.0
reanalysis data over the period 1993-2018 (for further details, see Deliverable D3.2).
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5.2.2 Multi-task learning drought detection

In this section, we present the workflow and the methods adopted for the development of
models capable of detecting drought impacts on vegetation at the European scale using
multi-task learning. Specifically, we examine two applications:

1. grouping nearby sub-basins into broader regions to develop local models;
2. developing a single global model that detects drought impacts across the entire

European continent.
The two multi-task learning approaches have distinct motivations and potential outcomes.
By employing local models, we aim to identify combined indices that better capture the
vegetation state of each region. Given the importance of interpretability, especially in
detecting environmental hazards, regions derived from the clustering algorithms are
represented by the average observations of their respective sub-basins. This means that the
FAPAR Anomaly of a region for a specific month is computed as the average of the FAPAR
Anomalies of the sub-basins within that region for the month, and similarly for the
predictors. Therefore, each region has around 102 observations, which should be less noisy
than the original observations of each sub-basin. Due to the relatively small number of
observations, we expect the local models to be simple and explainable. Conversely, the
single global model might be more complex due to its broader coverage across Europe,
encompassing a wider data distribution. In this setting, we aim to determine whether it is
possible to improve the accuracy of local models by leveraging all available information,
potentially at the expense of interpretability.

Therefore, this study sequentially explores the following frameworks:

● one local model for each region;

● a single global model fitted on observations from all the sub-basins.

These two approaches are contrasted against a baseline represented by one local model for
each sub-basin.

The implementation of the two frameworks includes three key processes: model selection,
clustering, and feature selection as summarized below.

Local models:

1. Model selection: we train and cross-validate one model for each sub-basin. Given the
limited number of observations (at most 102), we choose between linear regression
and support vector regression (SVR). SVR is robust against overfitting compared to
other non-linear models. It is evaluated using a grid search over its hyperparameters
(C, epsilon and gamma). Linear regression uses the year and the indices as features,
while SVR also considers raw hydrological variables. Raw variables exhibit strong
seasonality, making them unsuitable for linear regression aimed at interpretability.
Their deseasonalised version results in the indices already used as predictors.
However, non-linear models might leverage seasonal patterns in raw data to enhance
predictive performance.
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2. Clustering: we perform hierarchical bottom-up clustering and hierarchical Non-Linear
Correlated Target-Feature Aggregation (NonLinCTFA), using both centroid and
average linkage methods. To avoid the computational cost of clustering until a single
cluster is reached, we periodically evaluate the performance of models trained on
each cluster in cross-validation: the Mean Absolute Error (MAE) is calculated for each
sub-basin, with the corresponding predicted FAPAR Anomaly of the region in which it
is contained; we stop hierarchical clustering when the minimum average MAE across
all sub-basins is found. Hierarchical NonLinCTFA, instead, automatically stops when it
is no longer beneficial to aggregate; we evaluate it in cross-validation at completion.
We select the clustering method to proceed with, based on overall performance and
the nature of the resulting regions.

3. Feature selection: using the regionalisation from the previous step and the selected
model, we test two feature selection methods: a forward wrapper and a CMI-based
filter. Each method generates a feature ranking specific to each region. The impact of
varying the number of selected features is globally assessed with cross-validation.

Global models:

Model selection: models are trained using all observations from all sub-basins. We consider
two primary models: linear regression and a neural network. For neural network training,
early stopping considers the validation error over a randomly selected fraction (20%) of the
training set. The best-performing neural network architectures was identified according with
the accuracy in cross-validation. The year is included as a feature, and raw hydrological
variables are tested as inputs for the neural network. Additionally, we investigate the
efficacy of incorporating geographical coordinates (longitude, latitude, and altitude). This
inclusion effectively allows for region-specific combinations of features, while at the same
time facilitating information sharing among sub-basins, leveraging their spatial relationships.
Moreover, it aims to address potential missing information that other features may not
capture.

The detailed description of the methods used in these frameworks is provided in Deliverable
D2.3.

5.2.3 Numerical Results

5.2.3.1 Local models

Clustering sub-basins are aggregated into wider regions using traditional hierarchical
clustering methods and hierarchical NonLinCTFA, with centroid and average linkages. The
average MAE across all sub-basins obtained by these clustering methods, after applying a
linear model to each cluster fitted on the aggregated time series, is shown in Figure 5.1.
Traditional hierarchical clustering requires exploring an aggregation threshold, which
specifies the condition necessary for merging two clusters. A lower threshold indicates a
propensity to aggregate more. In our study, the optimal hierarchical clustering is found at
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thresholds of 0.7 and 0.4 for centroid and average linkage, respectively. Conversely,
hierarchical NonLinCTFA automatically discovers an estimated optimal solution.

Figure 5.1: mean MAE across all sub-basins, obtained from utilising centroid (a) and average linkages (b), respectively. Both
linkages are implemented within hierarchical clustering and hierarchical NonLinCTFA algorithms.

The optimal hierarchical clusterings and the hierarchical NonLinCTFA clusterings computed
during the first cross-validation split are displayed in Figure 5.2. The figure also shows the
distribution of MAEs. Although the improvements in error at different clustering thresholds
may seem modest, while the standard deviation is relatively high, the plots clearly show that
the standard deviation remains stable and slightly decreases. This stability, coupled with a
visual inspection of error on the map, suggests that the performance improvements from
aggregating sub-basins are consistent and reliable.
However, these results show that adding the NonLinCTFA procedure to traditional
hierarchical clusterings does not improve the performance. This is probably motivated by
the limited number of samples in the available data. This limits the algorithm ability to learn
the data distribution adequately and prevents an accurate estimation of the generalisation
error.
To determine the most important drought predictors for a given region, we consider the
hierarchical clustering method with average linkage and threshold of 0.4, since it
demonstrates slightly better performance than the other computed clusterings and it
creates relatively compact clusters.
We compare two feature selection techniques, a forward wrapper method and a CMI-based
filter. Both methods independently select features for each region across different
cross-validation splits. The time feature, primarily used to detrend the time series, is not
included in the feature selection process, as it is instead added as a predefined feature in
both algorithms. This ensures that feature selection accounts for its effect when ranking
subsequent features. Both feature selection algorithms proceed by iteratively selecting the
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next most important feature until all features are chosen. Subsequently, we reconstruct the
FAPAR Anomaly considering only the year and the sequentially selected features for each
cross-validation fold. Figure 5.3 illustrates how the mean MAE and mean correlation,
computed across sub-basins, vary as more features are selected using both the filter and
wrapper methods.
The forward wrapper consistently achieves higher accuracy compared to the filter method.
This is expected since wrapper methods evaluate many combinations of features, optimising
feature selection directly for the model’s performance. In contrast, the CMI filter is able to
capture non-linear relationships, potentially identifying features that cannot be fully utilized
by a linear model. However, this is likely not affecting its performance. Indeed, when training
the SVR models, we did not find significant improvements from considering non-linear
relationships. Instead, a difficulty likely lies in the estimation of CMI, which may be
challenging due to the limited data in each region’s time series. Although globally the
minimum error is reached when all features are utilized, some regions might still require
fewer predictors. Since each cross-validation split has calculated its own clustering from the
training folds, we determine, for each cluster in each clustering, the optimal number of
features by identifying the minimum mean MAE on the validation fold for that
cross-validation split. The mean MAE is calculated by averaging the MAEs from the
sub-basins contained in the cluster.
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Figure 5.2: Results from local models. The hierarchical clusterings with the lowest mean MAE and the NonLinCTFA
clusterings, considering centroid and average linkages, with their respective MAEs on the right. The clusterings visualized on
the left are the ones generate in the first split of cross-validation, while the MAEs consider the entire reconstructed FAPAR
Anomaly time series.
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Figure 5.3: Impact of CMI filter and nested forward wrapper as feature selection methods on model performance metrics
with increasing numbers of selected features. The linear regression models are trained on data aggregated by hierarchical
clustering with average linkage and a threshold of 0.4.

Figure 5.4: Estimated number of optimal features in each region, obtained by averaging the number of optimal features for
each cluster from the 17 clusterings (one for each cross-validation split).
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Figure 5.4 illustrates the optimal number of features considering all the 17 clusterings
derived from cross-validation splits. The sub-basin’s colour reflects the average number of
optimal features among the 17 clusters that contain it, highlighting a relatively lower
number of features required to detect drought impacts on southern European regions. At
this point, it becomes interesting to understand which features are considered the most
important and where. Since in each fold the algorithms might have selected different
features for the same region, this can be a valuable way to assess the robustness of the
dataset and algorithms.

Figure 5.5: Regions where SPEI-1, SPI-3, and SMA-1 are selected by the nested forward wrapper and the CMI
filter. Each map indicates where and how many times, during cross-validation, the feature has been selected.
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Finally, Figure 5.5 shows, for both forward wrapper and CMI filter, the regions where specific
features such as SPEI-1, SPI-1, and SMA-1 are selected as the most important (selected first)
across all clusterings generated by cross-validation. Observing the results of the wrapper
method, these three features are consistently chosen in specific regions as the first option
across multiple folds, indicating robustness in feature selection. The CMI filter method
agrees with the wrapper only on certain regions, highlighting differences in the computation
of the two methods.

5.2.3.2 Global models
​​The global model is again trained in 17-fold cross-validation, but this time each training set
consists of observations from all sub-basins – approximately 3 million. In particular, we
tested two types of models, a linear regression and a neural network with a single layer of
16 neurons. Table 5.1 presents the mean MAE and mean correlation from the predicted
FAPAR Anomaly time series, by utilising the two models with different sets of predictors:

1. year and indices;
2. year, indices, and variables;
3. year, indices, variables, and coordinates.

The results demonstrate that linear regression performance remains consistent across
different feature sets and it is worse than that of local models. On the other hand, the neural
network significantly improves accuracy when incorporating raw hydrological variables,
which inherently exhibit strong seasonality. On average, its predictions surpass those
obtained with local models, meaning that in this setting it is beneficial to assume that all
observations come from the same joint distribution. The inclusion of geographical
coordinates has minimal impact. Either they are not significant, or in complex models like
neural networks interactions between existing features may already encapsulate spatial
dependencies implicitly.

Table 5.1: Performance of different global models in reproducing the FAPAR Anomaly time series of all
sub-basins using alternative sets of input features, namely year and standardized drought indices only,
considering also the original variables, and considering also the coordinates of the different sub-basins.

Model Features Mean MAE Std. MAE Mean
correlation

Std.
correlation

Linear
Regression

year+indices
year+indices+variables
year+indices+variables+coordinates

0.724
0.723
0.724

0.049
0.048
0.049

0.339
0.344
0.339

0.121
0.121
0.121

Neural
Network

year+indices
year+indices+variables
year+indices+variables+coordinates

0.724
0.660
0.657

0.047
0.057
0.058

0.343
0.497
0.501

0.113
0.109
0.111
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Given the results of the local models showing how the inclusion of an aggregation phase
through hierarchical clustering with average linkage yields an improvement in the results,
together with a reduction of computational costs, we finally explore the potential for a
single model trained on the observations of all sub-basins aggregated through hierarchical
clustering. Specifically, we use the hierarchical clustering with correlation threshold of 0.7,
considering year, indices, variables, and coordinates as predictors which resulted to attain
the best performance in terms of MAE.

Figure 5.6 compares the global model working on individual sub-basin with the one trained
on aggregated clusters: a slightly improved MAE and a reduced variance across the estimates
of the different sub-basins is obtained. This shows that the neural network is exploiting the
heterogeneity of the data from different sub-basins to model the state of vegetation at the
European scale, and it is convenient to average similar data, reducing both collinearity and
computational costs.

Figure 5.6: Comparison of global models considering individual sub-basins as baseline. The maps on the left
show the granularity of the input features, while the maps on the right the corresponding model’s accuracy in
terms of MAE.
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The superiority of the global modeling approach is confirmed looking at Figure 5.7, which
reports the results on a specific area in northern Italy. In this region, local models show
difficulties in the prediction of the target variable. In particular, some clusters are
well-performing, while others (such as the cluster isolating the Po Valley region) present
substantially higher errors. The global approach, on the other hand, clearly exhibits an
improved accuracy that is likely motivated by the enlarged dataset used for training a single
global model.

Figure 5.7: Comparison of local and global models on a specific area in northern Italy. The left map shows the
clusters obtained in the local case, with the associated models’ MAE visualized in the middle panel. The right
panel shows instead the MAE of the global model trained on clustered features.

To conclude the analysis of the global models, forward wrapper and CMI filter feature
selection allow to drive some conclusions on the relevance of the considered features. In
particular, Figure 5.8 shows the accuracy of different global models that use from 1 to the
full set of 18 input features, as selected by CMI and wrapper feature selection. The same
results with the addition of coordinates (i.e., latitude, longitude, altitude) are also reported
in the figure, showing a significant performance with the inclusion of the coordinates also
with a very limited number of features. Additionally, considering six features and the
coordinates, the performance is close to the best value, showing that the majority of
information provided by the inputs is already exploited. Finally, from 8 features on, there is
no improvement with the addition of coordinates, proving that the neural network model is
exploiting the larger number of features to identify the location of the samples, without the
need to explicitly encode the coordinates in the inputs.

Finally, Figure 5.9 reports the most selected features in the global models considering the
wrapper feature selection approach with 6 features. In this case, the SPEI-1 is still considered
as the most selected features, as in the local case, while the SPI-1 is not anymore among the
most relevant ones, being replaced by more long term-based features such as its
three-months counterpart (SPI-3), and the three-months SPEI, together with its associated
raw feature.
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Figure 5.8: Accuracy of global models combined with CMI and wrapper feature selection methods in terms of
average MAE (left panel) and correlation (right panel).

Figure 5.9: Most selected features for the global model, considering wrapper feature selection with 6 selected
features in 17-fold cross-validation.

5.3 Identification of critical drought features

This chapter introduces an AI-enhanced methodology to identify the most critical features of
drought events, namely intensity, frequency, duration, that produce severe drought impacts.
The proposed method is demonstrated using the Lake Como Climate Change Hotspot as a
case study.

5.3.1 Impact model

Lake Como is an Italian subalpine lake with an operative storage capacity of 247 Mm3

regulated since 1946 by a regional public authority, Consorzio dell’Adda, that operates the
dam located at Olginate (South-East branch of the lake). Its hydrological basin is in the Italian
Alps, close to the border with Switzerland, and corresponds to the upstream part of the
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Adda River Basin with a catchment area of 4500 km2. The water resources drained by the
Lake’s basin provide water for irrigation to a wide cultivated area (1320 km2) and for energy
production to 16 hydropower plants (13% of national hydropower). Most hydropower plants
are in the northern upstream part of the basin, but some run-of-the-river plants are also
operated downstream of the lake. The operation of the lake dams is also fundamental to
controlling flooding along the lake shores, particularly in the city of Como. Additional
interests are represented by tourism (especially after the development of the last two
decades), navigation, fishing, and ecosystem conservation.

To simulate the dynamics of the Lake Como system, a simulation model of the reservoir
operations at the daily time step is adopted here. Its main component is the water balance
equation:

(5.1)𝑠
𝑡+1

= 𝑠
𝑡

+ 𝑖
𝑡+1

− 𝑟
𝑡+1

being and the lake storage at time and , the net inflow (which already𝑠
𝑡

𝑠
𝑡+1

𝑡 𝑡 + 1 𝑖
𝑡+1

includes losses such as those due to evaporation and infiltration) into the lake between time
and , and the release in the same time interval. The actual release is𝑡 𝑡 + 1 𝑟

𝑡+1
𝑟

𝑡+1
modeled through a stochastic and nonlinear relationship of the release decision . The𝑢

𝑡

releases from the Olginate dam are indeed constrained by the minimum ( ) and𝑁𝑚𝑖𝑛

maximum ( ) release functions, which respectively define the minimum and maximum𝑁𝑚𝑎𝑥

outflow from the lake for each possible level. These functions are mathematically defined as
follows:

𝑁𝑚𝑖𝑛 =  {0                                                                             𝑖𝑓 ℎ
𝑡

<  ℎ𝑙𝑏 𝑞
𝑡
𝑒     (5.2)

𝑁𝑚𝑎𝑥 =  {0                                                                               𝑖𝑓 ℎ
𝑡

<  ℎ𝑙𝑏 1534 (5.3)

being the lake level on day at 8 am and the minimum environmental flow.ℎ
𝑡

𝑡 𝑞
𝑡
𝑒

and defines the lower and upper bound of the operating range,ℎ𝑙𝑏 =−  0. 4 𝑚 ℎ𝑢𝑏 = 1. 1 𝑚
respectively. The legislation requires completely opening the dam gates above , andℎ𝑢𝑏

closing them below . Between and , the lake operator can decide the amount ofℎ𝑙𝑏 ℎ𝑙𝑏 ℎ𝑢𝑏

water to be released, provided that it does not exceed the range defined by the minimum (

) and maximum ( ) release curves:𝑁𝑚𝑖𝑛 𝑁𝑚𝑎𝑥

(5.4)𝑟
𝑡+1

= 𝑚𝑖𝑛⁡(𝑁𝑚𝑎𝑥,  𝑚𝑎𝑥⁡(𝑁𝑚𝑖𝑛,  𝑢
𝑡
))∆𝑡

The decision on the release is the output of the so-called operating policy, a function that𝑢
𝑡

takes in input the lake level and information on the time of the year:ℎ
𝑡
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𝑢
𝑡

= 𝑝
θ

ℎ
𝑡
, 𝑠𝑖𝑛 2π𝑡/365( ), 𝑐𝑜𝑠 2π𝑡/365( )( ) (5.5)

is a vector of parameters that define the shape of the policy, which is specifically selectedθ
to be highly flexible. In this case, we use a network of radial basis functions (Giuliani et al.,
2016) specifically identified to reproduce the historical operations.
Using this formulation, the system can be simulated starting from an initial level to generate
the level and release trajectories for a time horizon of length . From them, the numerical𝐻
values of the downstream deficit can be computed through this equation:

(5.6)𝐽𝑑𝑒𝑓 = 1
𝐻

𝑡=1

𝐻

∑ 𝑤
𝑡

− 𝑟
𝑡+1

− 𝑞
𝑡
𝑒( )( )𝑛

,  0( ) 

where is the downstream water demand that represents both the needs of the𝑤
𝑡

agricultural districts and of the hydropower plants. The exponent is set to 2 during the𝑛
irrigation season (from April 1st to October 10th); to 1 for the rest of the year. In this way,
deficits (especially the largest) are weighted more during the irrigation season, when many
mild shortages are preferred to a few severe ones.
Inflow scenarios given in input to the impact model are analysed using the Standardized
Streamflow Index (SSI; Vicente Serrano et al., 2011), which adopts the same procedure of
the Standardized Precipitation Index (SPI) but is used to consider streamflow instead of
precipitation anomalies.
The analysis of the SSI allows to univocally identify a drought. It begins when the SSI is lower
than -1 for at least two consecutive months and ends when the SSI becomes positive.
Applying this definition to the historical data (1946-2021) of the inflow into Lake Como we
spot 18 drought events (Figure 5.10). Other than the drought frequency (number of
droughts in the considered period), Zaniolo et al (2023) defined two other key properties:
persistence (the total duration of a dry spell) and intensity (the mean SSI value during a
drought). The 18 drought events shown in Figure 1 have an average duration of 10.67
months and intensity equal to -1.24.
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Figure 5.10: SSI drought index computed for inflow into Lake Como in the historical period 1946-2021. The
hydrological droughts are highlighted in red.

5.3.2 AI method

The proposed methodology to identify the most critical features of drought events is based
on two sequential steps: the first consists of generating a comprehensive set of synthetic
scenarios, spanning different drought conditions that could potentially occur due to the
future hydro-meteorological regimes influenced by climate change; the second analyses the
performance indicator obtained by simulating the system with the synthetic drought
scenarios in order to define which are the critical drought features leading to a failure.

5.3.2.1 Synthetic generation of drought scenarios
We perturb the historical inflow time series following the FIND (Frequency, INtensity, and
Duration) algorithm presented in Zaniolo et al (2023). It generates an arbitrary-length
scenario with controlled statistical features, matching user-specified values of frequency,
intensity, and duration. FIND is composed of the following steps:

1. Parameter and time series initialization: The user defines the
Simulated-Annealing (SA) (Kirkpatrick et al 1983) parameters and selects the
target frequency, intensity, and duration of droughts. The initial (parent) time
series is generated by randomly extracting monthly values from historically
calibrated monthly streamflow distributions.

2. Swapped time series generation: a new (swapped) time series is generated by
replacing a randomly selected portion of predefined length from the parent
time series.

3. Objective value calculation: the aggregate objective value is calculated for
both the parent and swapped time series as a weighted sum of 5 single
objective values (deviation from the target frequency, intensity, duration,
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monthly autocorrelation over 12 months, and the 25th, 50th, and 75th
percentiles during non-drought periods).

4. Time series selection: a time series is selected between the parent and
swapped to become the new parent time series for the next iteration.
According to SA selection principles, if the swapped time series has a lower
(better) objective value, the swapped time series becomes the new parent. If
the parent time series has a lower objective, the algorithm can occasionally
select non-improving swaps following the SA principles.

5. Iterate until termination: the time series selected during the previous step
becomes the new parent time series. The algorithm proceeds by iterating
through steps b–e until one of the two terminating criteria is met, namely the
parent time series aggregated objective is lower than a tolerance, or the
maximum number of function evaluations is reached.

The described procedure is repeated for scenarios: combinations of frequency,𝑁 = 𝑛∙𝑚 𝑛
intensity, and duration are extracted using Latin Hypercube Sampling (LHS); for each of
them, replicas are generated (the features can be associated with different streamflow time
series). The variability ranges of LHS must be defined to explore relevant combinations of
frequency, intensity, and duration.

5.3.2.2 Scenario discovery
Once the synthetic generation of scenarios is completed, the scenario-discovery phase is
conducted through these steps:

1. Impact model simulation: For each scenario, a simulation of the impact
model is performed in order to compute values of the performance indicator.

2. Failure threshold Definition: Each scenario must be labelled as a failure (or
non-failure) depending on its performance. This requires defining a failure
threshold that is defined based on prior knowledge about the water system
under examination and/or a statistical analysis of the performance indicator
values over the historical period.

3. Supervised learning task framing: The data must be organized into
input-output pairs. For each scenario, each representing a sample, the inputs
are the duration, intensity, and frequency of the drought event. The target
output is a boolean variable (failure/non-failure).

4. Decision tree classifier identification: A Classification And Regression Tree
(CART) is fitted by solving the classification task described in step c.
Mathematically speaking, the decision tree maps the failure/non-failure from
the space of the performance indicator (or indicators if there are more than
one) into the 3D space of the drought features. The decision tree structure
must be limited (not too deep or too wide) to ensure a high interpretability.
The inspection of the tree structure allows us to define an importance ranking
of the drought features. The splitting points provide the thresholds separating
failure/non failure for each feature.

96
AI-ENHANCED EXTREME EVENTS DETECTION



CLINT - CLIMATE INTELLIGENCE
Extreme events detection, attribution and
adaptation design using machine learning

EU H2020 Project Grant #101003876

5.3.2.3 Numerical results
​​As described in the previous section, the first step of the procedure requires sampling
combinations of drought persistence, intensity, and frequency by LHS. The ranges have been
defined starting from the historical features:

1. Persistence between 7.47 months (70% of the historical average duration) and 63.80
months (110% of the historical longer drought event);

2. Intensity between -2.59 (110% of the most intense event) and -0.87 (70% of the
historical average intensity);

3. Frequency between 3.13 and 6.77 (60% and 130% of the historical frequency,
respectively). Note that historical frequency has been rescaled over the 22-year
horizon used for simulation, instead of the original 76-year horizon shown in Figure
5.10.

The LSH sampling ensures uniform coverage of the 3D feature space (Figure 5.11a), also
including very critical drought with extreme persistence, intensity, and duration
simultaneously.

Figure 5.11: Three-dimensional space (persistence, intensity, frequency) with three hundred LHS samples
(orange circles), with a black dot representative of the historical period (a). Examples of SSI time series for some
extreme cases (b-e).

For each combination, we run the FIND algorithm times, each one starting from a 𝑚 = 10
different random seed thus producing different time series of the inflow and SSI. Four
examples of SSI time series relative to extreme drought features can be seen in Figure
5.11b-e. In this way, we produced synthetic scenarios that have been then fed𝑁 = 3000
into the impact model to compute the downstream deficit (i.e., the considered performance
indicator). The failure threshold has been set to 2933, corresponding to the average deficit
of the three most critical years of the considered historical horizon 2000-2021, obtaining
2362 non-failure scenarios and 638 failure scenarios.
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The decision tree trained to solve the supervised classification task is shown in Figure 5.12.
Its structure suggests that intensity is the most critical driver of water supply failure in the
Lake Como system, followed by persistence and, as last, frequency. Scenarios with average
intensity are not usually strong enough to generate a system failure. Among those>− 1. 8
with intensity , an average persistence months and a frequency≤ − 1. 8 > 23. 8 > 2. 5
events over 22 years are necessary to generate a system failure.

Figure 5.12. Decision tree classifier structure.

Finally, an assessment of the decision tree accuracy is fundamental to determine the
significance of the importance ranking and the thresholds reported above. The analysis of
the structure of inaccurate decision trees may lead to meaningless insights. In the case at
hand, the decision tree has an overall accuracy of 0.89, perfectly balanced between the two
possible output classes (Table 5.2), ensuring the significance of the analysis presented
above.

Table 5.2: Confusion matrix assessing the accuracy of the decision tree classifier.

Actual
No Failure 0.89 0.11

Failure 0.11 0.89

No Failure Failure

Decision Tree Output

98
AI-ENHANCED EXTREME EVENTS DETECTION



CLINT - CLIMATE INTELLIGENCE
Extreme events detection, attribution and
adaptation design using machine learning

EU H2020 Project Grant #101003876

5.4 Conclusions

In Task 3.3, a range of ML-based techniques have been used to address the challenge of
designing impact-based drought indices via feature extraction. Moreover, given the complex
relationship between drought characteristics and impacts, we developed a novel method for
supporting the identification of the most critical drought features – i.e. intensity, duration,
frequency – that produce the most severe impacts.

Regarding the definition of impact-based drought indices, the proposed Multi-Task drought
detection method addressed the two limitations of the FRIDA method identified in
Deliverable D3.2 and advances its upscaling at the pan European scale. The results reported
in Section 5.2 show that the local approach is able to design a simple, fully interpretable
index for each sub-basin based on linear aggregations and linear models, which is fast to
train and easy to apply. Conversely, the global modelling approach is able to capitalize on the
larger training dataset encompassing all sub-basins and yields the highest model accuracy in
reproducing the drought impacts on vegetation. However, this second approach introduces
high nonlinearity in the index reconstruction, which becomes ultimately difficult to interpret.

Regarding the methodology for identifying critical drought features, it effectively combines
synthetic scenario generation with impact model analysis. These scenarios (generated using
the FIND algorithm by perturbing historical inflow data based on frequency, intensity, and
duration) are used in a supervised classification task that indicate drought intensity is the
most influential factor driving water supply failures in the Lake Como case study. This
method is fully generalizable and able to provide insights for managing future drought risks
in other systems with different drought-related impacts.

The next steps will explore the added value of using these AI-enhanced, impact-based
drought indices for better understanding similarities and differences in multisector impacts
in the Lake Como climate change hotspot, in order to advance existing monitoring practices
that are used for triggering drought management actions (these results will be reported in
Deliverable D7.3). Moreover, we will also explore future drought risks at the pan European
scale by producing projections of the AI-enhanced indices to support climate change
adaptation strategies (these results will be reported in Deliverable D6.3).
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6 COMPOUND EVENTS AND CONCURRENT EXTREMES

6.1 Introduction

While many type of extreme events have been associated with significant socio-economic
impacts (e.g., Zampieri et al., 2017; Zscheischler and Fischer, 2020; Hao et al., 2022), the
combination of such events, in space and/or time, can further amplify these impacts in a
non-linear manner. This is because many systems possess resilience against single extreme
events but cannot cope with multiple stressors (Leonard et al., 2014; Hao et al., 2018;
Zscheischler et al., 2018; Zscheischler and Fischer, 2020; Zscheischler et al., 2020; Zhang et
al., 2021; Hao et al., 2022). Multiple types of extreme events that are dependent in space
and time are often considered concurrent extreme events (Toreti et al., 2019b). However,
the combination of multiple climate drivers can cause significant impacts without any of
them being individually extreme. For instance, some ecosystems are directly adapted to the
co-variability of temperature and precipitation, such that a bivariate anomaly can have a
large impact without either variable being extreme in a univariate sense (Mahony and
Cannon, 2018). This has motivated the study of compound events, which are often defined
as multiple climate events and/or hazards that contribute to societal or environmental risk
(Zscheischler et al., 2018). Given that many socio-economic sectors are affected by weather
and climate conditions, adequate risk assessment relies on understanding the multivariate
nature of these events (Raymond et al., 2020).

Within CLINT we aim to characterise compound events at European scale, thereby focussing
on the socio-economic sectors addressed in WP6. Our focus is on:

a) Relatively wet and warm late winters followed by dry and warm spring, with severe
impacts on agriculture.
b) Dry winters followed by hot summers, since accumulating pressure on the agriculture
and the energy sector with direct impacts on the hydropower capacities during increased
demand period.
c) Wet and warm spring, with impacts on water management, increased flood risk due
to precipitation excess and early melting season.

The first event is motivated by so-called false spring events: these occur when humid and
warm conditions manifest in winter triggering an unusual early crop growth, which is then
harmed by a frost event or an intense drought in the following spring resulting agricultural
damages (Ault et al., 2013; Allstadt et al., 2015; Chamberlain et al., 2019). Due to climate
change and the resulting increase in winter temperature, such events are expected to occur
more frequently in the future (Ault et al., 2013). The second type of compound event
pertains to water shortages in winter, which are then exacerbated by prolonged drought and
heat in summer. This situation places significant stress on summer crops, such as grain
maize, and challenges water management systems, as irrigation may fail due to water
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shortages. Furthermore, the energy sector can be adversely affected, particularly in the
context of hydropower generation. The final compound event concerns the alpine region
and is primarily characterised by flooding resulting from snowmelt due to warm
temperatures, compounded by additional rainfall. This leads to an excessive surplus of water
in the valleys surrounding the mountains.

While the compound events focus on the European scale with impacts on socio-economic
sectors, the task of concurrent extremes considers the interconnectivities of heatwaves and
droughts on a global scale. The combination of heatwaves and droughts are often of
interest, as they are strongly interrelated by their physical nature and have been shown to
cause significant impact in many socio-economic sectors (e.g., Zampieri et al., 2017; Toreti et
al., 2019a). When investigating these dependencies, it is essential to obtain a long dataset
for the computation of dependence statistics. However, the nature of climate change
complicates this approach, as it affects both heatwaves and droughts, making it challenging
to distinguish the dependency signal from the warming signal. Therefore, methods that
account for the non-stationarity of these two phenomena need to be investigated.

Chapter 6 is structured as follows: Section 6.2 discusses the data and methods, which have
been more intensively discussed in D2.3; Section 6.3 covers the analysis on compound
events; and 6.4 addresses concurrent extremes. These findings are then summarised in 6.5.

6.2 Data and methods

For all meteorological variables, the ERA5 reanalysis (Hersbach et al., 2020) is utilised, except
for Sea Surface Temperature (SST), which is derived from the OISST dataset (Huang et al.,
2021). One of our experiments benchmarks the Standardised Precipitation and
Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010) against a new nonparametric
version. For this analysis, we use the CRU TS 4.07 dataset (Harris et al., 2020), as it has been
employed in previous evaluations of the SPEI (Beguería et al., 2014). Quality-controlled data
from the AGRI4CAST Portal (https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx) is
used as dataset for the impact on the food sector, while data from the European Network of
Transmission System Operators for Electricity (ENTSO-E; https://www.entsoe.eu/) is sourced
for the impact on energy sector. To consider impacts in the water sector, data from the
high-resolution pan-European hydrological analysis (HERA; Tilloy et al., 2024) is employed,
with temperature and total precipitation data obtained from the EMO-5 meteorological
dataset (Thiemig et al., 2022). Lastly, soil data is sourced from the Land Data Assimilation
System (LDAS; https://ldas.gsfc.nasa.gov/gldas/soils). A detailed description of the datasets
can be found in D3.1 and D3.2.

All the methods used for this Deliverable are reported in detail in D2.3, and we give below
only a very short description.

Soft-Dynamic Time Warping (SDTW)
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Soft-Dynamic Time Warping (SDTW; Cuturi and Blondel, 2017) offers a flexible approach for
clustering multivariate time series by capturing temporal evolution and non-stationarities,
both of which are commonly found in climate data due to climate change.

Sure Independence Screening (SIS)
Sure Independence Screening (SIS; e.g., Fan et al., 2020) is used to filter out irrelevant
variables from large datasets, in combination with the Reflection via Data Splitting (ReDs;
Guo et al., 2023) method. The SIS approach ensures that features with predictive power are
retained with a probability tending to one, while ReDs controls the rate of false discoveries
or the false identification of inactive features with a user-given probability.

Kernel Regularized Generalized Canonical Correlation Analysis (KRGCCA) and Preimages
Kernel Regularized Generalized Canonical Correlation Analysis (KRGCCA; Tenenhaus et al.,
2015) is applied to extract dominant components from multiple high-dimensional climate
variables, thereby effectively processing spatial dependencies while maximizing the
non-linear relationships between those components. Similar to PCA, KRGCCA generates time
series for each input variable, which are associated with spatial patterns. However, unless a
linear kernel is applied, the spatial patterns are typically constructed in higher-dimensional
spaces, making them difficult to visualize in the usual way. To overcome this, preimages (as
described by Honeine and Richard, 2011) are introduced, providing approximate spatial
patterns of KRGCCA within the same dimensions as the original feature space.

Imbalanced Random Forests
We use imbalanced random forests based on the q*-classifier (O'Brien and Ishwaran, 2019)
to model imbalanced datasets. This method develops an optimized decision rule for
classifying imbalanced data, focusing on the likelihood of observing the minority class.
Following the recommendation of O'Brien and Ishwaran, 2019, we tune the forest using the
G-mean, which combines the sensitivity (True positive rate; TPR) and specificity (True
negative rate; TNR) via

𝐺 − 𝑚𝑒𝑎𝑛 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 *  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦  
(6.1)

Where TPR is defined as TPR=TP/(TP+FN) and TNR=TN/(TN+FP), with TP denoting true
positives, TN true negatives, FP false positives and FN false negatives. At the same time, we
employ the Accuracy metric, defined as (TP+TN)/(TP+TN+FP+FN)

AI-Enhanced Inhomogeneous J-Function
The inhomogeneous marked J-function (Cronie and van Lieshout, 2016) is employed to
assess whether extreme climate events display clustering, inhibition, or independence, while
also accounting for changes in their frequencies due to climate change. To briefly
summarize, we refer to D2.3 for further details: suppose we are investigating whether
extreme events in a country ​at time points ​are influenced by extreme events ​in𝐸

1
𝐶

1
𝑇

1
𝐸

2
another country ​ observed at time points . The marked inhomogeneous J-function𝐶

2
𝑇

2
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process using AI, allowing it to be applied to large data sets (see D2.3 for more details).

Non-Parametric SPEI and Climate Indices
A non-parametric kernel-based estimator is used to overcome the limitations of traditional
distributions, such as the log-logistic, in the context of water balance and climate indices like
the Standardized Precipitation and Evapotranspiration Index (SPEI; Vicente-Serrano et al.,
2010). This estimator is unbounded, data-adaptive, and capable of managing a broader
range of climate variability and extremes.

Quantile Regression using I-Spline Neural Networks and Accumulated Local Effects (ALE)
Quantile Regression using I-spline neural networks (QUINN; Xu and Reich, 2023) is employed
to estimate the conditional distribution of desired climate variables. These models utilize
I-splines and Bayesian neural networks to quantify uncertainties, and the impact of
covariates on different parts of the distribution can be analysed through Accumulated Local
Effect (ALE) plots (Apley and Zhu, 2020). ALE plots help visualize how predictions change
when input features vary, aiding in the assessment of key drivers in climate data analysis.

6.3 Compound Events

6.3.1 Relatively wet and warm late winters followed by dry and warm springs

This compound event focuses on agricultural impacts, specifically on winter soft wheat in
France, the largest producer of this crop in Europe. The underlying mechanism involves an
anomalously wet and warm winter that triggers early crop growth, which is subsequently
harmed by hazardous events, like frost or drought. Such phenomena are commonly referred
to as false-spring events, and they are expected to increase in frequency due to warming of
winter temperatures (Ault et al., 2013). We define the late winter period as January and
February, and spring as March, April, and May and for each of these months we obtain the
climate variables, which we describe below. To identify which period is crucial for predicting
crop failures, we perform a large-scale analysis, aimed at identifying the key months and
climate patterns. Based on these identified patterns, we establish a definition of the
compound events using machine learning techniques.

6.3.1.1 Identification of large-scale patterns

Adaptation measures, as the improvements in agricultural practices, primarily affect
long-term crop measurements and those signals need to be removed to isolate the impact
of climate-related events on agriculture. It is common to assume that the signal related to
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adaptation is primarily reflected in the long-term trend (e.g., Ceglar et al., 2016; Zampieri et
al., 2017). In order to obtain the so-called yield anomalies, we first log-transform the yield
data to address heteroskedasticity (Lobell, 2013; Ceglar et al., 2017) and then we apply
non-linear detrending. This last action is performed using local polynomial smoothing with
an automatic bandwidth selection method (Feng et al., 2020), which accounts for serial
correlation. With the aim of modelling the impact of wet and warm winters two indices are
considered: the Nonparametric Standardized Precipitation and Evapotranspiration Index
(NPSPEI), which captures wet and dry conditions and the Standardized Active Temperature
Sum (SATS), which is a temperature-related metric for crop growth (see D3.2). Following the
methodologies explained in D3.2 and D4.1, we include large-scale variables to ensure
physical consistency:

1. Relative humidity at 700 hPA, an indicator of drought and precipitation.
2. Temperature at 850 hPA to capture additional heat conditions.
3. The 500 hPA geopotential height, which represents large-scale atmospheric

circulation, including blocking highs.
4. SSTs, which influences seasonal predictability and has a strong effect on heatwaves

and droughts (Domeisen et al., 2022).

The large-scale patterns linked to yield failures are analyzed using the non-linear dimension
reduction method KRGCCA. This method simultaneously reduces the dimensionality of
multiple variables, generating time series or components for each, while maximizing their
dependencies. The user can specify which relationships to maximize through a hypothesis
matrix, which we choose such that KRGCCA is able to identify relevant climate patterns
linked to yield anomalies (Appendix A6.1). The corresponding climate and yield patterns are
then captured by the components. We note that the dependencies between the climate
variables themselves are also indirectly considered (see D2.2). To obtain the spatial patterns
associated with these components (similar to PCA; see D2.3), we compute preimages. The
first three components (time series) along with their spatial patterns for the yield anomalies
are presented in Figure 6.1.
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Figure 6.1: Retained spatial pattern of soft winter wheat anomalies (top panel) and corresponding time series (bottom
panel).

In Figure 6.1 crop yield anomalies are negatively oriented, implying that positive values (red)
of the spatial patterns correspond to crop failure and negative ones (blue) represent
surpluses of crop yield. In years with positive values, the corresponding spatial patterns (see
Figure 6.1) are "active", with larger values indicating an increased intensity of the pattern.
For years with negative values, the pattern is active in a negative phase and can be visualized
by multiplying by -1 the values displayed in the top panel of Figure 1. The first pattern
reveals a signal related to crop failure mainly throughout the northern and central part of
France. The corresponding time series in the bottom panel of Figure 6.1 shows that this
pattern dominates the other two components by accounting for approximately 45.0% of the
variance and is linked to significant crop failures, including those in 2003, 2007, and the
severe failure in 2016 (Ben-Ari et al., 2018). The second component is dominant in the
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Mediterranean region, where the signal from the first component is weaker. In contrast, the
third component predominantly reflects failures in the southeastern region. Crop failures
related to these three components do not always occur simultaneously, as it can be seen for
2003 (failures signalled by first and second component), and 2016 (only first component).

In the next steps, we inspect which climate variables play the most important role in
explaining the patterns of yield anomalies determined above. Our analysis will primarily
focus on modelling the first component, since it explains the majority of the variability.
KRGCCA has identified patterns for NPSPEI-1 and SATS-1, which are linked to the yield
patterns in Figure 6.1 with corresponding time series (similar to PCA analysis; see D2.3 for a
detailed description). We can use them to model the yield components, so that we can
identify which climate variables (and corresponding months) have the most influence on the
observed yield anomalies. In order to do so, we employ a vine copula-based quantile
regression (Kraus and Czado, 2017), with which we can model the non-linear relationships
and capture the conditional distribution function (CDF) of the first component of the yield
anomalies (Figure 6.1). This allows us to focus on the tails that correspond to significant crop
yield failures. In order to avoid overfitting, Kraus and Czado (2017) suggest the use of
information criteria, which balances model complexity, variable selection and predictive
performance. Using the Bayesian Information Criterion (BIC; Schwarz, 1978) the model
selects three variables: NPSPEI-1 in April, SATS-1 in February and SATS-1 in May. With those
variables the CDF is found to be standard uniformly distributed (Anderson-Darling Test
p-value: 0.90) indicating that the Probability Integral Transformation (PIT) works well and the
CDF is well modelled.

Among these patterns, the ones that play a pivotal role in predicting significant crop yield
failures are found using variable importances based on ALE plots in conjunction with the
vine copula regression. We recall this method allows to focus on higher conditional
percentiles. However, the relatively small sample size (N=32) prevents from using very high
percentiles for this analysis. By consequence we focus on the 70th conditional percentile as
an indicator of high impact. We construct the preimages (i.e., the approximative spatial
patterns; see D2.3) in February, April, and May for the selected variables. Additionally, we
include January, which is found to be quite similar to February. The variable importance
criteria and the reconstructed preimages are presented in Figure 6.2.

The most influential variables for predicting significant crop yield impacts are NPSPEI-1 in
April followed by SATS-1 anomalies in May and February. The corresponding preimage,
generated for the positive phase of the first component, reveals wet and warm conditions in
January and February which could initiate early crop growth. The subsequent dry and warm
conditions in April can cause significant damage, and when followed by warm conditions in
May, the impact could be further intensified. To better understand the combined role of
these hazards, we examine the marginal and interaction effects of NPSPEI-1 in April and
SATS-1 in May, as shown in Figure 6.3.
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Figure 6.2: Top panel: variable importance obtained for the 70th conditional quantile of the crop yield anomalies using the
vine copula-based quantile regression model. Bottom panel: preimages spatial patterns for the NPSPEI -1 and SATS-1
corresponding to the first component of the crop yield anomalies displayed in Figure 6.1.
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Figure 6.3: Marginal effects of warm May (a) and spring drought (b) on yield anomalies. Interaction effect of NPSPEI-1 and
the SATS-1 in May is shown in (c).

Focusing on the positive phase of the first KRGCCA component, which is linked to negative
NPSPEI-1 values and dry conditions (Figure 6.2c), we observe a near-linear increase in ALE,
indicating a corresponding rise in crop losses. Positive NPSPEI-1 values suggest that the
spatial pattern in Figure 6.2, reflecting mainly dry conditions, is "active." The higher the
NPSPEI-1 values, the higher the ALEs, meaning larger crop losses are expected due to the
strongly pronounced droughts. For the negative values or phases of NPSPEI-1 in April, the
spatial pattern has to be multiplied by -1, indicating wet conditions. In these cases, the
negative ALEs suggest that losses are less likely, due to the more favourable wetter
conditions. For SATS-1 in May, the ALEs show a non-linear response, particularly as they shift
into the positive phase (i.e., values above zero), corresponding to warmer conditions across
most of France, except for the southwestern region (Figure 6.2h). This implies that yield
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losses mainly occur when May warmth is strongly pronounced, while cooler May conditions
(negative SATS-1 values) have little influence, as the ALE values remain close to zero.

The interaction plot (Figure 6.3c) further reveals that the highest ALE values are typically
found when the April drought is particularly severe, with the first component related to
NPSPEI-1 above 2.0. These high ALE values occur almost independently of SATS-1 in May,
suggesting that the April drought is the dominant hazard. However, when high SATS-1 values
in May coincide with a moderately positive NPSPEI-1 phase, significant ALE values can still
occur, indicating that warm May conditions can amplify the impact of the April drought,
when it is less severe.

6.3.1.2 Construction of objective thresholds

The dimension reduction experiments explained in 6.3.1.1 have provided valuable insights
into the most important months with the highest predictive power for crop yield losses.
However, the specific intensity required for these components to trigger significant crop
yields impacts remains unclear. To explore this, we focus on the local scale, and we model
the impact on winter soft wheat using the climate variables for each NUTS3 region for
France. Figure 6.1 suggests the existence of three clusters related to impacts. However, since
KRGCCA assumes continuity across the field, precisely defining homogeneous agro-climatic
regions is difficult.

To address this challenge more objectively, we apply the multivariate Soft Dynamic Time
Warping (SDTW; Cuturi and Blondel, 2017) algorithm, which defines clusters based on winter
soft wheat anomalies, SATS-1 and NPSPEI-1 for the most important months. The selection of
these climate variables is guided by the results shown in Figure 6.2: first, with the aim of
capturing warm and wet late winter conditions, we identify respectively SATS-1 and
NPSPEI-1 in February as key variables. Although we have primarily used an aggregation
period of one month so far, the spatial patterns in Figure 6.2 indicate that January and
February share similar characteristics. This suggests that using an aggregation period of two
months (i.e., NPSPEI-2 and SATS-2 in February) could be beneficial for summarizing wet and
warm conditions of late winter. Statistically, higher aggregation periods often lead to more
robust indices (Vicente-Serrano and Beguería, 2016). Secondly, in order to capture hazards
associated with dry and warm spring conditions, we use NPSPEI-1 in April (multiplied by -1)
and SATS-1 in May. All these climate variables, along with yield anomalies, are used in
multivariate clustering through the SDTW approach. Hyperparameter tuning is performed
using the Silhouette coefficient, which has shown strong performance in various clustering
scenarios (Arbelaitz et al., 2013). The resulting clusters are presented in Figure 6.4.
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Figure 6.4: Obtained agroclimatic regions used for grouping winter wheat crop yield anomalies and the local climate
variables from February to May described in the text.

We observe that the determined clusters closely resemble the three regions identified in
Figure 6.1, indicating the robustness of their definition.

Based on the variables we have chosen above, we define a compound event as follows:

1. SATS-2>0 in February, to define warm winter conditions.
2. NPSPEI-2>0 in February, to define wet winter conditions.
3. −NPSPEI-1>0 in April, to define the spring drought.
4. SATS-1>0 in May, to define warm conditions in May.

The choice of these thresholds comes from the definition of the indices: positive (negative)
values of NPSPEI-1/NSPEI-2 coincide with wet (dry) conditions, while positive (negative)
values of SATS-1/SATS-2 reflect warm (cool) conditions.

The four conditions listed above constitute altogether a meteorological event. Since in
compound event research it is essential to include a high socio-economic impact feature
(Zscheischler et al., 2018), negative yield anomalies above the 70th percentile (chosen for
the reasons explained in 6.3.1.1) are added to the requirements listed above. If all of these
conditions are met, we label the event as a compound event. Next, we use decision trees to
learn the definition outlined above solely from climate variables. The rationale behind this is
that the definition imposes minimal conditions on wet/dry and warm/cold states, along with
the impact. The decision tree should thus find thresholds for these climate conditions to
reconstruct the impact, thus giving our desired objective thresholds.

As a consequence of the stringent conditions required for this definition, the classification
problem is imbalanced, and using a single decision tree leads to poor performance. To
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address this, we utilize an imbalanced Random Forest (RF) model based on the q*-classifier
(O'Brien and Ishwaran, 2019). However, training such a model for each NUTS3 region is
challenging due to the limited number of observations. For this reason, it is advantageous to
group the variables according to the agro-climatic zones identified through the clustering
process (Figure 6.4). In this study we focus on cluster one, since it is similar to the first
component of KRGCCA (Figures 6.1.1 and 6.1.2). The KRGCCA analysis performed in section
6.3.1.1 has indicated that the patterns of SATS, NPSPEI and yield anomaly are quite similar
over cluster one, so it is reasonable to assume that the link function is approximately similar
throughout the corresponding NUTS3 regions. This allows us to stack the data within these
regions in a panel regression setup, thus increasing the available data for model training.
Next, we train the imbalanced RF model based on the q*-classifier and perform
hyperparameter tuning using 10-fold stratified cross-validation, optimizing for the G-mean,
as recommended by O'Brien and Ishwaran, 2019. The obtained accuracies for the test set,
defined as the period 2010-2020, are shown in Table 1.

Table 6.1: Scores obtained from the test set (2010-2020) using the imbalanced RF approach.

Random Forest Model Surrogate model – Decision Tree

G-Mean 0.941 0.940

Accuracy 0.935 0.931

We observe that the G-Mean and accuracy are satisfactory, indicating strong model
performance and suggesting that the setup successfully captured the definition of a
compound event. Nevertheless, examining the decision thresholds of such a
high-dimensional model is challenging. To address this, we employ a global surrogate model:
specifically, we use the output of the complex RF model described above, and we apply a
decision tree to predict its output using the same input features. The “new” decision tree is
trained using 10-fold stratified cross-validation, and we tuned the model again with G-Mean
based on the q*-classifier. The performance metrics are displayed in Table 6.1 and are found
to be satisfactory.

The obtained decision boundaries are presented in Figure 6.5. Before proceeding to the
analysis of the results, it is important to recall that all input variables are constructed as
(approximately) standard Gaussian. The extracted thresholds are 1.5 for the negative
NPSPEI-1 and 1.6 for SATS-1 in April and May. This indicates that relatively strong drought or
warm conditions are required to observe significant impacts. Conversely, the thresholds for
the winter variables are only slightly above the mean, suggesting that these events, when
considered individually, might be relatively harmless. However, when they coincide with
drought or heat conditions in spring, substantial impacts can be observed. This
demonstrates that combinations of non-extreme events can lead to significant agricultural
consequences.
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Figure 6.5: Global surrogate model for the imbalanced random forest.

6.3.2 Dry winters followed by hot summers

The next compound event focuses on the superimposition of hot and dry conditions during
the summer. Here, we examine how a preceding dry winter may exacerbate these impacts.
Since heat in summer is an important factor, we discuss an approach for a heatwave index
taking into account maximum and minimum temperature, which might be beneficial for a
more holistic impact description.

6.3.2.1 The Bivariate Heat Magnitude Day

A wide range of heatwave indices has been proposed in the literature (see, e.g., Barriopedro
et al., 2023), each aiming to capture the complex meteorological characteristics of these
events. However, many analyses tend to define heatwaves focusing on daily peak
temperatures such as the maximum temperature recorded. A typical definition, for instance,
is when the daily maximum temperature exceeds the 90th percentile for at least three
consecutive days (e.g., Perkins and Alexander, 2013). While this approach is appealing in its
simplicity and has proven effective in various studies, it raises the question of whether
focusing solely on peak temperatures is sufficient for a comprehensive understanding of
heatwaves. Human stress, for example, is often exacerbated by high nocturnal temperatures
or unusually warm night-time conditions, emphasizing the need to consider minimum
temperatures as well.
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To address this, we propose a multivariate heatwave index that integrates both the
maximum and minimum temperatures of the day, offering a more comprehensive definition
of heatwaves. Our framework draws from multivariate risk assessment methods, as outlined
by Salvadori et al. (2016) and considers three scenarios illustrated in Figure 6.6. The two axes
in the Figure represent hypothetical thresholds between 0 and 1, conceptualized as
quantiles for both maximum and minimum temperature.

Figure 6.6: Schematic Visualisation of multivariate thresholds taken from Salvadori et al. 2016.

When aiming to identify multivariate thresholds for maximum temperature and minimum
temperature, the simplest method is to apply thresholds to both variables as displayed in
panel (a) and check for joint exceedances (e.g., both temperatures exceed their 90th
percentile, Lavaysse et al., 2018). However, this imposes a stringent constraint on the
detection method, requiring both variables to be in an extreme state to be recognized as a
multivariate extreme event, which can be potentially problematic. For instance, if maximum
temperature exceeds the 98th percentile while minimum temperature is below the 90th
percentile, the event is not considered extreme, despite maximum temperature being
extremely high and potentially hazardous to certain socio-economic sectors. Therefore, it
may be beneficial to allow some tolerance if one variable is in an extreme state while the
other remains high, but not extreme. Statistically, this issue can be addressed by examining
the dependence structure of the two variables. Utilizing copulas, Salvadori et al. (2016)
summarizes methods for identifying multivariate thresholds. The so-called Kendall function
and the survival Kendal (SK) function are two possible approaches and are depicted in
Figures 6.6(b) and 6.6(c). These scenarios classify an event as multivariate extreme allowing
for the possibility that one variable may be extremely high while the other is below the
conventional threshold. We have explored the detection of bivariate heatwave indices using
three different methods, defining a heatwave event as occurring when both maximum and
minimum temperatures exceed the bivariate 90th percentile for at least three consecutive
days. Among the approaches considered, the SK scenario consistently produced the best
results for our purposes.
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While the detection of heatwaves is crucial, it is also necessary to classify the magnitude of
these events, as this is most important for assessing impacts. For instance, sectors like
agriculture can be significantly affected by large deviations from the mean (e.g., Porter and
Semenov, 2005). We adopt the Heat Magnitude Day (HMD) introduced by Zampieri et al.,
(2017) and construct a Bivariate Heat Magnitude Day (BVHMD, equation 6.1): we first detect
the maximum and minimum temperature-based events using the bivariate thresholds
defined in the scenarios shown in Figure 6.5 and check if it is exceeded for at least three
days. Then, for both variables, we calculate the HMD, resulting in two time series called
HMDTMAX and HMDTMIN. To combine these and to find a link function f:R->R such that

. (6.2)𝐵𝑉𝐻𝑀𝐷 =  𝑓(𝐻𝑀𝐷
𝑇𝑚𝑎𝑥 

,  𝐻𝑀𝐷
𝑇𝑀𝑖𝑛 

)

We choose f:R->R through a supervised learning model using and as𝐻𝑀𝐷
𝑇𝑚𝑎𝑥 

𝐻𝑀𝐷
𝑇𝑚𝑖𝑛 

predictors and indicators for reflecting socio-economic impact (e.g., crop yield anomalies for
agriculture) as response. The function f:R->R is then directly estimated by the model.

6.3.2.2 Nonlinear compound stress indices

After introducing the novel heatwave indices, we shift focus to the impacts of dry winters
followed by hot summers on both the agricultural and energy sectors. While the combined
effect of heat and drought on agriculture has been extensively documented (e.g., Hao et al.,
2022), the study of the energy sector is primarily motivated by drought-related factors. For
instance, a reduction in water availability can hinder the cooling systems vital for power
generation. Moreover, the interplay between agriculture and energy sectors can result in
cascading impacts, such as water shortages limiting irrigation, further exacerbating
agricultural losses.

In this chapter, we specifically examine the effects of these climate events on grain maize,
the most important summer crop in Europe. The yield data is obtained from AGRI4CAST at
the NUTS3 subnational level. To isolate climate-related impacts, yield anomalies are
calculated by detrending the yield data, as in the previous chapter. Here, we adopt a
parametric detrending approach based on the model:

. (6.3)𝑙𝑜𝑔 𝑦𝑖𝑒𝑙𝑑( ) = β
0

+ β
1
𝑦𝑒𝑎𝑟 + β

2
𝑦𝑒𝑎𝑟2

In this chapter, we adopt this approach as we also analyze regions with relatively small
sample sizes (e.g., Germany often only having 15 observations per NUTS3 region), unlike the
data from France in the previous chapter, which benefits from longer records (N=32 for all
NUTS3 region). This detrending method has been shown to perform well compared to
nonparametric approaches (Ceglar et al., 2017).

Instead of applying this detrending approach separately to each region, we estimate the
model jointly for all regions using the Seemingly Unrelated Regression (SUR; e.g., Fiebig,
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2007) approach. SUR offers significant efficiency gains compared to single regression models
when their error terms—here, the yield anomalies—are correlated, which is likely the case
given the spatial dependency of crop yield failures in response to climate conditions. As
displayed in Figure A.6.2 high correlations among the yield anomalies can be observed. Thus,
we can expect important efficiency gains of SUR in comparison to single regressions by
making use of those spatial correlations, and we utilize SUR for the following two
subchapters focussing on agricultural impact.

6.3.2.2.1 Local indices

To analyse the impact of hot and dry summers with preceding dry winters on the agricultural
impacts in summer, we examine the effects of these events on grain maize, the predominant
summer crop in Europe. Our benchmark index for assessing agricultural impact is the
Compound Stress Index (CSI; Zampieri et al., 2017), which employs a linear superimposition
of drought and heatwave indicators. To incorporate the stress induced by dry winters, we
consider soil moisture levels across four different strata (Layer 1: 0-7cm; Layer 2: 7-28 cm;
Layer 3 28 -100 cm; Layer 4: 100 - 289 cm) available in the ERA5 dataset. Furthermore, we
utilize our nonparametric NPSPEI, which will be discussed in 6.4.1, and the BVHMD based on
the SK scenario to measure climate-related stress during summer.

Following Zampieri et al. (2017) we construct the compound stress index as a linear
superimposition of the BVHMD, NPSPEI as well as the use the four soil moisture variables,
which we standardize to standard Gaussian variables using the same methods as for NPSPEI
(see D2.3 and Chapter 6.4). To find the linear model, we adopt the adaptive elastic net
(ADNET), which not only addresses correlations between predictors but also includes a
shrinking mechanism to prevent overfitting. The ADNET possesses the oracle property (Zou
and Zhang, 2009), meaning it can (asymptotically) identify the active features (i.e. those
features whose coefficients are not null) with a probability approaching one. We perform
hyperparameter tuning by calculating a sequence of models through a regularization path
(Tay et al., 2023), and we choose the “best” model among those using the BIC as
information criterion, ensuring the oracle property is maintained (Fan et al., 2020). The final
retained model provides our benchmark index for forecasting. Furthermore, we employ the
same pre-processing steps as in Zampieri et al., 2017.

While the above approach has compelling properties—such as the oracle feature,
data-driven variable selection, and interpretability—it also presents certain drawbacks. The
linearity assumption implies that the effects of variables remain constant across their range,
which is less realistic, as crops may exhibit heightened sensitivity to threshold exceedances
or abrupt spikes in climate variables (Lavaysse et al., 2018). Additionally, the standard
regression setting provides only a single forecast. To address these limitations, we apply a
vine-copula-based regression, which models the CDF of crop yields given the input variables
by decomposing them into vine copulas, offering several advantages. By modelling the full
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distribution, we can directly quantify uncertainty, assess the effects of input variables across
different parts of the distribution, and account for non-linear relationships via the copulas.

Model selection for the vine-copula based regression is performed using an information
criterion. We utilize the Akaike Information Criterion (AIC; Akaike, 1974), as recommended
by Kraus and Czado, 2017. The analysis is conducted across NUTS3 regions in Europe, with
grain maize data and climate data aggregated from ERA5. To evaluate the performance of
both models, we compute the R² values for the models. Due to the highly uneven number of
observations per NUTS3 region, we limited our analysis to regions with at least 30
observations, encompassing regions in Austria, Portugal, and France utilising the overlapping
period of 1989-2020 for all regions. The results are shown in Figure 6.7.

Figure 6.7: Explained Variance by regressing the nonparametric indices on grain maize anomalies using d-vine copula-based
quantile regression. Blue lines correspond to the explained variance (R2) of this model, while the superimposed orange lines
describe the increase of the latter in comparison to the CSI. The x-axis displays the evaluated NUTS3 regions.
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We observe that most of the R² values tend to increase, with only a few exceptions,
demonstrating the added value of accounting for non-linearities in the proposed index. To
verify whether the model accurately captures the CDF of the grain maize anomalies, we use
the PIT, where the predicted conditional probabilities should follow a standard uniform
distribution. We applied the Anderson-Darling test to each model, and all returned p-values
greater than 0.1, indicating no significant deviations from uniformity, suggesting that the
CDF is also well modelled.

There are two main advantages of our index. First, by modelling the full CDF of grain maize
anomalies, we can target specific aspects of the distribution, such as the upper tails, which
correspond to high-impact events. This feature also enhances our ability to estimate
uncertainties. Second the index captures non-linear relationships between inputs and
output and those are nonparametrically modelled thus making minimal assumptions about
the functional form.

6.3.2.2.2 A large-scale model

While the models introduced in the previous chapter show promising attributes, their
applicability is limited to local scales, where a sufficient number of observations exists.
Unfortunately throughout Europe the amount of observations is quite inhomogeneous as
shown in Figure A6.3 and the experiments performed in the previous chapter cover only
roughly 58 % of observations. To address this, we aim to develop a large-scale model
capable of capturing the dynamics across most of the NUTS3 regions in Europe. For this
purpose, we organize the agricultural data into a vector format: data from all NUTS3 regions
are combined into a single large vector, forming a 1-D time series within total N=3415
observations. The same is done for the climate variables, which are the same as in the
previous chapter, such that each column of the resulting predictor matrix corresponds to
climate features for each NUTS3 region. The goal is to use a neural network to predict yields
from these given covariates and we utilize the Quantile Regression using I-Spline Neural
Network (QUINN; Xu and Reich, 2023).

However, to accurately reproduce these patterns, we should incorporate additional
characteristics to the predictors that describe both spatial and temporal information. To
include temporal information, we add the year of the yield for each NUTS3 region. Spatial
information is incorporated by adding soil data of LDAS to describe agricultural conditions
across Europe. For further spatial insights, particularly with respect to climate, we construct
agricultural climate zones using the SDTW approach (Cuturi and Blondel, 2017). This method
is well-suited for our case, as it accommodates different time series lengths and multiple
variables, allowing us to cluster yields and climate variables jointly across all NUTS3 regions
as we did it in chapter 6.3.2.1. The number of clusters is again determined using the
silhouette coefficient, resulting in ten clusters (not shown). To characterize the compound
nature of the events, we include dummy variables that indicate when associated heatwave
and drought conditions are present. Since the soil moisture variables and NPSPEI are
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normalized to standard gaussian variables, we apply a threshold of -1, commonly used to
define extreme conditions, and characterize heatwaves by checking if the HMDs for
maximum and minimum temperature exceed zero. This information will later be used to
calculate the likelihood of crop failures under different combinations of compound events or
extremes.

We train the model, perform hyperparameter tuning with the Widely Applicable Information
Criterion (WAIC; Vehtari et al., 2017), and use the No-U-Turn Sampler (NUTS; Hoffman and
Gelman, 2011) algorithm with 2000 warm-up steps followed by 8000 iterations, discarding
every eighth sample to retain 1000 MCMC samples. Figure 6.8, panels (a) and (b), display the
Q-Q plots of the ensemble mean and the full ensemble, both of which show very
satisfactory results, indicating that the model adequately captures the distribution of the
yields. When comparing model performance in terms of R² against the two indices, there is a
clear advantage over the classical CSI. However, the non-linear CSI introduced in chapter
6.3.2.2.1 surpasses the QUINN in 40 % of the cases (Figure 6.8, panel (c)). Thus, for local
decision-making, the non-linear CSI may offer better insights in certain cases. Nevertheless,
both indices significantly outperform the classical CSI.

An advantage of the QUINN model is that it allows us to examine how different variables
influence various parts of the distribution, enabling us to compute variable importance
criteria through ALE. The resulting importance values are displayed in Figure 6.8 choosing a
couple of representative percentiles to assess the impact of the climate variable on the
distribution of yields.
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Figure 6.8: Model diagnostics from the QUINN model used for predicting grain maize anomalies. Panel (a) and (b) show
Q-Q-plots of the model and (c) and (d) compares the QUINN prediction with the CSI and non-linear extension (Section
6.3.2.2.1).
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Figure 6.9: Variable importance for the grain maize based QUINN model utilizing the 90th Percentile. SSM denoted soil
moisture in layer 1, 2, 3 and 4.

We observe that the HMDs based on maximum and minimum temperature, and the NPSPEI
are the most influential variables across all percentiles. Hence, the inclusion of minimum
temperature as discussed in chapter 6.3.2.1 seemed to be beneficial for predictive purposes.
However, the HMD based on maximum temperature becomes particularly important in the
upper percentiles, which correspond to larger crop yield failures. A similar pattern is
observed for the soil moisture in layer four, indicating that this is the most critical soil
moisture layer.

To assess the impacts of the combination of these variables, we compute the likelihoods of
crop failures under various configurations of the input variables, with a particular emphasis
on the increased risk posed by compound events. Specifically, we calculate the probabilities
of observing the following scenarios:

1. A crop failure when none of the climate variables indicate an extreme event (REF).
2. A crop failure during a heatwave, based on maximum temperatures (HW).
3. A crop failure during a heatwave combined with a summer drought (HW-DR).
4. A crop failure during a heatwave, where the fourth layer of soil moisture experiences

anomalous dry conditions, but we do not condition on a summer drought (HW-WIN).
5. A crop failure during a heatwave and a summer drought, with the soil moisture layer

four experiencing anomalous dry conditions (HW-DR-WIN).
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A crop failure is defined as occurring when the yield anomaly exceeds the 70th percentile,
consistent with the definition used in the previous chapter, and the results are shown in
Table 6.2.

Table 6.2: Likelihood of grain maize crop yield failures in each event. The Reference ratio is defined as the median likelihood
(column 1) of observing the desired event, divided by the likelihood of observing a failure in the REF scenario.

Event Likelihood Crop Fail. Credible Interval Reference Ratio

REF 20.38 [14.42, 27.10] 1.00

HW 31.19 [21.70, 41.50] 1.53

HW-DR 62.84 [49.70, 74.66] 3.08

HW-WIN 46.25 [34.52, 58.02] 2.26

HW-DR-WIN 69.42 [56.57, 80.30] 3.41

We observe that the likelihood of crop failure during a heatwave is approximately 1.5 times
higher than under normal conditions. When preceded by a dry winter, this likelihood
increases to more than double (2.26). The worst-case scenario, however, arises when a
summer drought and heatwave coincide, particularly if preceded by a dry winter, resulting in
a three- to three-and-a-half-fold higher chance of crop failure—double the risk observed
during heatwaves alone. Hence, compounding conditions are typically met with the highest
risks, although the summer variables seem to play the most important role for agriculture.

6.3.2.3 Impacts on the energy sector

In this chapter, we focus on the impacts of hot and dry summers on the energy sector,
utilizing data on power outages reported by operators to the European Network of ENTSO-E.
The dataset includes unplanned outages that occurred within the European bidding zone
between 2015-12-31 and 2022-03-31, excluding scheduled maintenance. To characterize the
climate conditions, we use winter soil moisture anomalies to represent dry conditions, and
total precipitation, maximum temperature, and minimum temperature to capture hot and
dry conditions during the summer. We convert all climate variables to anomalies using the
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1991-2020 reference period, the only common reference period overlapping with the
outages observations.

To analyze how climate affects these outages, we first prepare the outages for impact
estimation by labeling each day as either 0 or 1, with 1 indicating that an outage is observed
during that day. Hence, we can try to identify the climate conditions corresponding outages
(or labels of one) indirectly assuming, however, that the relevant climate conditions
persisted for the entire day. This assumption is reasonable, given that heatwaves and
droughts typically last for several days (in the case of heatwaves) or even weeks to months
(for droughts), and both phenomena are generally characterized by persistent conditions
(e.g., Zargat et al., 2011, Perkins and Alexander 2013). Our focus is on the summer months
(June, July, August).

However, after encoding the data in this way, we found that the number of outages is
relatively low, with imbalance ratios often below 1%. This makes it challenging to estimate a
model with such low occurrence rates. To address this issue, we aggregate the data on a
weekly basis by summing the number of outages, enabling us to model the data using
Poisson or negative binomial distributions. We opt for the negative binomial distribution, as
it is not sensitive to overdispersion compared to the Poisson model (e.g., Warton et. al,
2012).

In the next step, we aim to obtain structural insights into the spatial and temporal patterns
of the outages by employing dimension reduction techniques. Since we are working with
count data, we apply the generalized linear model PCA (glmPCA; Townes, 2019; Townes et
al., 2019), which extends the classical PCA approach to generalized linear models (GLMs).
The model creates real-valued principal components and eigenvectors, which can be
interpreted like in the classical PCA. This method also allows the inclusion of covariates, and
we use for the week of the year account for seasonal effects, enabling the extraction of
anomalies related to outages. The glmPCA shows good convergence and through graphical
evaluation, we retain the first three components, as higher components showed minimal
variability (not shown).

After identifying the dominant large-scale patterns for energy outages, we seek to
determine the corresponding meteorological patterns. To achieve this, we aggregate the
climate variables on a weekly scale using the European domain (Figure 6.10) by building
weekly sums for precipitation and means for the other variables. Since, the number of
power plants is limited over Europe, we likely have a lot of inactive features for the climate
covariates if we take the full European domain. To account for the latter, we perform feature
screening through Sure Independence Screening (SIS), based on the projection correlation
(Zhu et al., 2017; Liu et al., 2022), which is suitable for GLMs, for each climate variable
utilizing the three principal components from glmPCA as output. Having obtained those
active features, we employ KRGCCA with the same setup as in Chapter 6.3.2.1. Considering
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the used kernels, we employ the Gaussian kernel for the climate variables, with bandwidths
derived from the method in Chaudhuri et al. (2021) and we apply a linear kernel for the
outages principal components.

Figure 6.10 (a) displays the spatial pattern of the first outage component, explaining 89% of
the variability of the latent features extracted by glmPCA and thus seems sufficient to
characterise the outage variability. Examining the distribution of points, we identify two
distinct zones: one in the eastern to south-eastern part of Europe and the other in the
western region, potentially extending towards Scandinavia.

Figure 6.10: Large-scale component extracted for the KRGCCA analysis of outages. Panel (a) shows the component of the
outages obtained from glmPCA and KRGCCA. Panel (b) and (c) correspond to preimages of the first component of the
KRGCCA for the (b) soil moisture layer 4 and (c) total precipitation. The panel on the bottom right shows ALEplots obtained
for total precipitation and soil moisture in the fourth layer.

Next, we identify the most relevant climate variables for the outage components using
vine-copula-based quantile regression as in chapter 6.3.1. Model selection is done with the
BIC and we predict the first outage component from the constructed first components of the

123
AI-ENHANCED EXTREME EVENTS DETECTION



CLINT - CLIMATE INTELLIGENCE
Extreme events detection, attribution and
adaptation design using machine learning

EU H2020 Project Grant #101003876

climate variables. The model selects soil moisture layer #4, total precipitation, and minimum
temperature as the most influential variables. We begin by focusing on total precipitation
and soil moisture, with the corresponding preimages or spatial patterns and ALE plots shown
in Figure 6.10.

We observe that both climate variables primarily reflect dry conditions across Europe, which
largely coincide with the blue points, representing areas with a higher likelihood of outages.
The ALE plots indicate that an increase in the magnitude of both variables raises the
likelihood of outages. However, soil moisture exhibits significantly higher ALE values,
suggesting a more pronounced impact compared to summer precipitation. This highlights
the compounded effect of these variables in contributing to outages. Interestingly, as
observed in previous agricultural studies, the fourth layer of soil moisture appears to be the
most influential, reinforcing the notion that dry winter conditions play a crucial role in
driving socio-economic impacts. Here, however, it seems to be much more important than
for agriculture (see previous chapter) highlighting that preceding dry winters are very
relevant for accurate risk assessment.

Finally, we note that we have also examined the impacts of minimum temperature. Focusing
on its interaction effects with total precipitation and soil moisture (Figure A6.4), we find that
its influence is clearly overshadowed by these two variables. As a result, we do not discuss
the role of minimum temperature further, as it appears to be less significant compared to
the other variables.

6.3.3 Wet warm springs

The analysis of wet and warm springs focuses on the Alpine region and examines how
excessive snowfall, subsequent melting, and concurrent rainfall contribute to severe flooding
events. These flooding events primarily arise from the combined effects of melting snow in
higher altitudes and precipitation in lower-elevation areas. To explore this phenomenon, we
utilize daily data provided by the HERA dataset, focusing on the Alpine region (see Figure
6.11). River discharge patterns are analyzed alongside temperature and total precipitation
data, both sourced from the EMO-5 dataset (Thiemig et al., 2022), covering the period from
1990 to 2020. These datasets, available at a 1x1 km resolution, present a high-dimensional
challenge, so we apply Empirical Orthogonal Function (EOF) analysis to reduce
dimensionality. The number of selected components is determined using the truncation
criterion of Wilks (2016), with the explained variance displayed in Appendix, Table A6.1.

After applying the EOF analysis, we proceed with KRGCCA to extract the key patterns that
describe the essential dynamics of the system. Large-scale variables from Chapter 6.3.1.1
based on the ERA5 data set are included as well. Given the relatively small spatial extent of
the Alpine region, we begin by using the SIS procedure to identify the primary drivers
influencing the Alpine region from the broader Euro-Atlantic domain. For this, we implement
the Conditional SIS using Reflection via data splitting (CIS-ReDs; Tong et al., 2023) for the
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spring months (March, April, May - MAM), which allows for conditioning on relevant
variables or known relationships. Specifically, we use the temperature and total
precipitation-related EOFs to condition on local variables responsible for discharges, aiming
to identify the corresponding large-scale patterns while taking the regional variables into
account. After completing the CSIS-ReDs procedure, we apply KRGCCA. In this step, the
discharges from the HERA data set is used as the response variable, while the reduced set of
input features from the CSIS-ReDs process is used as predictors as well as the maximum,
minimum temperature and total precipitation EOFs. This enables us to model the
relationship between local discharges and large-scale climatic drivers, providing a more
nuanced understanding of the dynamics governing flooding events in the Alpine region.
Since there can also be lagged relationships we shift in time the climate variables using lags
of l=0,1,2,3 where l indicates units of 30 days. For instance, a lag of two temporal units
corresponds to a shift of 60 days (approximately two months) with respect to MAM, thus
mostly describing JFM (January, February, March). Otherwise, we use the same setup as of
chapter 6.3.1.

We employ the non-stationary Multi-Layer Perceptron kernel for all models when employing
KRGCCA again with the connection matrix shown in Figure A6.1. We retain the first two
components, which together account for approximately 88.60% of the variance in the
reduced system of the discharges. In total, these components explain 79.20% of the variance
across the system (as detailed in Table A6.1). To capture the spatial information, we generate
preimages, which are displayed in Figure 6.11.
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Figure 6.11: The first two extracted components of river run-off from the KRGCCA approach taking the E-Hype model as
output.

We observe that the first component (when in a positive mode) primarily reflects large-scale
discharges in the entire region. The second mode, on the other hand, regionalizes the
patterns, capturing southern to southwestern discharges in a positive mode and
northeastern discharges in the Alps when negative mode occurs. This regional differentiation
makes it potentially relevant for the Lake Como case studies in WP7. We omit to study the
third component, since it explains only 8.90% of the variance.

We apply the QUINN approach to model the two discharges components, using all the
meteorological variables with which we have fed the KRGCCA. A dummy variable is included
as well to indicate whether the predictors and output correspond to the first or second
component. For the estimation, we use Monte-Carlo Markov Chain (MCMC) sampling with
the NUTS algorithm, conducting 2000 warm-up iterations followed by 8000 iterations,
discarding every eighth iteration to yield an ensemble of 1000 members. Hyperparameter
tuning is performed using the WAIC. Figure A6.5 presents the Q-Q plot of the model,
indicating satisfactory performance for both components. We then turn our attention to
identifying the most important features for high discharges, and we compute variable
importances for their conditional 10th and 90th percentile primarily because of the second
component (Figure 6.11), which captures the extreme states of the positive phase
(discharges south of the Alps) and the negative phase (discharges north of the Alps). We
focus on the two most important large-scale and regional variables for these percentiles.
Since we observed that the variable importances are similar across both percentiles, we are
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only presenting the 90th percentile (corresponding to the phases depicted in Figure 6.11).

The results are displayed in Figure 6.12.

Figure 6.12: Feature importance for the river discharges using the QUINN model based on the 90th percentile. Whiskers
indicate 95 % credible intervals

We see that the most important features differ for the two components: for the first, which
is reflecting large-scale variability, large-scale variables are found to be more important
(mainly the SSTs during MAM and FMA). Warm SSTs can transfer energy to the cooler
atmosphere, enriching it with moisture. As this moisture-laden air moves towards land,
particularly the Alpine region, it can result in heavy precipitation, including snowfall at
higher altitudes. For this deliverable, we will, however, focus on the local variables. For the
second component, we observe that total precipitation plays a significant role for both
components, along with daily maximum temperature during JFM. The corresponding
preimages are presented in Figure 6.13.

In JFM, the regionalization becomes quite clear: in a positive phase, the component reflects
cold and wet conditions in the southern Alps (the opposite in negative phase). These
conditions are conducive to snow accumulation, establishing pre-conditions for spring
floods. The MAM (March, April, May) components, on the other hand, indicate warm and
wet conditions, which likely contribute to melting snow and heightened flood risk. The
combination of accumulated snow from late winter, coupled with melting and increased
precipitation, sets the stage for compound conditions that lead to extreme flooding events.
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Figure 6.13: Constructed preimages for the second component of the KRGCCA analysis reflecting Total Precipitation for (a)
MAM and (b) JFM. (c) and (d) correspond to preimages of maximum temperature in MAM and JFM.

To verify this hypothesis, we use ALE plots to examine the interaction effects. Since the
variable importance analysis in Figure 6.12 indicates that maximum temperature in JFM and
total precipitation in MAM are significant, we focus on these two variables. To describe this
in a holistic manner, we compute the interaction for a sequence of percentiles and the ALE
plot is shown in Figure 6.14. Note that high percentiles (in tendency) correspond to an
extreme state of Figure 6.13(b), namely strong discharges South of the Alps. On the other
hand, low percentiles are related to a pronounced negative (i.e. multiplied by -1) pattern of
Figure 6.13(b), representing strong discharges North of the Alps. Hence, the obtained values
of ALE should be read keeping in mind which percentile they have been calculated for. In
Figure 6.14 positive values of an ALE are observed for large percentiles, implying that the
large South discharges values become in tendency even higher. Conversely, negative ALEs for
low percentiles indicate that the 10th percentile is expected to become even lower,
representing stronger discharges North of the Alps.
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Figure 6.14: Second order interaction of MAM Total Precipitation and JFM maximum temperature.

Considering the 90th percentile: the highest ALEs values appear in the upper right panel of
the plot indicating that the strongest effects on floods South of Alps occur when these
regions experience a wet spring with preceding cold late winter. When focusing on the lower
tail, specifically the 10th percentile, the effect is reversed (lowest ALEs in the lower left
panel), which reflects that all spatial patterns (Figures 6.11 and 6.13) are in a negative phase.
This indicates that the same phenomenon described above occurs north of the Alps.
Interestingly, for the intermediate percentiles (0.25, 0.50, and 0.75), the effect is dampened,
suggesting that the most extreme discharges events are primarily influenced by the
compounding effects. These significantly exacerbate impacts at the most extreme states,
underscoring the importance of identifying precursors for effective risk assessment.

Finally, we inspect whether increased discharges affect the hydropower sector, using the
ENTSO-E dataset spanning the period from 2015 to 2021 (Chapter 6.2). The observational
data in the study region is quite limited, and machine learning as well as statistical methods
(e.g., imbalanced random forests, support vector machines, over/under sampling
techniques, glmPCA) result in poor predictions of outages (accuracy ≤ 50%). Figure A6.6
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shows the second discharge component superimposed with the outages in 2016 and 2020,
which are selected because these years record a relatively high number of outages (n=24)
compared to other years (n=15 for 2019, n≤9 for the others). For these two years, we
compute lagged biserial correlations between the discharges and the outages, yielding quite
different values (Figure A6.6), with only the one for 2020 being significant. This suggests that
there is likely not a stationary link function between the two quantities, potentially
explaining why the models fail in prediction. Given that there are only two years with a
relatively high number of outages due to the limited observational record, and a causal link
appears doubtful, we do not pursue a further in-depth analysis.

6.4 Concurrent Extremes

6.4.1 Nonparametric climate indices with an application to the SPEI

One of the most widely used indices for drought assessment is the SPEI introduced by
Vicente-Serrano et al., in 2010. SPEI relies on the PIT and often utilizes a log-logistic
distribution due to its proven effectiveness. However, this distribution has bounded support,
limiting the extrapolation characteristics hereby depending on the distribution parameters.
We have discussed this issue in D3.2 using ERA5 data. Other benchmark studies (e.g.,
Vicente-Serrano et al., in 2010; Begueria et al., 2014) use CRU TS4.07 data set and we have
reperformed the analysis on the latter, finding a similar phenomenon, even though to a
lesser extent (see Figure A6.7 and A6.8 in the Annex). However, this shows that the
parametric approaches used in those studies might be less effective on datasets on which
they still have to be tested. Hence, it is worth investing into nonparametric approaches.

To address these limitations, we propose a nonparametric local likelihood-based approach
(Loader, 1999), which accommodates higher moments and thereby outperforms classical
kernel density methods. Using the Gaussian kernel, this method effectively represents a
superimposition of Gaussian functions, ensuring mass distribution across the entire real line
and enabling extrapolation. D3.2 demonstrated that this issue is fully resolved with our
NPSPEI. The NPSPEI also shows more accurate PIT results, as indicated by improved
Anderson-Darling statistics (Figure A6.9). Since these findings are already discussed in D3.2,
we will not elaborate further.

To evaluate whether NPSPEI is better at capturing extreme events, we follow the approach
outlined in Vicente-Serrano et al. (2010), which selected eleven representative stations
worldwide as proxies for global wet and dry conditions. We compute both NPSPEI and SPEI
using data from the stations available at:
https://github.com/sbegueria/SPEI/tree/master/data. Given that local likelihood estimators
are known to perform better in the tails of the distribution (e.g., Geenens and Wang, 2018;
Geenens, 2014; Nagler, 2018b; Nagler, 2018a), we expect our method to outperform other
nonparametric approaches, such as kernel density estimators (KDE). To verify this, we also
computed a KDE-based SPEI (KDESPEI) and compared it with SPEI and NPSPEI using Q-Q
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plots for the eleven stations in a way with which we also produce a benchmark for
nonparametric indices. These experiments are conducted for aggregation periods of 1, 3, 6,
12, and 48 months, with results only shown for six-month aggregation in Figure 6.15 as the
results for the other months are quite similar.

We observe that the NPSPEI remains closest to the identity line and the tails (i.e., absolute
values greater than one) in most cases, indicating that it adapts best to the data among all
versions considered. This observation is consistent for most of the aggregation intervals,
except for an aggregation scheme of one, where the performance between the indices is
relatively balanced. This highlights three key improvements of the NPSPEI:

1. It offers superior extrapolation, making it more suitable for calibration on reference
periods and avoiding the limitations imposed by the log-logistic distribution used by
SPEI.

2. It produces smaller Anderson-Darling distances almost globally, suggesting a better
overall fit to the normal distribution.

3. It performs better in the tails of the distribution, even when compared to classical
kernel density estimators.

Finally, it is worth noting that these methods can be easily extended to other climate
variables, including discrete variables as well as mixtures of continuous and discrete ones,
making the NPSPEI concept broadly applicable to a wide range of climate-related data.
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Figure 6.15: Q-Q-plots of the considered SPEI version for eleven representative regions in the world.

6.4.2 Detection of dependencies using AI-enhanced point process approaches

Heatwaves and droughts are often closely connected due to their inherent physical
relationships (see D.4.1 for a comprehensive review), and they frequently have significant
socio-economic impacts, particularly in agriculture. For instance, studies indicated that these
events can reduce cereal yields by 9-10% at the national level and explain up to 40% of the
interannual variability in crop yields (Lesk et al., 2016; Zampieri et al., 2017). This is
especially concerning as the frequency and intensity of heatwaves and droughts are
expected to increase under future climate change scenarios (Zscheischler and Seneviratne,
2017; Toreti et al., 2019a; Alizadeh et al., 2020; Vogel et al., 2020; Meng et al., 2022).

While many studies examine the co-variability of heatwaves and droughts at regional or
national scales, they often overlook how large-scale teleconnections might propagate these
impacts to other regions. For instance, research has explored the links between the North
Pacific Oscillation, the El Niño Southern Oscillation, and the Arctic Oscillation, which may
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connect heatwaves and droughts across continents, such as in Europe and Australia (Chen et
al., 2013). Toreti et al., (2019b) showed how these teleconnections can be examined using
the inhomogeneous J-function (van Lieshout, 2011; Cronie and van Lieshout, 2015, 2016)
which identifies whether extreme events are independent, clustered, or inhibited. The
J-function also accounts for temporal variability, an important aspect given the influence of
climate change. However, the method’s reliance on graphical interpretation makes it prone
to subjectivity, a limitation discussed in D2.3. To address this, in this chapter, we will apply an
AI-based approach discussed in D2.3 to detect these dependencies more objectively.

To conduct this analysis, we first calculate the NPSPEI and HMD indices globally using the
ERA5 dataset, followed by grid-point level detection of droughts and heatwaves. Droughts
are identified when the NPSPEI drops below -1, while heatwaves are defined as periods
when the HMD exceeds the 90th percentile. A large-scale event is classified when at least
20% of the grid points in a region of interest meet these conditions. For these large-scale
events, J-functions are computed and subsequently classified using the neural network
model, as previously described.

The analysis is carried out based on IPCC regions. Given the asymmetric nature of the
J-function, we treated droughts and heatwaves in each region as distinct drivers. We
calculated the J-function for all variable combinations, with the regions in Europe (Northern
Europe (NEU), Southern Europe/Mediterranean (MED), Central Europe (CEU)) being
employed as response variables. The analysis is performed on a seasonal scale, and the
results are presented in Figure 6.16.

Figure 6.16: Identification of dependencies between heat waves and droughts in the IPCC regions through the AI-based
J-function interpreter.
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Figure 6.17: All classified J-functions of figure 15 plotted with respect to their identified class. The dotted lines correspond
to pointwise 10th and 90th percentiles, indicating that most of the identified functions follow their theoretical trajectories.

We observe that many interdependencies or clustering phenomena are present. Specifically,
independence is observed the most frequently (N=1042), followed by clustering (N=454),
with inhibition being quite rare (N=61). These findings clearly underscore the heightened
risk associated with compound events, as their occurrence is likely to impact multiple
vulnerable sectors in different spatial regions of the world.

To ensure the validity of these results, we plot the J-functions for each classified group, and
the results are shown in Figure 6.17. As described in section 6.2, J-functions that have been
identified as clustering should be smaller than one, the ones identified as independent
approximately equal to one and those for inhibition larger than one. We observe that for
clustering most of the J-function remain below the one line. We observe that the functions
largely follow these trajectories and closely resemble their theoretical counterparts (see
D2.3), indicating that the developed algorithm works well. Remarkably, the evaluation of all
functions is completed in just 8.2 seconds, demonstrating that global interdependencies can
now be assessed in a matter of seconds, while accounting for the non-stationarity of climate
change signals.
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6.5 Conclusion

Our studies demonstrate that focusing on the combination of climate events can be
beneficial for risk assessment. The analysis of wet and warm late winters followed by dry
springs reveals that high impacts can arise from combinations of events that are not
individually extreme, underscoring the importance of such combinations in holistic risk
assessment. In our second case study, a more flexible approach to defining multivariate
thresholds, which better accounts for the dependence structure between maximum and
minimum temperatures, is proved to be beneficial for identifying heatwaves. By using these
detection methods and integrating drought indicators for both winter and summer, we
significantly improve benchmark indices for modelling the climate impact on agriculture
through the incorporation of non-linear models. With the aid of AI, we develop a large-scale
model for European crops, demonstrating that the likelihood of crop failures during
compound events are significantly higher compared to single extremes. Also, we find
significant linkages between the energy sector and both dry winters and dry summers.
Additionally, results from our third case study show that strong river runoffs are strongly
favoured by a compounding effect of cold late winters followed by wet springs.

In our analysis of concurrent extremes, we introduce new nonparametric methods for
creating climate indices. As an example, we benchmark these methods against the SPEI,
which has been shown to struggle with extrapolating values beyond chosen reference
periods. Our index is able to overcome this burden, while also improving the statistical
properties (i.e., behaviour in tails) of the indices. Moreover, we develop a tool for analysing
the interconnections between extreme events while accounting for the non-stationarity of
the climate, revealing that heatwaves and droughts in many parts of the world are
interconnected with those occurring in Europe.

The methods developed in our research can significantly improve event management,
forecasting, and climate adaptation to reduce future disaster risk. Our newly developed
indices (NPSPEI, BVHMD, non-linear CSI) offer enhanced predictability for droughts,
heatwaves, and yield anomalies. By integrating these indices into WP6, we aim to better
identify “areas of concern” for the food sector and other critical areas. These indices can be
applied to various forecasting time horizons, improving the accuracy of extreme event
predictions and bolstering resilience in vulnerable regions. In addition, our studies on
compound events have revealed preconditions that can lead to severe socio-economic
impacts across sectors like food, energy, and water. Recognizing these preconditions early is
essential for the development of effective early warning systems, as they often highlight
risks that might otherwise be underestimated. Some of these preconditions also offer
seasonal predictability, enabling earlier preparedness and more effective risk mitigation.
Finally, our research into the interdependencies of large-scale extreme events, such as
droughts and heatwaves, demonstrates how these connections can lead to cascading effects
across regions. For instance, simultaneous crop failures in key agricultural areas can trigger
global spikes in food prices, leading to longer-term socio-economic consequences.
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Understanding these global linkages allows for improved forecasting and better preparation,
helping to mitigate the broader impacts of interconnected disasters.

7 CONCLUSIONS

This deliverable reports the final results regarding the improvement of extreme events
detection with ML algorithms and in some cases its implication for predictions. The study
has focused on different categories of extreme events:

● Tropical cyclones: genesis indices (Chapter 2), TC activity and extratropical transitions
(Chapter 3)

● Heatwaves and warm nights (Chapter 4)
● Extreme droughts (Chapter 5)
● Compound events and concurrent extremes (Chapter 6)

Many aspects of detection have been tackled with existing ML-based methods and those
developed in WP2. In some cases, they are used to refine existing indices, (e.g. the selection
of parameter values for GPI of Tropical Cyclones), to identify thresholds which are used to
detect the EE themselves (e.g. RF for compound events), or to identify which indicators
explain variability in impacts of EE (e.g. HW indicators and crop yield). ML approaches have
also been used for dimensionality reduction, a key step in ML-based detection, such as for
clustering of drought occurrences over Europe.

In all cases, the use of ML has allowed identification of key drivers to target EEs, and in
particular has focused on optimising detection skill. Besides various sensitivity analysis
performed in WP2, here feature engineering is used to determine key set-up parameters
based on physical understanding of the EEs. Novel evolutionary/genetic algorithms are used
as feature selection tools to highlight key variables from a pool of potential predictors (e.g.
for TCs, HWs, and droughts). Modifications to AI-enhanced short-term forecasts of TCs have
also identified the optimal set-up parameters, such as the importance of near-term or
global-scale input and various climate indices. In all cases, discussions are opened on the
physical meaning of the selected features, which can form the basis of future work. Despite
the highly imbalanced nature of EE datasets, event recreation or forecasting using
dimensionality reduction of predictors was proven possible for the whole range of EE
studied here.

The diverse range of ML approaches has employed an equally diverse range of climate
datasets for training. When possible, training with ERA5 has ensured training on real-world
data. Meanwhile, certain problems are tested using model world training datasets, such as
CMIP6 or paleo simulations; it is demonstrated that learning in the model world is
transferable to real world detection problems. In the case of droughts and compound
events, impact-based variables (e.g. crop yield or energy usage) are incorporated into
detection algorithms to provide more effective and relevant indices.
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Regarding prediction of EE, a key activity is the creation of new data-driven forecasting
systems or the development of AI-enhancements to existing systems. Forecasting horizons
covered short-term and S2S tropical cyclones forecasts to seasonal forecasts of HWs. In this
activity, a key concept is “added value” (explored in greater detail in Deliverables on case
studies in WP6 and WP7). Here, novel forecasting approaches display diverse types of added
value. Crucially, some systems outperform existing dynamical forecasts (for example, TCs in
ECMWF short-term) in terms of prediction skill. In the case of seasonal forecasts of HWs,
while there are regional-scale patterns of significant correlation in the data-driven approach,
existing operational systems still outperform on a European scale. In such cases, the DD
approaches still add value by reducing computational expense and moreover provide
complementary information (of scientific and practical relevance) on the drivers used to
make predictions.

Finally, many of the detection methods presented here are being applied across the project
in either pan-European (e.g. compound events in WP6) or local-scale (e.g. droughts and
heatwaves in WP7) case studies. Others are being prepared for deployment in the Climate
Services Information Systems (WP8), or in the demonstration of prototype operational
prediction services (WP9). The application and operationalisation of these systems will
ensure their continued development within and beyond the project.
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APPENDIX A4

A4.1 Data-Driven Forecast Skill (2004-2022)

Figure A4.1: Correlation skill of Data-Driven HW Seasonal Forecasts over 2004-2022, for comparison with equivalents from
the dynamical (ECMWF-SEA5) and hybrid systems (Fig 4.11). LR - Logistic Regression; RF - Random Forest.

A4.2 Night-time heatwave clusters

Figure A4.2: Night-time HW clusters over the European domain, coloured by their average intensity (contours correspond to
0.3oC intervals).
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A4.3 Seasonal Forecast skill of day and night-time extremes

Figure A4.3: Differences between the correlation maps of the multi-model seasonal predictions for the
Apparent temperature at night (ATn) and the corresponding correlation maps but for (a) Tmin, (b) Tn, and (c)
Tmax for the 1993–2016 period in the 15MJJA season. These correlation maps are computed with ERA5 as an
observational reference. Hatched areas indicate where the four individual prediction systems agree in the
positive (green lines) or negative (purple lines) correlation differences. The seasonal forecasts are issued on the
1st of May.

APPENDIX A6

A6.1 Relatively wet and warm late winters followed by dry and warm springs

Figure A6.1: Connection matrix used for the KRGCCA employed for the analysis of the relatively wet and warm late winters
followed by dry springs.
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A6.2 Dry winters followed by hot summers

Figure A6.2: Density histogram of correlation of residuals from the NUTS3 regions utilized for the SUR model.

Figure A6.3: Histogram for the number of observations in the NUTS3 regions.
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Figure A6.4: Interaction Effect of Minimum Temperature with (a) Total Precipitation and (b) Soil Moisture Layer 4.
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A6.3 Wet and warm springs
Table A6.1: Statistics for the EOF analysis performed for the Alpine region variables.

Variable Lag Number Components Explained Variance (%)

Runoff 0 4 89.40

Maximum Temperature 0 3 85.59

Maximum Temperature 1 3 85.02

Maximum Temperature 2 3 82.84

Maximum Temperature 3 2 75.73

Minimum Temperature 0 3 77.49

Minimum Temperature 1 3 78.96

Minimum Temperature 2 4 82.37

Minimum Temperature 3 3 78.84

Total Precipitation 0 7 61.77

Total Precipitation 1 6 63.44

Total Precipitation 2 6 66.37

Total Precipitation 3 4 61.02
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Figure A6.5: Q-Q-plot of the estimated QUINN model for the river runoffs for the first component displayed in (a) and (b)
and the second component in (c) and (d).

Figure A6.6: Displayed in blue is the second component of discharges (Figure 6.13) and overlaid in gray shadows the
reported outages from ENTSO-E for (a) 2020 and (b) 2016. R corresponds to the biserial correlation and p denotes the
p-value. Both correlations have been calculated for a lag of three days for which the maximum lagged correlation is
observed.
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A6.4 Nonparametric SPEI

Figure A6.7: Number of non-extrapolatable points of SPEI using the log-logistic distribution
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Figure A6.8: Same as Figure A6.6, but for the NPSPEI.
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Figure A6.9: Difference of Anderson Darling statistics for SPEI and NPSPEI. Positive value indicate that the NPSPEI produces
a smaller statistics and hence a better fit with respect to the standard normal distribution.
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