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EXECUTIVE SUMMARY 

This report presents preliminary results of AI-enhanced Climate Services (CS) designed for decision-
making in the local scale CLINT case studies across various climate change impact hotspots, aimed 
at managing and mitigating risks from different types of extreme events. For each of the case studies 
an analysis chain is presented in this deliverable, showing the steps to assess the potential added 
value of AI-enhanced climate services. These steps lead from comparison of AI-enhanced against 
benchmark predictions, to the use of an impact model, to the local decision-process as acquired 
from the user interactions (Deliverable 7.1). The results to-date are presented for each case study.   
 
For the semi-arid Zambezi case study, the results of the AI-enhanced CS developed for droughts 
show that the simple data-driven forecasting model (NIPA) of seasonal streamflow outperforms 
global scale hydrological model-based seasonal forecasts. As a next step, further AI-enhanced NIPA 
inflow forecasts to Kariba dam, Zambezi, will be used to inform the lake water management and 
assess the added value of our enhanced forecasts with respect to the benchmark and no-forecast 
baseline. Concerning Tropical Cyclones (TC) and floods in the Zambezi case study, post-processing 
of benchmark TC rainfall forecasts, based on a variant of a state-of-the-art deep learning 
architecture (UNet), and a novel loss function was developed and tested. The AI enhancements 
showed a significant improvement with respect to the benchmark and the value for early warning 
has been demonstrated for extreme TC rainfall forecasts. 
 
In the second semi-arid case study, focusing on Spain's Douro River basin, bias-correction of ECMWF 
seasonal precipitation forecasts using the BJP-SS approach showed improved accuracy in autumn, 
though the improvement was less pronounced in spring. The next steps for this case study will 
include an assessment of the quality of AI-enhanced reservoir inflow predictions up to 1-month lead 
time following the method developed in WP2 task 2.4. The added value of both bias corrected 
precipitation forecasts and AI-enhanced inflow forecasts will be assessed. 
 
From the delta case studies in the Netherlands, for the Rijnland case study the potential added value 
of the AI-enhanced 1-month lead time precipitation predictions, using Extreme Learning Machines, 
has been quantified in terms of increased correct alerts. The number of correct drought alerts 
increased for two of the four thresholds used by the Rijnland water authority, while reducing false 
alerts, as compared to using ECMWF extended range ensemble mean precipitation forecasts. The 
benchmark ECMWF extended range forecasts outperform climatology and the AI-enhanced 
predictions for the lowest and highest precipitation deficit thresholds. For the next deliverable 
(D7.3), the assessment of potential added value for this case study will be extended to include AI-
enhanced alerts for discharge of the Rhine river at Lobith dropping below the drought threshold 
(Deliverable 2.2). 
 
In second delta case study in the Netherlands, Aa en Maas, a data-driven model has been developed 
to predict groundwater levels. The seasonal forecast of groundwater levels using this impact model 
with bias-corrected ECMWF SEAS5 meteorological forcing resulted in a predictive skill up to one to 
two months. As next steps for this case study the assessment of the potential added value of the 
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groundwater level predictions will be analysed in terms of hits and false alerts, and in consultation 
with the water authority end users. 
 
Lastly for the delta case studies, the impact of extratropical transitions (ETT) on flood risk in the 
Netherlands under various climate change scenarios has been examined. The results imply that the 
impact of ETTs can be expected to be similar to typical winter storms in the North Sea, with respect 
to their statistical properties at specific locations along the Dutch coast. However, it is important to 
note that it is not known whether the analysed TC tracks would actually reach the Dutch coast and 
have any effect on the wind. ETTs occur most frequently in September, which is somewhat earlier 
than the regular stormy season along the Dutch coast. If the ETT intensity increases in the future, 
this could imply that the month September becomes unsuitable for maintenance of storm surge 
flood protection infrastructure. 
 
For the snow hotspot case study of Lake Como, an AI-enhanced CS employing Reinforcement 
Learning was developed and tested. This approach aims to improve drought and flood management 
by effectively extracting the most valuable information from multi-timescale forecasts of lake 
inflows. The potential added value assessment reveals that using selected forecast information—
namely, inflow forecasts with a 3-day aggregation period and lead time—provides the largest added 
value in terms of reduced water supply deficit for the multipurpose operation of Lake Como. For the 
development of an AI-enhanced CS for heatwaves and warm nights, the PRIM algorithm was used 
to discover the relationship between temperature extremes and crop failures to support farmers’ 
adaptation to future climate conditions. The analysis of the projected heatwaves and warm nights 
shows that temperature extremes are expected to increase considerably over the coming years (all 
scenarios), suggesting the opportunity for agricultural sector users to cultivate more heat-tolerant 
crop varieties. The next step is to assess the impact of compound heatwave and drought events and 
evaluate the potential for responding to them through a dedicated AI-enhanced Climate Service. 
These findings will be reported in Deliverable 7.3.   
 
The development of AI-enhanced CS and their performance compared to benchmark predictions 
suggest that the research for the local-scale WP7 case studies is progressing well. For the case 
studies of Zambezi, Rijnland, and Como, some of the AI-enhanced CS have been already assessed 
for their added value according to the user-defined impact indicators. We believe this deliverable 
provides a solid foundation for enhancing the developed CS and for completing the added value 
assessment compared to benchmark CS. This work leads into the next deliverable on final CS, D7.3, 
and the concluding benchmark analysis report, D7.4.   
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1 Introduction 

The CLINT project seeks to improve the detection, causation, and attribution of Extreme Events (EE) 
through machine learning, with the ultimate goal of developing innovative and specialized AI-
enhanced Climate Services (CS) to support adaptation, mitigation, and disaster risk management 
strategies. The role of Work Package 7 (WP7) is to integrate the AI-enhanced CS developed during 
the project into pilot services customized for specific local-scale case studies, and to assess their 
potential added value in terms of user-defined impact indicators.  
 
In the first deliverable of WP7, the local-scale case studies, extreme events, and potential use cases 
of AI-enhanced predictions were described in detail, along with the current predictions used and 
requirements for improvement as kindly provided by stakeholder representatives. In this second 
WP7 deliverable, the case studies and EEs are only briefly listed in Section 1.1., and summarised at 
the beginning of each main case study section in the following chapters. 
 
This Deliverable 7.2 marks the progress in developing AI-enhanced CS for the case studies. It includes 
the current prediction performance assessment results for the EE addressed, and first analysis of 
the results of added value assessment. 
 

1.1 Climate change hotspots 

The case studies in WP7 were chosen to cover a variety of extreme events, and to focus on regions 
especially vulnerable to climate change, including semi-arid areas, deltas, and snow-dependent 
regions—often referred to as climate change hotspots. CLINT WP7 is working on the following case 
studies: 

Semi-arid areas 
− Zambezi Watercourse - droughts, tropical cyclones and floods 
− Douro basin - droughts 

Deltas 
− Rijnland - droughts 
− Aa en Maas - droughts 
− Main water system of the Netherlands - extratropical transition and flood risk 

Snow-dependent areas 
− Lake Como basin - droughts, floods, heatwaves and warm nights 
 

1.2 Objectives of this deliverable 

As CLINT nears the end of its third year, this deliverable aims to review the progress made in 
developing and testing AI-enhanced climate services for the WP7 case studies. 
  
The specific objectives of this deliverable are to: 

− describe the developed AI-enhanced pilot CS. 
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− describe how the AI-enhanced prediction information is used in impact models to derive CS 
tailored to each case study. 

− Describe in detail for use case study the steps to assess the potential added value of the AI-
enhanced CS:  starting from comparing AI-enhanced predictions and benchmark predictions, 
via impact models, to arrive at impact indicators.    

− present and analyse results of performance assessment of the AI-enhanced extreme event 
predictions for each case study, and compare the AI-enhanced performance with existing 
forecasting systems as a benchmark. 

− present and discuss results of the potential added value of the AI-enhanced extreme event 
predictions in current event management and disaster risk reduction practices as described 
by the case study users.   

 

1.3 Added value 

What constitutes ‘added value’ can be defined in multiple ways. We start from a broad definition of 
this term in this section, and then the case study specific definition and method of assessment is 
given in each of the respective chapters discussing the pilot climate services. 
 
General definitions of ‘value’ often relate the term to (a) something that has monetary worth or a 
fair return in money, services, or goods, (b) something useful, estimable, or important, and (c) a set 
of beliefs and concepts in individuals (McKeown and Summers, 2006). In the forecasting and climate 
services literature, value is usually related to the benefits for decision-making processes (Bruno 
Soares et al., 2018). The traditional approach for CS value estimation, also within the field of water 
resources management, is the comparison of expected or observed results derived from a CS-based 
decision with the results derived from a decision taken without CS, usually based on climatology. 
This approach assumes that decisions based on climatology will vary after the uptake of CS 
information. Whilst this is also the approach adopted in this project, it is worth noting that CS can 
still create value even if they do not change the course of decisions; for instance, through more 
qualitative factors such as the increasing user confidence throughout the decision-making process, 
avoidance conflicts or saving time. 
  

1.4 Connection with other deliverables 

This deliverable has been developed in conjunction with Deliverable 2.2 in which the ML methods 
selected, enhanced, and developed are described and tested. Here, we will briefly mention the main 
elements of an AI-enhanced CS tested, and refer the reader to D2.2 for the details of the ML 
algorithms and methods for use in EE prediction. Work package 2 closely works with the climate 
science WPs  3, 4, and 5, to support EE detection, causation, and attribution. Experience from WPs 
3-5, feeds back to refining the AI-enhanced prediction methods of WP2, and where applicable feeds 
directly into deliverables of WP7 with test datasets of climate extreme predictions in either S2S 
forecasts or climate change projections. WP6 focuses on case studies at the pan-European scale. 
Since most of the local-scale case studies in WP7 are located in Europe, some of the pan-European 
predictions generated by WP6—such as streamflow forecasts—will be also tested for use in WP7.   
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For WP7, this deliverable follows D7.1, which provided a detailed description of the case study areas, 
the users involved, and the decision-making processes. This deliverable D7.2 is intended to review 
the progress made in developing AI-enhanced climate services, as well as the progress in evaluating 
the potential added value of these services in the local-scale use cases. As such, this deliverable 
leads up to D7.3 in which the final developed climate services will be presented, and D7.4 in which 
the final benchmark comparison of all services developed will be presented.     

1.5 Structure of the document 

In the three following chapters, grouped per climate change hotspot (semi-arid, delta, snow-
dependent), each developed pilot CS for WP7 case studies is presented. At the start of each section, 
the analysis chain to assess the potential added value of each AI-enhanced CS is presented with a 
flowchart and explained in detail, describing datasets and benchmark predictions, impact models if 
applicable (e.g. hydrological model, reservoir model, crop-growth model, etc), and impact indicators 
that will shed light on the added value. Then, the next sub-section for each case study presents the 
preliminary test results obtained along the analysis chain. The final sub-section of each case 
study/extreme event use case, discusses the results and outlines the next steps. Chapter 5 concludes 
with a reflection of the status of the WP7 progress towards developing AI-enhanced CS and 
assessing their potential added value. 

 

2 Semi-arid climate change hotspots  

2.1 Zambezi Watercourse 

2.1.1 Introduction 

The Zambezi Watercourse (ZW) is the fourth largest basin in Africa, spanning 1.32 million km² across 
eight countries (Zambia, Zimbabwe, and Mozambique collectively sharing 70% of its area) and 
populated by about 40 million inhabitants. Water management in the ZW is key in sustaining 
irrigated agriculture and hydropower production, to ensure food and energy security in the region 
(Arnold et al., 2023; Spalding-Fecher et al., 2017). Several dams have been built since the 1970s with 
the main purpose of hydropower production which altered the ZW’s natural flow, also impacting 
wetland ecosystems, especially in Mozambique's river delta. The total installed capacity of 
hydropower generation is about 5 GW (Stevanato et al., 2021), primarily concentrated in two major 
dams, Kariba and Cahora Bassa, located along the main ZW, between Zambia, Zimbabwe (Kariba) 
and Mozambique (Cahora Bassa). An increased frequency and severity of extreme events is 
expected in the ZW, as indicated by recent observations and climate projections for the region (IPCC, 
2023). In particular, in CLINT we focus on the increasing risk from droughts and Tropical Cyclones 
(TCs), associated with heavy precipitation and flood risk, to enhance CS and better support 
adaptation actions, particularly for the sectors of water management (droughts) and early warning 
(TCs). 
 
The main users and stakeholders of climate services identified for droughts, TCs, and floods in the 
ZW include: the Zambezi Watercourse Commission (ZAMCOM), dam operators and hydropower 
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companies (such as the Zambezi River Authority - ZRA and the Zambia Electricity Supply Corporation 
Limited - ZESCO), National Meteorological and Hydrological Services (NMHSs) of riparian countries, 
the Southern Africa Development Community (SADC), National Environmental Regulatory Agencies 
(like Zambia Environmental Management Agency - ZEMA and Zimbabwe's Environmental 
Management Agency - EMA), disaster management agencies (including the National Institute for 
Disaster Risk Management and Reduction of Mozambique - INGD), humanitarian agencies (such as 
the Mozambique Red Cross - Cruz Vermelha de Moçambique, CVM, and the World Food Programme 
- WFP), irrigation schemes' operators, national farmers unions, and water supply companies. As part 
of CLINT Deliverable D7.1 (Local CS), the outcomes of a survey and semi-structured interviews with 
some of these organisations, we highlighted the main challenges faced by the main CS users in the 
region. In particular, the information and answers provided by ZAMCOM and a National 
Environmental Agency (from one of the riparian countries) contributed to defining the CS needs for 
drought adaptation, while stakeholders from humanitarian agencies (Red Cross and WFP) guided us 
in defining the CS needs for TC and flood early warning. The main outcomes are summarised here 
below, focusing first on droughts (Section 2.1.1.1) and then on TCs and floods (Section 2.1.1.2). 

Droughts  
User definition of extreme event  
ZAMCOM defines droughts as natural hazards caused by a lack of precipitation and increased 
evaporation, exacerbated by factors such as land use changes, increased pressure on resources, 
climate variability and change. Extreme droughts are of concern for ZAMCOM given the high 
negative socio-economic impacts on the hydropower and agriculture sectors. Another 
environmental regulatory agency provided a definition in line with ZAMCOM, emphasising the 
adverse impacts on the environment, including ecosystem degradation, land use change and disease 
outbreaks. The key variables used to define droughts are: rainfall deficit (mm), affecting agriculture, 
low water levels (m) in lakes and rivers, as well as streamflow (m3/s), impacting irrigation and 
hydropower. In the preliminary AI enhancements for the CLINT ZW drought use case (this 
deliverable), we focus on streamflow, which aim to enhance forecasts of inflows upstream of 
strategic regulated lakes (e.g., Kariba) to support dam operations and assess the value for 
hydropower and agriculture. 
 
Decision process for preparedness, adaptation, and event or risk management for droughts  
Using real-time monitoring systems and seasonal forecasting systems, ZAMCOM offers information 
to dam operators and irrigation scheme managers, aiding in local decision-making to optimise 
hydropower production and crop yields. Various data sources are integrated for monitoring, 
including in-situ hydro-meteorological observations from NMHS and SADC, remote sensing data and 
model-based (reanalysis) data in real-time or near-real-time ZAMCOM employs the Zambezi Water 
Resources Information System (ZAMWIS) for drought forecasting, which is continuously enhanced 
to meet evolving needs. ZAMWIS provides an operational web-based and software interface 
enabling users to access historical and real-time hydrological data and forecasts. Stakeholders, 
including government agencies of riparian countries, dam operators, hydropower companies, and 
irrigation schemes’ operators utilise ZAMWIS to plan and manage the water resources in the basin, 
with a focus on droughts anticipation.  
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The ZAMWIS Flow Forecasting System (FFS) component is based on the MIKE river modelling 
software and generates river flow forecasts on the sub-seasonal to seasonal time scale (up to three 
months lead time) in parts of the basin. This forecasting system covers areas upstream of major 
dams like Kariba. Forecasting relies on combining meteorological precipitation forecasts (from 
NCEP’s CFS) with rainfall gridded satellite observations, near-real-time river flow and reservoir water 
level data, and expected reservoir releases and operational guidelines. ZAMWIS employs 
streamflow thresholds at strategic river points, primarily distributed in the main watercourse 
upstream of the Kariba dam, to predict droughts effectively. The operator of Kariba dam uses 
forecasts issued by ZAMCOM via ZAMWIS to inform decisions regarding dam releases, enhancing 
water management strategies in the region.  
 
User wishes and requirements for enhanced climate services for droughts  
The main wish of ZAMCOM regarding the CS for droughts is to improve the skill and reliability of 
seasonal forecasts, thereby providing users with actionable information, with enhanced confidence 
for dam releases and water management. The objective of CLINT for the drought-related climate 
service in the ZW case study is to develop AI-enhanced seasonal (3-month) hydrological forecasts 
for extreme droughts with higher accuracy. These forecasts aim to guide the multipurpose 
operation of dams and improve system performance, particularly in hydropower production and 
irrigation supply. 
 
Impact indicators for quantifying the value of AI-enhanced CS for droughts 
The impact indicators for measuring the value of AI-enhanced climate services for droughts, as 
derived from a survey of ZW end-users (D7.1), fall into two categories: 
● Hydropower production (to be maximised) or hydropower production deficit with respect to a 

target production (to be minimised); their formulation stems from the requirements and 
objectives of the dam operators and hydropower companies.  

● Crop yield (to be maximised) or irrigation deficit with respect to the water demand (to be 
minimised); their formulation follows the requirements and objectives of irrigation schemes’ 
operators and agricultural stakeholders in the basin. 

In the preliminary AI enhancements for the CLINT ZW drought use case of this deliverable, we focus 
on assessing the improvements of seasonal hydrological forecast skill. In the next steps of the 
project, the enhanced seasonal drought predictions will be employed to improve dam management 
operations and optimise hydropower and agricultural (food) production, assessing and reporting 
their potential added value in Deliverable D7.3 (AI-enhanced Climate Services for local decision-
making). 

Tropical cyclones (TCs), floods 
User definition of extreme event 
TCs and associated flooding in the ZW basin are a frequent natural hazard with devastating impacts 
including loss of lives, injuries, significant damages to properties and infrastructures, displacement 
of people, disease outbreaks, agricultural losses (crops and livestock) and disruption to other 
economic activities. The key variables identified to define and characterise TCs and floods are TC 
wind speeds (km/hour), heavy rainfall (mm) and river levels (m). In the preliminary AI enhancements 
for the CLINT ZW TC-induced floods use case of this deliverable, we focus on heavy rainfall, and 
enhancement of medium-range forecasts of extreme TC total precipitation and thereby to support 
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early warning and early action for TCs that make landfall in Mozambique and impact the Zambezi 
region.  
 
Decision process for preparedness, adaptation, and event or risk management for TCs  
For TC forecasting and warnings, the National Meteorological Agency of Mozambique (INAM) relies 
on various forecast products. Primarily, TC forecasts are sourced from Météo-France La Réunion 
(MF), serving as the Regional Specialised Meteorological Centre (RSMC) with the mandate to 
monitor TCs in the SWIO region and to issue forecasts to national hydrometeorological services. 
Before TCs, MF issues daily updates on the meteorological situation and cyclogenesis potential. 
During a TC, MF provides technical bulletins and graphical warnings every 6 hours. The technical 
bulletins furnish detailed information on TC characteristics (location, size, intensity), aiming to 
support operational forecasters at NMHS. Graphical warnings illustrate the expected evolution of 
the TC track in maps, depicting the predicted track over a 5-day lead time, accompanied by a cone 
of uncertainty (indicating the potential track area) based on multi-model forecasts, as well as an 
indication of the expected TC intensity. 
  
While the forecasts provided by the RMSC do not include information on rainfall or flooding, INAM’s 
operational forecasters use multiple rainfall forecast products produced by global forecasting 
centres (like ECMWF) to prepare local rainfall forecasts based on their expert analysis (Emerton et 
al., 2020). The Red Cross in Mozambique (CVM) relies on INAM’s meteorological forecasts (wind and 
rainfall) and on the hydrological bulletins from the National Hydrological Agency (DNGRH) for TC 
and flood early action plans (EAPs). 
 
User wishes and requirements for enhanced climate services for TCs  
In the survey of D7.1, the humanitarian stakeholders and CS users mentioned the need for better 
TC and flood triggers, requiring enhanced data and forecasts with increased quality and reliability, 
while taking into account also vulnerability and exposure layers. The objective of CLINT ZW’s TC-
induced floods use case is to generate an AI-enhanced early warning system for TCs to improve flood 
preparedness in Mozambique. In this deliverable, for the AI enhancements assessment, we focused 
on the improvements of medium-range (5-day) extreme TC rainfall forecasts and their operational 
value for early warnings and EAPs, following the requirements and current decision processes of 
humanitarian agencies, mainly based on the Red Cross Mozambique’s EAP. 
 
Impact indicators for quantifying the value of AI-enhanced CS for TCs 
The impact indicators for quantifying the value of AI-enhanced CS for Tropical Cyclones have been 
identified following the exchanges with the ZW’s end-users (see D7.1) and can be expressed as early 
warning/early action triggers’ success indicators, expressed as: 

● Hit rates (or other forms of the critical success index of the warnings), that need to be 
maximised to reach as much of the population at risk as possible, given a sufficient 
actionable lead time; 

● False alarms, that need to be minimised to reduce adaptation costs and increase trust in the 
early warning systems. 

Their formulation will follow the needs and current plans of the humanitarian organisations involved 
in flood early warning systems in the lower Zambezi (e.g. Red Cross and WFP in Mozambique). As 
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current levels of TC forecast skill in the region limit the possible actions to be implemented for TC 
and flood protection, a key objective here is to enhance medium-range flood and TC forecasts to be 
used to improve current EAP triggers thanks to more skilful forecasts and longer actionable lead 
times. 

2.1.2 Analysis chain for AI-enhanced CS potential added value for droughts 

The methodological workflow to assess the potential added value of AI-enhanced CS for droughts 
in the Zambezi River Basin is based on the comparison of the skill and value of the original 
(benchmark) seasonal forecasts against the AI-enhanced forecasts (see Figure 2.1).  

Following the inputs from the CS users and stakeholders summarised above (see D7.1 for more 
details), we selected the seasonal inflow to Lake Kariba, as this is the major and most influential 
dam for drought control in the basin. In particular, in line with ZAMCOM’s DSS for droughts 
(ZAMWIS), 3-month aggregated inflows are selected as the key variable of interest to inform the 
dam operation. The CS enhancement is performed in the forecast production and information 
selection step and is thus grounded in the real operation work of ZAMCOM, which provides 3-month 
streamflow forecasts of inflows to the dam managers of Kariba. In this use case, our CS 
enhancement model is used to forecast directly the variable of interest from which drought events 
can be detected (i.e., 3-month aggregated streamflow), following a purely data-driven model 
approach. Then, either the benchmark forecasts of inflows or the enhanced forecasts can feed an 
operational model, informing and optimising Kariba dam’s releases (this will be part of Deliverable 
D7.3). Finally, the potential added value will be calculated as the extra hydropower production or 
the reduced irrigation deficit resulting from operations guided by AI-enhanced forecasts, compared 
to operations based on benchmark forecasts or a no-forecast baseline. 
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Figure 2.1. Flowchart for assessing potential added value of AI-enhanced CS for droughts in the Zambezi River Basin (see 
text for details). 

Data and benchmark 
To benchmark our AI-enhanced forecasts, we used seasonal forecasts from the Global Flood 
Awareness System GloFAS (version 3.1), produced by Copernicus Emergency Management Service 
(CEMS, run by ECMWF and EC-JRC), and seasonal forecasts from the Worldwide HYPE, WW-HYPE, 
system produced by SMHI, as these are operational and freely available systems and accessible to 
local users in the Zambezi River Basin. Operational (real-time) seasonal forecasts from these two 
forecasting systems have a maximum lead time of 7-months and a monthly frequency of forecast 
update. In particular, here we used re-forecasts, produced by running a consistent (i.e., the latest) 
version of the operational system over an historical record; these are available with a shorter lead 
time for GloFAS (4 months), but sufficiently long to cover the horizon of interest for the local users 
(3 months). Both systems are based on a spatial distributed hydrological model that is fed with 
operational seasonal ensemble forecasts produced by ECMWF (SEAS5); for WW-HYPE, these 
seasonal forecasts have been previously bias-adjusted through the Quantile Mapping technique. 
Both hydrological ensemble forecasts consist of 25 members. While streamflow forecasts in GloFAS 
are available as a gridded dataset (along the river network) at 0.05° grid resolution, WW-HYPE 
forecasts are provided at the outlet of sub-basins (average size 1000 km2). The calibration of the 
two hydrological models behind GloFAS and WW-HYPE is carried out on a global scale, using 
observations sourced from global datasets. 

For the Zambezi Basin, the calibration process relies on a limited number of river stations available 
(from GRDC and shared by local agencies to the GloFAS/HYPE development teams), resulting in 
significant portions of the basin remaining largely uncalibrated, especially upstream of Kariba. For 
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both systems, streamflow forecast data were extracted at the grid cell / sub-basin outlet 
corresponding to the Kariba Lake inflow, identified based on coordinates and catchment area. As 
reference data, for the forecast assessment of this deliverable, daily historical observations of 
streamflow upstream of Kariba were available from the global Global Runoff Data Centre (GRDC, 
2022) dataset. In particular, we used streamflow observations at the stream gauge station of 
Victoria Falls (Lat: -17.91°, Lon: 25.85°). We aggregated the daily observed time series at the monthly 
time step and computed the 3-month seasonal average flow over the calendar months (from the 
first day of each month over the available period), aligning observations with the seasonal forecasts. 
The common period of availability for observations and seasonal forecasts (GloFAS and WW-HYPE) 
is 1993-2015. 

In Appendix A, we report a summary of a more detailed verification of the two seasonal hydrological 
forecast benchmarks that has been conducted for both systems across different locations. This 
additional analysis has been conducted at four selected locations in the upstream/middle part of 
the Zambezi Basin, corresponding to the point extracted here upstream of Kariba and other strategic 
locations to support other dams’ operational decisions, with observed data available. In this 
deliverable, we focus on the AI-enhancement of forecasts of inflows to Lake Kariba only, as this is 
not only the most strategic location for drought control (see Section 2.1), but also where local 
observations are available over a much longer period (1924-2018) allowing to extend the period of 
analysis that is limited by (re-)forecast availability.  

Impact model 
The impact model for the ZW use case for droughts is an operational river basin model integrating 
a dam management simulation component and a multi-objective optimisation routine. The 
implementation of this model is ongoing and will be described in detail, alongside the final results 
of the value assessment, in Deliverable D7.3. The impact model for the ZW is similar to the one used 
for the Lake Como case study (presented in Section 2.5 of this Deliverable). As described in further 
details for Lake Como, the dam operations of Kariba are determined by a closed-loop operating 
policy that computes the release decision at each time step as a function of the time of the year, 
the water level in the lake and, in the forecast-informed scenarios, the upstream seasonal inflow 
forecast. A multi-objective optimal control problem (Castelletti et al., 2008) is solved to compute a 
set of Pareto-optimal solutions exploring different trade-offs between the operation objectives. For 
the ZW case study, the objectives considered are: (i) annual average hydropower production deficit 
(to be minimised), and (ii) irrigation deficit (to be minimised). The definition of the two objectives 
will be described in detail in D7.3. 

AI enhancement 
To generate our enhanced forecast of seasonal (3-month) streamflow, we used the Nino Index 
Phase Analysis (NIPA) framework proposed by Zimmerman et al. (2016). NIPA is a data-driven 
predictive tool that can be used for forecasting hydroclimatic variables on a seasonal time scale, 
leveraging on the well-established influence of the El Nino Southern Oscillation (ENSO) on hydro-
climatic variables at the global scale. Global teleconnections exhibit a significant influence on 
hydrological variables over different regions, including on droughts in the Zambezi region (e.g., 
Cheon et al., 2021; Gaughan et al., 2016), and the phase of ENSO is known to affect the ‘mean state’ 
of the climate system and modulate the impact of global teleconnections (e.g., Taschetto et al., 
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2020). Building on this knowledge, NIPA uses the state of ENSO to classify years into different phases 
(e.g., ENSO positive and negative years, if two phases are used). Then, based on the selected ENSO 
phases, NIPA extracts the correlation between lagged Sea Surface Temperature (SST) fields and the 
variable to predict (i.e, seasonal streamflow, in our case), identifying the most correlated SST fields. 
By splitting the data according to the different phases of ENSO, different global fields over each pre-
season (prior to the target season to predict) can be selected as predictors, depending on the state 
of the climate system. These are then used in a seasonal forecast model, e.g., a linear regression 
model. As past SST observations are available at the global scale in near-real-time (i.e., SST data for 
previous months is available at the beginning of each month), this data-driven prediction approach 
can be used operationally. 
 
In our implementation, following Giuliani et al. (2019), NIPA classifies years into two phases based 
on ENSO positive and negative years, using the Multivariate ENSO Index (MEI) from NOAA. As global 
SST data, we use the NOAA's Extended Reconstructed SST (ERSST, version 3b) dataset that provides 
monthly gridded data at spatial resolution of 2.5°. For selecting the predictors for seasonal 
streamflow, we use a lag time of 3 months, initialising each season at the beginning of each calendar 
month. We calibrate a distinct NIPA model separately over each month, using all years categorized 
in the two ENSO phases, thus building 24 models in total. For example, the model for the month of 
January of a year categorized as ENSO positive is calibrated using as target variables the aggregated 
average 3-m streamflow (JFM) of all ENSO-positive years, while the predictors are extracted from 
SST data over the previous 3 months (OND). As in Giuliani et al. (2019), we identify the SST predictors 
as the correlated regions at the 95% significance level, and we use a Principal Component Analysis 
(PCA) on the resulting SST fields to extract and use the first principal component (PC) as predictor in 
a linear forecast model, defined as: 
 

𝑦𝑡̂ =  𝛽 ∗ 𝑃𝐶𝜏−1
1 + 𝛼 

 
where: 𝑦𝑡̂ is the predicted seasonal (3-month) streamflow, 𝛽 is the regression coefficient and is the 
𝛼 intercept. Given the limited length of our data period (23-years) and the low interannual 
persistence of seasonal streamflow, to avoid overfitting, we used a leave-one-out cross-validation 
approach. The same approach, building on the NIPA framework, is also used in another CLINT case 
study, Rijnland, to generate AI enhanced predictions of precipitation (see Deliverable D2.2 for more 
details on the methodology). 

2.1.3 Results towards potentially added value AI-enhanced CS 

As our data-driven forecast model (NIPA) is deterministic, in this deliverable we focus on a 
comparison of the deterministic forecast performance between the ensemble mean of the two 
benchmark systems and the enhanced (NIPA) forecast. In Appendix A, we report a more complete 
probabilistic verification of the two seasonal hydrological forecast benchmarks, for further 
reference. As the forecast-based operation may be impacted by biases (lack of correlation or low 
accuracy of the relative variability between forecasts and observations), we focus on these different 
attributes of forecast quality to capture the forecast performance differences between the two 
benchmark systems and NIPA. In particular, six different metrics are considered to quantify the 
deterministic accuracy of the forecasts: 
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(i) the Mean Absolute Error, MAE; 
(ii) the Mean Absolute Percentage Error, MAPE; 
(iii) Kling-Gupta Efficiency, KGE; 
(iv) variability ratio, alpha; 
(v) bias ratio, beta; and 
(vi) correlation, r. 
 
The latter three metrics (alpha, beta and r) are the three components used to compute KGE. All 
metrics are computed on the target time series of 3-month average streamflow over the 23-year 
period (1993-2015). 
 
The results show that our enhanced forecast model strongly outperforms both seasonal forecast 
benchmark systems, for all considered metrics (Table 2.1; Figure 2.2-2.5). 

Table 2.1. Deterministic scores for mean 3-month flow forecasts of the benchmark (WW-HYPE and GloFAS) and AI-
enhanced (NIPA) streamflow forecasts over 1993-2015 at Victoria Falls (WW-HYPE sub-basin ID: 207136). The ideal 
scores are: MAE=0, KGE=1, alpha=1, beta=1 and r=1. 

Forecast 
product 

MAE 
[m3/s] 

KGE [-] alpha beta r 

GloFAS 3251.03 -3.106 3.745 4.037 0.68 

WW-HYPE 936.73 -0.315 0.210 0.125 0.42 

NIPA 230.2 0.878 0.908 0.972 0.93 

 

The accuracy of the ensemble mean of GloFAS and WW-HYPE have different quality attributes and 
the performance ranking between the two benchmarks varies depending on the accuracy scores 
(Table 2.1). In particular, GloFAS forecasts have a larger mean absolute error (MAE) than WW-HYPE, 
and presents a large overestimation with respect to observations (as indicated by beta > 1), while 
WW-HYPE underestimates seasonal streamflow upstream of Kariba. The very large bias in GloFAS 
indicates that there is a systematic positive bias in the water balance of the hydrological model, as 
confirmed by the inspection of the hydrographs (see Figure 2.2). Overall, WW-HYPE seems to 
outperform GloFAS by looking at the aggregated performance metric (KGE) that combines bias, 
correlation and relative variability into a single metric. However, WW-HYPE also has a large margin 
of improvement, as it shows a large negative bias (Figure 2.2) and performs similarly to a simple 
mean flow benchmark (KGE just above -0.41; Knoben et al., 2019). The more refined diagnostics 
provided by the KGE components (alpha, beta and r) show that GloFAS seasonal forecasts 
outperform WW-HYPE in terms of correlation (r=0.68 vs. r=0.42), while being worse than WW-HYPE 
in terms of bias and relative variability of river flows with respect to observations (see Table 2.1 and 
Figures 2.2, 2.3 and 2.4). 
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Figure 2.2. Average seasonal (3-month) streamflow (in m3/s) of GloFAS, HYPE and NIPA forecasts vs observations over 
the full period 1993-2015. 

 

 

Figure 2.3. Scatterplot of average seasonal streamflow comparing GloFAS ensemble forecast mean and observed 
seasonal streamflow over the full period 1993-2015. The dashed line is the 1:1 line (for reference). 
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Figure 2.4 Scatterplot of average seasonal streamflow comparing WW-HYPE ensemble forecast mean and observed 
seasonal streamflow over the whole period (1993-2015). The dashed line is the 1:1 line (for reference). 

 

NIPA 

 

Figure 2.6 Scatterplot of average seasonal streamflow comparing NIPA forecast and observed seasonal streamflow over 
the whole period (1993-2015). The dashed line is the 1:1 line (for reference). 
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The results have also been broken down across seasons (Tables 2.2, 2.3 and 2.4) to assess any 
seasonal dependence of the quality of forecasts. In this case, we assess only the attributes of bias 
and relative variability, as the correlation across non-continuous time series would not give any 
sensible information. GloFAS and WW-HYPE present a large variability of biases across seasons, with 
strong changes along the year, especially when looking at relative biases with respect to observed 
streamflow (e.g., MAPE and beta). GloFAS shows the largest biases in relative terms (MAPE), with 
an overestimation of average flows (beta>1) and overestimation of the variability of flows (alpha>1) 
in DJF (Table 2.2). WW-HYPE has the largest relative biases, with the worst underestimation of 
observed flows (beta<1) and their variability (alpha<1) in SON (Table 2.3). On the other hand, the 
enhanced forecasts (Table 2.4) show a more stable relative variability (alpha) and bias, especially in 
relative terms with respect to the observed seasonal streamflow (MAPE and beta). Still, a 
dependence of the bias of NIPA forecasts along the calendar months can be observed, especially in 
absolute terms, with larger biases in the high-flow season, i.e. peaking in MAM, as it could be 
expected (Figure 2.6). Given our focus on droughts for this use case, the results of NIPA are 
particularly promising, as the largest improvement is found in the low-flow season (SON). 

These results suggest that a data-driven model built upon observed preseason SST anomalies can 
lead to more skilful predictions of seasonal streamflow in the Zambezi than global scale hydrological 
model-based seasonal forecasts. 

Table 2.2 Deterministic scores for DJF, MAM, JJA and SON average streamflow over the full period 1993-2015 for GloFAS 
forecasts against observations (MAE, MAPE, alpha and beta). 

GloFAS 
performance 

DJF MAM JJA SON 

MAE [m3/s] 5277.8 6193.1 952.6 734.6 

MAPE [%] 880.5% 310.4% 122.0% 306.5% 

alpha [-] 4.445 2.114 1.041 3.472 

beta [-] 8.822 3.594 1.977 3.992 
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Table 2.3. Deterministic scores for DJF, MAM, JJA and SON average streamflow over the whole period (1993-2015) for 
WW-HYPE forecasts against observations (MAE, MAPE, alpha and beta). 

 

WW-HYPE 
performance 

DJF MAM JJA SON 

MAE [m3/s] 472.5 2067.6 960.7 242.4 

MAPE [%] 66.0% 83.6% 98.5% 98.7% 

alpha [-] 0.243 0.291 0.042 0.024 

beta [-] 0.300 0.134 0.015 0.013 

 

Table 2.4. Deterministic scores for DJF, MAM, JJA and SON average streamflow over the whole period (1993-2015) for 
NIPA forecasts against observations (MAE, MAPE, alpha and beta). 

NIPA performance DJF MAM JJA SON 

MAE [m3/s] 175.1 538.4 206.9 26.6 

MAPE [%] 27.5% 29.7% 29% 12.6% 

alpha [-] 0.740 0.796 0.767 0.799 

beta [-] 0.964 0.988 0.995 0.992 
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Figure 2.6. Bar chart of MAE and MAPE of NIPA forecast with respect to observed seasonal (3-month) streamflow by 
calendar month over the full period 1993-2015. 

 

2.1.4 Analysis chain for AI-enhanced CS potential added value for Tropical Cyclones 

The methodological workflow followed to assess the potential added value of AI-enhanced climate 
services for Tropical Cyclones (TCs) in the Zambezi River Basin is based on the comparison of the 
skill and value of the original (benchmark) medium-range forecasts against the AI-enhanced 
forecasts (Figure 2.7). We assessed the added value in terms of improvement of action-relevant 
scores designed based on the needs of humanitarian users and stakeholders involved in the early 
warning early action chain for TCs (see Deliverable D7.1), i.e. adjusted hit rates and false alarm 
ratios, that can lead to more effective warnings and actions, reducing costs and impacts. Following 
the inputs from D7.1 (as summarised also above; see Section 2.1), extreme rainfall has been selected 
as the key variable of interest to inform early warnings and action, being one of the variables 
indicated by the CS users and also used to feed flood prediction models and generate other variables 
(streamflow and inundation extent). Here, the AI-enhancement is performed in the forecast 
production and post-processing step, with a model that can be run to improve forecasts available 
in real-time within computation times compatible with operational needs (a few minutes). The 
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model can be quickly used, once it is trained over multi-year historical records off-line (only at a 
single point in time, before any TC events), which takes a few hours. Thus, the approach is grounded 
in the real operational work of the humanitarians and disaster managers who rely on available 
forecasts ahead of TCs impacts, of extreme rainfall and subsequent floods, based on which early 
warnings can be issued. In this use case, the AI enhancement is carried out via a deep learning model 
to post-process available operational rainfall forecasts, like our benchmark (ECMWF’s HRES); thus, 
here we follow a hybrid AI model approach. 
  
State-of-the art TC forecasts lack in correctly predicting TC tracks and rainfall peaks location with 
sufficiently long lead times; for example, 3 days ahead typical average track location errors are of 
~200 km (e.g. Emerton et al., 2020).  Given the needs and wishes expressed by the users (see Section 
2.1) to improve early warnings for TCs in the region based on medium-range reliable forecasts, our 
goal here is to enhance forecast accuracy and value focusing on the medium-range (up to 5 days) 
which is a critical horizon for decision making. This allows us to start from a foundational level of 
forecast skill, even if often affected by large TC tracking errors, providing a base for enhancement 
efforts and mitigating the challenges related to missed TC detection and tracking at longer lead 
times, which would otherwise complicate efforts to improve rainfall forecasts. By concentrating on 
medium-range forecasts, we will address issues such as rainfall biases and lack of accurate 
prediction of extreme rainfall location. Thus, here we aim to investigate whether extreme rainfall 
forecasts can be improved, once a TC has been forecast to occur and possibly to move towards land 
or further inland, potentially leading to impacts to prepare for and respond to. 
 
 

 

Figure 2.7 Flowchart for assessing the potential added value of AI-enhanced climate service for Tropical Cyclones for the 
Zambezi River Basin. 
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Data and benchmark 
The ECMWF’s High Resolution (HRES) forecasts were used as the benchmark to assess the potential 
added value of AI-enhanced forecasts for TCs early warning in the Zambezi River Basin. HRES 
forecasts are widely considered the top global deterministic operational forecasting system and 
often chosen as a benchmark in recent machine learning–based weather prediction studies (e.g., 
Lam et al., 2023; Rasp et al., 2020). HRES is a medium-range forecast system run twice daily (at 00 
and 06 UTC) with a maximum lead time of 10 days, produced by the Integrated Forecasting System 
(IFS) model of ECMWF. Since March 2016 (IFS Cycle 41r2), HRES forecasts are run at the horizontal 
grid resolution of 9km (about 0.08 degrees) and stored at a temporal resolution between 1h to 6h, 
varying with lead time (1h up to 90h lead time, 3h up to 144h lead time, and 6h onwards). With its 
higher resolution compared to other global forecasting models, HRES offers the most precise single-
run representation of large-scale weather patterns. Its use allows for a more detailed analysis of 
precipitation patterns than, for example, ECMWF’s ensemble forecasts (ENS), especially in multi-
year studies (Owens and Hewson, 2018; Magnusson et al., 2021). In June 2023, ENS was also 
upgraded to the same 9-km resolution as HRES, but a 9-km ENS reforecast is still under production 
and no multi-year ensemble reforecast run at 9 km is currently available. Given our need for a multi-
year long data record for model training and validation (to include a large sample of TC events), we 
opted for the use of the operational HRES forecasts, which provide a record overlapping for 4 years 
(2016-2019) with the observational data available and used here (see below). 
  
In terms of forecast horizons, we decided to focus on lead times up to 5 days, given the current 
levels of predictability and TC track errors, with TC position errors of HRES operational forecasts 
produced in 2020 of approximately 200 km and over 300 km at 3- and 5-day lead time, respectively 
(Magnusson et al., 2021). These large errors still limit forecast-based action for TCs over longer time 
scales than a few days (e.g., IFRC, 2024). For example, a 3-day lead time is used so far in the Red 
Cross’ EAP for TCs in Mozambique (see Section 2.1), while 72-h and 30-h lead times (or slightly more) 
are used for TC early action pre-activation and activation in Bangladesh (IFRC and Bangladesh Red 
Crescent Society, 2021). We selected a 6-h target resolution, which is the current resolution of 
warnings issued by MF in the SWIO during a TC. Using a common resolution across the lead times 
considered makes the comparison of scores consistent, while avoiding increasing the resolution 
limits the correlation of the samples, which is better for training our model. Similarly, as HRES 
forecasts are issued at 00 and 12 UTC, but forecast maps issued 12 hours apart are expected to be 
highly correlated, only one daily forecast issue step was considered (00 UTC).  
 
To help the deep learning model correct the biases of TC rainfall forecasts and improve spatial 
accuracy, we considered five different candidate inputs from HRES in addition to total precipitation: 
(i) total column of water, 
(ii) temperature at 850 hPa, 
(iii) total cloud cover, 
(iv) relative humidity at 850 hPa, and 
(v) mean sea level pressure. 
 
Their choice was based on first model development efforts on ERA5 (Ascenso et al., under review) 
and on previous studies (e.g., Sha et al., 2020; Hu et al., 2022; Ling et al., 2022). Finally, after testing 
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all possible multi-input combinations using HRES data, only the first two fields (i and ii) were selected 
as additional model inputs to total precipitation, as their use provided the best performance and 
reduced overfitting with respect to other two-input configurations. Including more inputs did not 
help or would keep the performance at the same level at the expense of increased computation. 
  
As target of the AI enhancement and reference for the forecast skill assessment, we used the Multi-
Source Weighted Ensemble Precipitation (MSWEP) dataset (Beck et al., 2019a). MSWEP provides 
global observational precipitation data derived from multiple sources, including ground-based 
observations, satellites, and reanalysis products, at a spatial resolution of 0.1 degrees 
(approximately 10 km) and a temporal resolution of 3 hours. The multi-source data integration of 
MSWEP enhances its performance and robustness with respect to other single source datasets (Beck 
et al., 2019b) and showed the highest accuracy in multi-datasets comparative studies (e.g., Sharifi 
et al., 2019; Beck et al., 2017), making it a suitable reference for validating the accuracy of AI-
enhanced rainfall forecasts. 
 
To define the domains for rainfall forecast evaluation and post-processing, we located TC centres 
using the International Best Track Archive for Climate Stewardship (IBTrACS) best-track data (version 
v04r003), which offers a global TC dataset at 3-hourly temporal resolution (Knapp et al., 2010). The 
IBTrACS reports instantaneous TC data every 3 hours starting at 00:00 UTC. Considering the target 
6-h resolution of the two other products (HRES and MSWEP) and the forecast issue time (00 UTC), 
we sub-sample the IBTRrACS data to receive instantaneous data aligned with the centre of the 
MSWEP and HRES accumulation window. For example, TC data at 03:00 UTC are used to match 
rainfall maps accumulated between 00:00 and 06:00 UTC. Subsequently, for each time step in 
IBTrACS, we crop the HRES and MSWEP fields surrounding a 14-degree-side (i.e., about 1550 km) 
box centred on the TC location both temporally and spatially. This approach and box size allows us 
to encompass an area large enough to include all the grid cells with TC rainfall at each time step, as 
this distance (>1500 km) is larger than extreme TC sizes. The output is squared domains of 141-grid-
cell side, with one channel for MSWEP and more channels for HRES, i.e. one for each selected input 
variable (total precipitation, total column of water, and temperature at 850 hPa). As MSWEP is a 3-
hourly aggregated product and HRES rainfall forecasts at close hourly time steps are highly 
correlated, we perform a temporal aggregation at a common window of 6 hours for both products, 
i.e., to obtain 6-hourly accumulated values for HRES total precipitation and column of water and 3-
hourly average for HRES temperature (and other instantaneous variables that were initially tested, 
like relative humidity). 
 
In summary, to prepare the inputs for the deep learning model from the HRES forecast data 
(precipitation and other input variables), we followed these steps: 
(i) HRES data were downloaded at the global scale from ECMWF's Meteorological Archival and 
Retrieval System (MARS); 
(ii) 6-h step values were obtained from the original cumulated ones (e.g., de-accumulating values of 
two adjacent steps for rainfall or averaging close instantaneous values for temperature); 
(iii) a spatial regridding was performed from the reduced gaussian grid system of IFS (octahedral 
from 2016) to the (close) regular 0.1/0.1 lon-lat grid resolution of MSWEP, applying the conservative 
interpolation method (using ECMWF’s MetView Python library); 
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(iv) the regridded data is then crop over the regions of interest (14-degree-side boxes), defined 
based on the TC locations retrieved from IBTrACS. 

Impact model 
In this section, we present the valuation framework to assess forecasts and select triggers for 
humanitarian EAPs, that can be adapted to consider the parameters of specific anticipatory actions, 
similarly to what proposed by Coughlan de Perez et al. (2016). EAPs play a crucial role in the planning 
of forecast-based financing systems, facilitating the allocation of resources before a hazard occurs 
according to a predetermined forecast and trigger. The trigger analysis in EAPs acknowledges the 
possibility of actions to be taken "in vain" if a forecast hazard does not occur, with the goal of 
ensuring that the long-term benefits of preventive actions outweigh the costs of false alarms. The 
two key scores for this are False Alarm Ratios (FAR) and Hit Rates (HR): 
 

𝐹𝐴𝑅 =  
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 

 

𝐻𝑅 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
 

 
We propose a modified version of FAR and HR, to assess the capacity of a forecast in meeting the 
requirements for effective early actions, by redefining hits and false alarms in terms of spatial 
accuracy and acceptable margins of error. In particular, we considered the requirements of the 
Mozambique Red Cross Society (CVM), derived from information from their Early Action Protocol 
for TCs (IFRC, 2024). The activation of the Cyclone EAP in Mozambique is based on the TC forecast 
information distributed 72-hour ahead by INAM, as at this point the margin of error is approximately 
240 km. Taking this information into account, we consider a more restrictive margin of error (<150 
km), that we called ‘action scale’. In particular, for each grid cell with a forecast event (exceeding an 
extreme TC rainfall threshold) we take a box of half-side equal to 100 km and we define that forecast 
as either a false alarm if no observed event occurs in the box, or a hit if an event is observed in the 
box (Figure 2.8). In other words, we redefine hits and false alarms based on a specific action scale, 
i.e. how much farther the hazard can occur from a forecast location and it still counts as a ‘hit’. 
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Figure 2.8. Scheme of the adjusted definition of False Alarms and Hits based on an action scale (maximum acceptable 
margin of error to inform early actions). 

 
The trigger methodology that we adopted is based on the selection of a forecast (e.g., HRES) and 
thresholds (e.g., 99th percentile of TC rainfall peaks) for triggering early actions considering the 
users’ willingness to act 'in vain' for anticipatory actions (e.g., FAR < 0.5) and to reach a high number 
of people at risk (e.g., HR > 0.5). In this deliverable, we focus on the value of reducing false alarms, 
as reduced FAR can be easily translated into a saved amount from a lower rate of actions in vain, 
for each specific action. Thus, our simple impact model consists of a binary-threshold classification 
to assess forecast value in terms of reduced costs. Here, as an example of application, we consider 
the planned early actions from the EAP for TCs in Mozambique, with the current activation lead time 
(3 days). We assume a different trigger (extreme precipitation forecast instead of wind speed) that 
is still considered of interest for users (see Section 2.1). The current EAP has a timeframe of 5 years 
and targets one activation for an event with a return period of 5 years, with a total allocation of CHF 
195'962 for early actions, once the defined triggers are met, while the rest of the budget is for 
readiness and prepositioning actions. Thus, a target reduction of FAR of 10% would correspond in 
the long term to a saving of approximately CHF 20k/5yr. 

AI enhancement 
In this Section, we describe the AI enhancement approach that we implemented for the post-
processing of TC rainfall forecasts, based on a variant of a state-of-the-art deep learning 
architecture, UNet, and a novel loss function (Figure 2.9). Given our evaluation framework for early 
action described above (Section 2.3.2), our primary objective is to improve the spatial discrimination 
of extreme events in the forecasts, refining the localization of rainfall peaks, and reducing errors 
within acceptable margins. To achieve this, we introduce a novel loss function, called the compound 
loss, including two components: 
(i) the Mean Squared Error (MSE), to correct pixel-wise biases and 
(ii) the Fractions Skill Score (FSS, Roberts and Lean (2008)), 
 
to improve the accuracy of spatial patterns. Previous studies using deep learning for bias correction 
of rainfall maps predominantly relied on pixel-wise metrics, like the MSE, which overlook overall 
spatial accuracy and potentially lead to overly smoothed predictions. Recent studies have shown 
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that such local (pixel-wise) error metrics discourage models from making predictions with sharp 
gradients, often leading to “blurred out” predictions (e.g., Hess and Boers, 2022; Lagerquist and 
Ebert-Uphoff, 2022). By integrating the FSS into our compound function, we aim to mitigate such 
issues and enhance the accuracy of rainfall peak localization, reducing false alarms and increasing 
hit rates. 
 

 

Figure 2.9. Flowchart of the AI-enhancement model for TC rainfall for the Zambezi River Basin based on RA-UNet. 

 
The FSS is a popular spatial verification metric often used in meteorology to evaluate the 
resemblance between spatial patterns in two gridded datasets, typically comparing model 
predictions to observational data, yielding values between 0 (indicating no match) and 1 (perfect 
match). The FSS is computed through the following three steps: 
(i) the rainfall maps (prediction and observation) are converted into binary maps, by applying a 
rainfall intensity threshold (Q) that can be either a fixed value or a percentile of rainfall intensity 
(calculated independently for each image); 
(ii) fractional coverages of threshold exceedances are computed for various neighbourhood areas; 
(iii) the fraction of positive pixels within patches of a specified size (N, number of grid cells) are then 
used to compute a skill score based on the mean squared difference of these fractions across all 
possible patches. 
Thus, the FSS measures the average overlap between N-sized patches of the two binary grids.  
 
In our implementation, the neighbourhood size N was set to 19 grid cells, following a grid search 
empirical testing (in the range [9, 21]). To allow the use of the FSS as a loss function for deep 
learning, we made some adjustments, mainly to ensure differentiability, by replacing the binary 
classification step based on hard threshold (Q) with an arctan function transformation. Our modified 
version of the FSS is referred to as FSS'. Also, we inverted the score to be used in the loss function 
(1-FSS’), so that the value of 0 indicates a perfect match. 
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Finally, our compound loss function (Lcmpd) consists of a weighted combination of FSS' values 
corresponding to different percentile thresholds (80th, 95th, and 99th percentiles) alongside the 
Mean Squared Error (MSE), as follows: 
 

𝐿𝑐𝑚𝑝𝑑 = 0.5 (𝐹𝑆𝑆𝑄=80
′ + 𝐹𝑆𝑆𝑄=95

′ + 𝐹𝑆𝑆𝑄=99
′ ) + 0.5 𝑀𝑆𝐸 

 
The weights of the loss function components (0.5, 0.5) were determined empirically through 
systematic exploration of the weights space. By incorporating multiple percentile thresholds for 
FSS’, our aim is to train the model to improve rainfall peak localization across varying intensities, 
thus enhancing spatial accuracy while mitigating pixel-level biases (represented by the MSE). 
 
Regarding the deep learning model architecture, we selected a recent variant of the popular U-Net 
(Ronneberger et al., 2015) model, which has been shown to be effective to perform similar tasks 
and to outperform other deep learning networks for the prediction of precipitation extremes (Otero 
and Horton, 2023). As in the standard U-Net architecture, our model (Figure 2.9) is based on an 
encoder/decoder structure: first, information is encoded through a series of layers that reduce the 
resolution and perform an extraction of semantic information; second, the so-processed 
information is decoded via a series of layers that restore the spatial resolution to the original one 
(0.1°) as the input maps, and maintain the high-level extracted semantic information. Encoder and 
decoder blocks that are at the same depth in the network are linked via the so-called 'skip 
connections' that help transfer information across the network. We use the Residual Attention UNet 
(RA-UNet, or RA-U) variant, proposed by Jin et al. (2020), which further develops the standard UNet 
by replacing convolutional blocks with residual blocks and integrating attention modules along skip 
connections (Figure 2.9). Residual blocks facilitate gradient flow, mitigating the vanishing gradient 
issue, while attention modules augment the RA-U network’s feature extraction capability, to 
emphasise salient features. We chose to omit batch normalisation and dropout, as we did not need 
these features to solve overfitting issues (see Results). For model training, we used the Adam 
optimizer with early stopping on an NVIDIA A100 GPU.  

2.1.5 Results towards potentially added value AI-enhanced CS 

First, we present the results at the global scale. The AI model (RA-UNet) has been trained and cross-
validated over a large sample of 2872 TC time steps (6-hour resolution) from the global IBTrACS 
dataset. Based on our early warning/early action-oriented evaluation framework (with an action 
scale of 100 km), the AI-enhanced forecasts show a large improvement with respect to the HRES 
forecast benchmark (Figures 2.10 and 2.11). In particular, the largest improvement on False Alarm 
Ratios and Hit Rates is observed at 5-day lead time and for the higher rainfall thresholds, where 
more room for improvement in HRES is observed. Considering a threshold of 0.5 for maximum 
(minimum) acceptable FAR (HR), the use of our post-processing model is critical in making the 
forecast acceptable to support early warning and early actions for the highest rainfall thresholds.  
 
Second, we extract the results for the Zambezi River Basin (Table 2.5-2.6). Over the study period 
considered (2016-2019), only four TCs are found to affect the Zambezi over a total of fifteen 6-h 
time steps, by selecting TC rainfall maps for which the footprint of rainfall exceedances above the 
95th percentile intersects the river basin. For these TCs, the results are in line with the statistics 
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shown at the global scale. A large improvement is observed across all metrics, especially at 3- and 
5-day lead time (Table 2.6 vs. Table 2.5). For the different components of our compound loss 
function, we see a substantial reduction of local biases (MSE) and improved spatial accuracy scores 
(FSS), especially for the highest rainfall intensities (FSS’q99). At 5-day lead time, for the highest rainfall 
threshold (99-th percentile), False Alarm Ratios are reduced by approximately half, dropping from 
67% to 29%, while Hit Rates increase from 33% to 71%. This large improvement in FAR suggests a 
potential monetary benefit in terms of reduced costs for early action in the long term. Considering 
this forecast and a 99th percentile as a possible trigger of the EAP for TCs at 3-day lead time (current 
lead time for early action in Mozambique), our model reduction in false alarms would correspond 
to a saving of approximately CHF 75k/5yr (see Section 2.3.2). Moreover, our results suggest a 
potential extension of the actionable lead times from 3 to 5 days, that could bring more benefits to 
early action planning and operations. 
 

 

Figure 2.10 False Alarm Ratios of original HRES vs AI-enhanced TC rainfall forecasts at lead times from 1 to 5 days over 
the model test set of 2872 time steps (5-fold cross-validation sets) at the global scale. 
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Figure 2.11 Hit Rates of original HRES vs AI-enhanced TC rainfall forecasts at lead times from 1 to 5 days over the model 
test set of 2872 time steps (5-fold cross-validation sets) at the global scale. 

 

Table 2.5 Summary of scores for the original HRES rainfall forecasts by ECMWF at lead times from 1 to 5 days for four 
TCs impacting the Zambezi River Basin over fifteen 6-h time steps with TC rainfall above the 95th percentile over the 
basin. The ideal scores are: MSE=0, FSS’=1, FAR=0, HR=1. The percentile thresholds are computed over the rainfall map 
at each time step separately. 

Original HRES 

forecast 

MSE 

[mm/6h]^2 

FSS’q95 [-] FSS’ q99 [-] FAR q95 [-] FAR q99 [-] HR q95 [-] HR q99 [-] 

1 day 38.90 0.75 0.49 0.05 0.12 0.95 0.88 

3 day 68.68 0.44 0.29 0.27 0.44 0.73 0.56 

5 day 78.19 0.28 0.15 0.51 0.67 0.49 0.33 
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Table 2.6.  Summary of scores for the AI-enhanced HRES rainfall forecasts at lead times from 1 to 5 days over the model 
test set (5-fold cross-validation sets) for four TCs impacting the Zambezi River Basin over fifteen 6-h time steps with TC 
rainfall above the 95th percentile over the basin. The ideal scores are: MSE=0, FSS’=1, FAR=0, HR=1. The percentile 
thresholds are computed over the rainfall map at each time step separately. 

Enhanced HRES 

forecast 

MSE 

[mm/6h]^2 

FSS’q95 [-] FSS’ q99 [-] FAR q95 [-] FAR q99 [-] HR q95 [-] HR q99 [-] 

1 day 28.32 0.76 0.76 0.01 0.08 0.99 0.92 

3 day 36.86 0.59 0.70 0.11 0.12 0.90 0.88 

5 day 38.78 0.52 0.64 0.13 0.29 0.87 0.71 

 

2.1.6 Next steps 

Droughts:  
For the ZW AI-enhanced CS for droughts, the results of this deliverable show that our simple data-
driven forecasting model (NIPA) of seasonal streamflow in the Zambezi outperforms global scale 
hydrological model-based seasonal forecasts, according to all forecast attributes considered (bias, 
correlation, and relative variability). As next steps, we will: 

● test further improvements to the NIPA enhanced seasonal streamflow forecasts, considering 
a larger sample of predictors and more refined data-driven model options (than the current 
linear regression); 

● use the enhanced seasonal forecasts of inflows to Kariba dam to inform the lake 
management and assess the added value of our enhanced forecasts with respect to the 
benchmark and no-forecast baseline. 
 

The outputs of these next steps will be reported in Deliverable D7.3 (AI-enhanced CS for local 
decision-making). 
 
TCs and floods: 
For TC and floods, the AI enhancements presented in this deliverable showed a large improvement 
with respect to the benchmark and the value for early warning for extreme TC rainfall forecasts. 
Further work should study the improved rainfall forecasts as input of a hydro-dynamic model to 
produce enhanced TC-related flood (riverine and pluvial flood) forecasts. An improvement is to be 
expected given the known importance of accurate rainfall predictions as primary driver of flooding. 
However, this work goes beyond the planned outputs of the project and further results on this are 
not expected in D7.3. 
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2.2 Douro 

2.2.1 Introduction 

The Spanish part of the Douro River Basin (Douro RB) (Figure 2.12) constitutes one of the CLINT 
semi-arid climate change hotspots, and the extreme event of interest is droughts. The specific region 
within the Spanish Douro RB is the Orbigo System, which is one of the operational water resources 
management areas in the catchment. The prevailing water use in the Orbigo System is agriculture, 
which constitutes 90% of the total water demand (DRBA, 2021). Other water uses are domestic and 
industrial, as well as environmental water needs. The annual peak in demand occurs during the 
irrigation season, between May and August. Water demands are mostly satisfied with surface water 
resources regulated by annual reservoirs. The main reservoir in the region is Barrios de Luna, which 
represents 90% of the total storage capacity in the system. The institutions and users engaged with 
CLINT are the Douro River Basin Authority (Douro RBA), and Barrios de Luna Reservoir Union, an 
organization that gathers all the water user associations using water released from Barrios de Luna 
Reservoir. 

 

Figure 2.12 The Orbigo System in the Spanish Douro River Basin District in Spain. 

The system is exposed and vulnerable to drought. During droughts, the irrigated agricultural sector 
is exposed to water shortages. Similarly, the minimum environmental flows are reduced during 
droughts and the degradation of aquatic ecosystem is temporarily tolerated. In addition, reservoir 
levels may incur extraordinary drawdowns, aggravating the risk of water shortage in the short and 
long term. Drought planning and management in the Douro RB, including the Orbigo System, are 
supported by the Douro RB Drought Management Plan (DRBA, 2023). The objectives of this plan are 
to avoid the degradation of aquatic ecosystems and minimizing the socioeconomic impacts of 
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droughts. This drought management plan defines a drought indicator system that monitors drought 
and defines some of the major measures that need to be taken. There are two types of indicators, 
the prolonged drought indicator and the water shortage indicator. Both are updated monthly. The 
prolonged drought indicator aims at detecting climate-induced drought episodes, integrating 
variables of accumulated precipitation and streamflow over nine and six months, respectively. It is 
associated to decisions related to freshwater ecosystems, such as the temporary tolerance to the 
degradation of the ecological status of water bodies and the decreased of minimum environmental 
flows. The water shortage indicator aims at detecting episodes of potential agricultural water 
curtailments, and it is based on reservoir levels.  

In this context, decisions on reservoir management are guided by these two indicators, affecting 
water releases for environmental and agricultural purposes, as well as reservoir levels at the end of 
each month and at the end of the irrigation season (August). Moreover, the timing of the spring 
water meeting, where water allocations are set, is determined based on the water shortage 
indicator. Usually, this meeting occurs around early March, although it may be postponed to April 
in case of the water shortage scenario, because water managers and users prefer to delay decisions, 
hoping the drought situation will improve, rather than making early calls in March. 

From the interviews (D7.1), users expressed interest in using S2S and seasonal forecasts to support 
drought management. Currently, agricultural water users and the River Basin Authority in the Douro 
RBA do not use any specific CS or seasonal forecast to support S2S to seasonal decision-making, 
even though several products are available to them on the national level (see Deliverable 7.1). Their 
reasons include: 

(i) forecast quality is considered insufficient for users, particularly defined as uncertain;                           
(ii) forecast information should be timely, this is to say, available at the moment they are making 
decisions (sporadic or irregular information cannot be integrated into the decision-making process); 
(iii) the information should ideally be integrated into their decision-support systems (i.e. impact 
models and drought indicators) and transformed into variables that are easily interpreted (e.g. 
reservoir levels). 

Following these considerations, and the decision-making process summarized before, two 
objectives are established: 

● Evaluating the improvement in forecast quality of the bias-corrected forecasts, and AI-
enhanced forecasts, following a user-based verification approach. Several metrics are used 
to assess forecast reliability, accuracy, discrimination, and skill. These metrics are adapted 
to user needs in terms of temporal and spatial resolutions of interest, probability thresholds, 
variables included in the drought indicators, etc. 

● Assess the potential added value for drought risk management of (AI)-enhanced forecast 
information. The added value is going to be measured according to the following criteria: (i) 
maintained minimum environmental flow during droughts; (ii) avoided unnecessary 
agricultural water curtailments during the irrigation season; (iii) prevented extraordinarily 
low reservoir levels at the end of the season; (iv) avoided postponed decisions for 
agricultural water allocations in March. 
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2.2.2 Analysis chain for AI-enhanced CS potential added value 

General approach 
The quality enhancement of the (AI)-enhanced forecast information is assessed through a user-
based verification comparison of the AI-enhanced and the raw forecasts. Similarly, the assessment 
of the potential added value consists in comparing the outcomes of the water allocation strategy in 
the Orbigo System with and without forecast information and according to the criteria introduced 
in the second objective of the Introduction (Section 2.2.1). The workflow in Figure 2.13 depicts the 
main impact modelling steps (in orange), forecast enhancements methods (in green), and aspects 
to be evaluated (in blue) in this study. There is also information about the benchmark data. Below, 
the different elements of the workflow are described. 

 

 

Figure 2.13 Flowchart for assessing the potential added value of AI-enhanced climate service Droughts Douro. (P = 
Precipitation; T = Temperature; RL = Reservoir Levels; Q = streamflow). (Transparent green refers to AI-enhancement still 
to be assessed) 
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Impact model 

The two impact models are the EVALHID rainfall-runoff model (Paredes-Arquiola et al., 2012) and 
the SIMGES water management model (Andreu et al., 1992). Both software components are 
integrated within the AQUATOOL Decision Support System Shell (Andreu et al., 1996), which is the 
program and decision support system utilized by the Douro RBA for water resources planning and 
management. The EVALHID model is an aggregated semi distributed model. Each basin is divided 
into sub-basins that can be modelled according to different hydrological modelling approaches. The 
EVALHID hydrological model utilized in the Douro RBA is based on the Hydrologiska Byråns 
Vattenbalansavdelning (HBV) model (Bergström, 1995) to represent the rainfall-runoff processes. 
The temporal time step of interest for the users is daily, and hence, it requires daily precipitation 
and temperature datasets as input. SIMGES is a water management model that simulates the 
functioning of the operational water resources scheme and allows the computation of the drought 
indicators (e.g. regulation and storage, intake, transport, consumption and use) (Andreu et al., 
1992). Different operating rules can be defined to include priorities on water demands, including 
environmental flows. 

Both the EVALHID and the SIMGES models used in this work has been provided by the Douro RBA, 
and they are being adapted to the requirements of this study. More particularly, these impact 
models will be simplified to represent only the elements in the Orbigo System that are relevant to 
assess the potential added value of the forecast, and they will be run in forecasting mode. In order 
to represent the measures, a decision-making process based on current management strategies 
(non-forecast informed) will be modelled in SIMGES, as well as a hypothetical decision model 
informed with forecasts that will be established based on the feedback received from the users 
during the following year of the project. The adaptation of the impact models and development of 
the conceptual decision-making processes are ongoing, and will be described in detail, alongside 
with the final results of the value assessment, in Deliverable D7.3. 

Data and benchmark 

Historical precipitation and temperature are derived from SPAIN02 (Herrera et. al., 2015), a 20 km 
daily rainfall analysis from the AEMET, the Spanish Meteorological Agency. Catchment precipitation 
and temperature are derived through a process of area-weighted averaging and are provided by the 
Douro RBA. The historical observations of streamflow are the simulated by the EVALHID model, and 
also the data series from the archives of the Ministry for Ecological Transition and Demographic 
Challenge (MITECO in Spanish). 

Regarding forecast data, the 5th generation of the seasonal forecast systems (SEAS5) and the 
extended-range (ER) forecast from the European Centre for Medium Weather Forecast (ECMWF) 
are used as forcing data for both the E-HYPE model and the EVALHID model to generate the seasonal 
and sub-seasonal ensemble forecast of streamflow. In order to bias-correct the S2S and seasonal 
meteorological data for E-HYPE, the SEAS51 and ER datasets have been previously bias-adjusted 
through the Quantile Mapping technique using as reference the historical natural streamflow 
simulated by E-HYPE. To bias correct the forcing data for the EVALHID model, a Bayesian Joint 
Probability model and Schake Shuffle approach have been implemented. This part constitutes one 
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of the enhancements implemented in this case study, together with the generation of streamflow 
with an AI-based method. 

Forecast enhancements 

Two enhancements are implemented in the Douro case study to improve hydrometeorological 
forecast quality and value to support decision-making in the Orbigo System. The first one is the 
Bayesian Joint Probability (BJP) modelling and Schaake Shuffle (BJP-SS) approach, which post-
process precipitation and temperature seasonal forecasts while conserving the temporal and spatial 
correlations across lead times and sub-catchments (Schepen et al., 2018). The BJP-SS approach has 
been selected for this case study because unlike other post-processing methods such as linear 
scaling and quantile mapping (e.g. Crochemore et al., 2016), it considers the correlation between 
forecasts and observations (Zhao et al., 2017), as well as the intrinsic skill of the seasonal climate 
model. In addition, it performs better at the S2S and seasonal time horizons, particularly for 
accumulated total precipitation (Schepen et al., 2018).  

The second enhancement implemented in this study is the long short-term memory (LSTM) method, 
aimed at producing inflow forecast in Barrios de Luna Reservoir. The LSTM method is a type of neural 
network. It is trained with the historical precipitation, temperature and streamflow from the data 
sets described in the previous section, as well as with the ER sub-seasonal forecast for precipitation 
and temperature. The target lead time is one month. The LSTM method for streamflow generation 
in Barrios de Luna reservoir has been developed as part of the task on Machine Learning for Extreme 
Events forecasting and is described in detail in D2.2 Machine learning algorithms for extreme event 
forecasts and reconstruction. The generated streamflow will be directly integrated into the drought 
indicators as one-month accumulated streamflow, and will particularly contribute to the decisions 
in March (see verification framework in the next section). The results related to forecast quality and 
added value will be included in Deliverable 7.3. 

Since the results presented in this deliverable are focused on the verification of the enhanced 
meteorological forecast, in the remainder part of the methodology a brief description of the BJP-
SS approach and verification framework are provided. 

All available precipitation hindcast from SEAS5 1 degree for the period 1981-2014 are post-
processed. These re-forecasts start on the 1st of every month and have 25 ensemble members 
(Johnson et al., 2019). Unfortunately, it was not possible to apply the post-processing to the real 
time forecast because the historical precipitation data set is only available from 1950 to 2015. The 
BJP modelling creates a joint probability distribution to characterise the relationship between 
forecast ensemble means (predictors) and corresponding observations (predictands). The joint 
distribution is modelled as a bivariate normal distribution after transformation of the marginal 
distributions. Precipitation data is transformed using the log-sinh method. (Wang et al., 2012). The 
post-processing is applied at the daily time step, for each forecast initialization date and lead time. 
The specific steps followed in the post-processing procedure are detail below: 

1. The BJP modelling is implemented at the catchment level and daily temporal scale. First 
seasonal daily precipitation ensemble means are transformed to catchment areas through a 
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process of area-weighted averaging. Before been transform to the normal space using the 
log-sinh transformation, both the predictand (observations) and predictor (ensemble mean) 
are pooled in an 11-day window. This is typically needed in dry climate, due to the 
predominance of days in the data sets with zero precipitation that prevents data inference. 
For more details about the 11-day window pooling, refer to Schepen et al. (2018). 

2. After data pooling, both the predictand and the predictor data sets are rescaled within the 
range [0, 5], and zero values are treated as censored to allow the use of a continuous 
bivariate normal distribution. 

3. The log-sinh transformation parameters (α and β) for the predictor and predictand are 
estimated using the maximum a-posteriori, and the transformation is applied to normalise 
both data sets according to Equation 2.4.1. 

𝑓(𝑦) = 𝛽−1 ln(𝛼 + 𝛽𝑦)    (2.4.1) 

4. Consequently, a predictor (or predictand) x (or y) is transformed to g (or h), and the 
relationship between g and h is formulated by a bivariate normal distribution: 
 

[
𝑔
ℎ

] ~𝑁(𝜇, ∑)      (2.4.2)    

𝜇 = [
𝜇𝑔

𝜇ℎ
]     (2.4.3) 

∑ = [
𝜎𝑔

2 𝜌𝑔ℎ𝜎ℎ𝜎𝑔

𝜌𝑔ℎ𝜎ℎ𝜎𝑔 𝜎ℎ
2 ]     (2.4.4) 

 
5. In forecasting mode, the predictor value is transformed using the predictor’s log-sinh 

transformation parameters. The BJP model is conditioned on this new predictor value, and 
thus a new is sample for each parameter set following equation 2.4.5. 

ℎ𝑛𝑒𝑤|𝑔𝑛𝑒𝑤, 𝜃~𝑁 (𝜇ℎ + 𝜌𝑔ℎ

𝜎ℎ

𝜎ℎ
(𝑔𝑛𝑒𝑤 − 𝜇𝑔), 𝜎𝑔

2(1 − 𝜌𝑔ℎ
2))     (2.4.5) 

 
6. Back-transform the ensemble members using the transformation for predictands and re-

scale to the original space and set negative values to zero. 
7. The forecast ensemble members after the BJP modelling are random sampled and thus, they 

do not conserve the temporal or spatial correlation. The Schaake Shuffle method is applied 
to reinstate the correlation, which is key for the successive hydrological modelling. For more 
detailed information about the Schaake Shuffle process, refer to Clark et al. (2004). 

Assessment of the potential enhancement of forecast quality and value 

The (AI)-enhanced forecast products are evaluated in terms of their quality and their value to 
support drought management decisions (blue boxes in the flow chart of Figure 2.13). The quality 
and skill of the enhanced forecasts are assessed for precipitation, temperature and streamflow, 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 
D7.2 Preliminary AI-enhanced Local Climate Services 42 

 

while the value for decision making is evaluated based on the criteria introduced in the Introduction 
section. 

The verification of forecast quality and skill according to user-oriented forecast variables constitutes 
one of the three major recent developments on forecast verification (Dorninger et al., 2020). It 
consists in verifying variables that are tailored to the user’s needs, such as warnings, specific 
thresholds, or adapted to the spatial and temporal resolution relevant for decision making. 
Accordingly, this study investigates the enhancement in forecast quality and skill for variables that 
are relevant from the perspective of the indicators used in operational drought management, as 
well as to specific decisions which are key throughout the decision-making process. In this context, 
six specific sub-catchments within the Orbigo Catchment (Figure 2.14) are evaluated. The main 
catchment (306) corresponds to the entire Orbigo River Basin, while the sub-catchments (30601-
30605) cover the upstream basin of the stream gauges that are integrated into the drought indicator 
system (Figure 2.14). 

 

Figure 2.14 Map of the catchments utilized to carry out the bias correction of precipitation forecast in the Orbigo System.  
The red sub-catchments correspond to the basins upstream of the stream gauges that are integrated into the drought 
indicator system. The beige catchment corresponds to the Orbigo System catchment. Sub-catchment IDs are indicated. 

Forecast quality and skill are investigated for accumulated rainfall as a function of lead time for 
three forecast initialization dates, namely October, March and September. To assess the 
enhancement of the bias-corrected forecasts compared to the raw (uncorrected) forecasts, three 
attributes of forecast quality are used, including overall performance, reliability and skill. To 
evaluate the overall performance, the Continuous Ranked Probability score (CRPS) is utilized, which 
is a measure of how good forecasts are in matching observed outcomes. The reliability, which is the 
statistical consistency between forecasts and observations (Schepen et al., 2018), is measured 
through the integral transform (PIT) diagram (Gneiting et al., 2007; Laio and Tamea, 2007). The PIT 
diagram is the cumulative distribution of the PIT values, which are defined by the values of the 
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predictive distribution function at the observations, computed at each time step. Skill is assessed 
based on the CRPS skill score, where the climatological forecast is utilized as reference forecast. 

2.2.3 Results towards potentially added value AI-enhanced CS 

Results show that forecast performance (CRPS), both for the raw and enhanced forecasts, improves 
at longer lead times when analyzed for accumulated rainfall totals. This is expected given the 
decrease effect in relative variability for aggregated times. Overall, the bias-corrected forecasts 
show greater improvement compared to the raw forecasts at longer lead times, beyond the sub-
seasonal horizon. There are, however, differences between forecast initialization dates and 
catchments (Figure 2.15). Regarding spatial aggregation, catchment 306 seems to experience less 
enhancement than the sub-catchments considered for the drought indicators. For these drought-
indicator sub-catchments, the major improvement is experienced in autumn, and summer at longer 
lead times. This can be observed in the October and August initializations, where the raw forecast 
has a higher CRPS compared to the bias-corrected forecast for lead times beyond the sub-seasonal. 
Results for the March initialization are less clear. For some catchments (e.g. 306), bias corrected 
forecasts perform better than raw forecasts in the sub-seasonal horizon, while for other sub-
catchments (e.g. 30604) raw forecasts perform better. There is no improvement in performance for 
summer months. 
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Figure 2.15. CRPS scores for forecast accumulated rainfall. Results for three catchments (columns) and for each 
initialization date (rows) are presented. CRPS scores for each initialization dates and lead times are standardized (i.e. 
divided by the observations mean) to eliminate the effect of magnitude differences in accumulated totals across lead 
times. 

Figure 2.16 shows the PIT diagrams for all the catchments for the initialization dates of interest. For 
each forecast initialization date, lead times 30 and 120 days are shown. Overall, the bias corrected 
forecasts show a considerably better reliability than the raw forecasts for all initialization dates and 
lead times. This can be concluded from the shape of the bias-corrected PIT values, which are more 
parallel to the diagonal and lie closer. Despite the improvement in reliability, the bias-corrected 
forecasts tend to over-predict accumulated precipitation, especially for longer lead time (120 lead 
time row in Figure 2.16), where the PIT values lie further above the diagonal.  

In addition, the bias corrected forecast is able to correct the jumps that can be observed in the raw 
forecast PIT curves a lead time of 30 days. This is an indication of narrowness and over prediction of 
the raw forecast, as well as a potential sign of difficulty of the system to forecast low precipitation 
(Crochemore et al., 2016). This tendency is usually lost at longer lead times, as can be seen in the 
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PIT diagrams for lead time 120 days. Therefore, the bias corrected forecast should be able to predict 
accumulated precipitation at shorter lead times with a higher reliability. 

 

Figure 2.16. PIT diagrams for forecast accumulated rainfall for all catchments. Results for each initialization date 
(columns) and 30 and 120 lead times (rows) are presented. 

Results from the Pearson correlation analysis (Figure 2.17) show that the raw forecast ensemble 
means present a stronger linear relationship with observations than the bias-corrected ensemble 
means in all the catchments and initialization dates. Ensemble mean, bias-corrected and raw 
forecasts correlate relatively well with observations at short lead times (correlation coefficient near 
or above 0.5). This means that the ensemble means vary similarly to observations in the short lead 
times. Nevertheless, the correlation is reduced beyond the sub-seasonal lead time horizon. While 
no distinctions are observed among catchments, there are seasonal differences. On the one hand, 
the linear correlation shows almost no differences in behaviour between the raw and the bias-
corrected forecasts for all year forecast initialization dates and March forecast initialization dates. 
On the other hand, for August and October initialization dates, the correlation of the bias-corrected 
forecast decreases faster than the raw forecast with lead times, and becomes negative up to -0.5. 
The correlation of the climatological forecast present perfect, negative correlation for all seasons, 
while it starts negative and becomes zero when computed for all lead times. This is expected 
behaviour associated with the cross-validation process (Barnston and van den Dool, 1993). 
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Figure 2.17 Pearson correlation values for accumulated rainfall. Results for three catchments (columns) and for each 
initialization date (rows) are presented. 

Skill scores for accumulated total precipitation are presented in Figure 2.18. The bias-corrected 
forecast outperforms raw forecast for the majority of the cases, except for catchment 306 in August 
and October initialization dates, and sub-catchment 30604 for March initialization date and short 
lead times. Both bias corrected and raw forecast present skills above 30% in the sub-seasonal time 
horizon and for all initialization dates except summer. Beyond the sub-seasonal lead time, the raw 
forecast becomes worse than climatology, whereas the bias-corrected forecasts lose skill but never 
become worse than climatology. There is almost no skill in forecasts initialized in summer (August). 
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Figure 2.18 CRPS skill scores for accumulated total precipitation. Results for three catchments (columns) and for each 
initialization date (rows) are presented. Higher CRPS skills scores reflect better forecast performance. The skill of 
climatology is equal to zero. 

 

2.2.4 Discussion 

This work presents the results for the verification of the forecast quality of precipitation data after 
implementing the BJP-SS approach for bias-correction. Whereas results show minor differences in 
the bias-correction effectiveness regarding catchment size, there are seasonal differences between 
the bias and non-bias corrected forecasts. The bias-corrected forecast performs better than the raw 
forecast in autumn, while the enhancement in spring is less effective. Further research is needed to 
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understand how the number of ensemble members affects forecast quality, considering that 
different ensemble sizes might impact verification metrics (Ferro et al., 2008).  

2.2.5 Next steps 

As mentioned in the previous sections, the next steps will focus on assessing the quality of the 
forecast streamflow with the AI-enhancement and the assessment of the added value (to be 
reported in D7.3). Some other model configurations may also be tested to correct the rainfall (D2.2), 
in order to investigate whether the skill can be further improved in April. 
  

3 Delta climate change hotspots 

3.1 Rijnland 

3.1.1 Introduction 

The Rijnland command area is situated in the western part of the Netherlands, north of the mouth 
of the river Rhine, and is mostly consisting of low-lying land-reclamation areas below sea level, with 
a heavily controlled irrigation and drainage surface water system. The Rijnland regional water 
authority is responsible for water quantity and quality management of this system of inter-
connected canals, river reaches, and lakes (D7.1).  
 
This case study focusses on meteorological and hydrological droughts. When evapotranspiration 
from the area exceeds precipitation over a longer period of time (weeks to months), embankment’s 
stability along the waterways may be at risk and fresh water demand for irrigation for agriculture 
(crops, flower bulbs, tree nurseries) will be high, increasing salinity pressure through seepage and 
from ship lock operation. This will require the water authority to intensify manual inspections of 
embankments and increase flushing of the water system with water from the River Rhine by 
operation of inlets and pumping stations in the South, and discharge the water through pumping 
stations in the north and west. Because of higher temperatures and longer day-light in the summer-
half year in the NL, evapotranspiration to exceed precipitation occurs usually between April and 
September and is monitored accordingly as a cumulative precipitation deficit only in that period in 
the Netherlands. 
 
When such period of precipitation deficit and high local fresh water demand coincides with a 
hydrological drought in the Rhine basin with low-flow of the Rhine when entering the Netherlands, 
the drought challenges increase for the Rijnland water authority. They can no longer let in water 
from the Rhine at their southern boundary (Gouda) because of too high salinity levels caused by sea 
water intrusion. Rijnland then has to negotiate and coordinate with neighbouring regional water 
authorities and the national water authority to start an alternative inlet route of Rhine water further 
upstream, called KWA. The capacity of that alternative fresh water inlet is however less compared 
to the normal route.  
 
The water authority applies thresholds for increasing alert and warning level with increasing 
cumulative precipitation deficit, and a single alert threshold for too low Rhine discharge at Lobith 
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(where the Rhine enters the Netherlands) but varying per calendar month (D7.1). A drought 
monitoring report is issued monthly, bi-weekly or weekly, depending on the (near-)drought 
situation, and the maximum lead time of predictions in that report has been two weeks. As the 
measures of manual inspection of embankments and alternative water supply rout requires 
planning and coordination, the water authority expressed to CLINT its interest in sub-seasonal lead 
times up to a month. The potential added benefit thus would be in increased preparedness for an 
upcoming drought. In addition, the water authority and agricultural stakeholders, may also optimise 
operation of ship-locks, inlets at Gouda, and on-field storage basins to postpone the moment in 
which too high surface water salinity levels are reached during the drought. 
 
The impact indicator and added value of AI-enhanced monthly drought predictions for Rijnland is, 
therefore, increased drought preparedness, which is to be quantified in terms of expected increase 
in correct drought alerts at lead times beyond two weeks.  

3.1.2 Analysis chain for AI-enhanced CS potential added value 

The flowchart of Figure 3.1 describes the steps applied for assessing the potential added value of 
the CLINT AI-enhanced predictions for early warning of droughts in the Rijnland case study. The 
analysis concerns prediction of the cumulative precipitation deficit from April to September, and 
then the alert decisions that would be taken based on the precipitation deficit thresholds that are 
used in the current operational drought event management practice of the Rijnland water authority.  

Data and benchmark 
Observed cumulative precipitation deficit for the Netherlands, from April to September, as reported 
by the Royal Netherlands Meteorological Institute (KNMI) from 2000 – 2019 is taken as the ground-
truth data set (Source: https://www.knmi.nl/nederland-nu/klimatologie/geografische-
overzichten/neerslagtekort_droogte. Last accessed March 2024). Rijnland water authority reports 
this country-average precipitation deficit as a first indicator in their bi-weekly drought monitor. 
 
Observed precipitation and potential evapotranspiration (Makkink reference evapotranspiration), 
from the standard 13 monitoring stations used by KNMI for each variable to calculate the 
precipitation deficit, for the period 1980-1999, are used to create monthly climatology predictions 
as reference forecast, and for calendar-month specific correction of ECMWF extended range 
potential evaporation predictions to Makkink reference evapotranspiration. (Source: Royal 
Netherlands Meteorological Institute (KNMI). Last accessed March 2024) 
 
As benchmark forecasts, re-forecasts of precipitation and potential evaporation from ECMWF 
extended range (S2S forecasts) issued with the operational forecasts from 13 June 2019 to 15 June 
2020 is used (Source: https://www.ecmwf.int/en/forecasts/documentation-and-
support/extended-range-forecasts/ecmwf-monthly-forecasting-system). Extended range forecasts 
are issued every 3 or 4 days, such that the issue date closest to the start of each month was selected 
and then the 30-day cumulative precipitation (lead time ~1 month) and potential evaporation was 
used as monthly.  
 

https://www.knmi.nl/nederland-nu/klimatologie/geografische-overzichten/neerslagtekort_droogte
https://www.knmi.nl/nederland-nu/klimatologie/geografische-overzichten/neerslagtekort_droogte
https://www.ecmwf.int/en/forecasts/documentation-and-support/extended-range-forecasts/ecmwf-monthly-forecasting-system
https://www.ecmwf.int/en/forecasts/documentation-and-support/extended-range-forecasts/ecmwf-monthly-forecasting-system
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CLINT AI- enhanced forecasts are Extreme Learning Machine calendar-month specific predictions of 
cumulative precipitation (1-month lead time), from 2000 – 2018. The machine learning method 
applied is summarised below and described in detail in deliverable D2.2.  
 

 

Figure 3.1 Flowchart for assessing potential added value of AI-enhanced climate service precipitation deficit drought 
alert Rijnland. 

AI enhancement 
Extreme Learning Machine (Explicit climate information approach) 
To develop AI-enhanced forecasts of total precipitation of the upcoming month (green boxes, Figure 
3.1), an approach that leverages on climate information and machine learning techniques was 
designed (Bosso, 2022). More specifically, this approach employs local atmospheric variables, global 
climate variables and teleconnection patterns, as sub-seasonal lead-times are short enough for the 
initial atmospheric conditions to still influence weather, but also long enough for the slow varying 
phenomena, such as ocean temperature variability and teleconnection patterns, to start to play a 
role in atmospheric circulation. Candidate variables were preselected among those that might 
influence precipitation processes in Rijnland (e.g. precipitation, specific humidity, wind speed, sea 
surface temperature, North Atlantic Oscillation, etc.). 
  
The global climate variables (and the teleconnection patterns), then undergo a phase of 
dimensionality reduction and teleconnection detection, at the end of which only the first Principal 
Component (PC) of each variable and the relevant teleconnections are retained. This phase is a re-
adaptation of the El Niño Phase Analysis (NIPA, Zimmerman et al., 2016) and of the Climate State 
Intelligence (CSI, Giuliani et al., 2019) framework, which is a statistical framework that was originally 
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developed to forecast seasonal precipitation based on prior state of atmospheric-oceanic variables. 
In CLINT, the method has been modified to predict monthly cumulative precipitation and to 
introduce multiple teleconnection patterns, such as North Atlantic Oscillation (NAO), El Niño 
Southern Oscillation (ENSO), the East Atlantic oscillation (EA), and the Scandinavian pattern (SCA) 
(see deliverable D2.2). The PCs in specific teleconnection phases retained were then used, together 
with local atmospheric variables, to train twelve different Extreme Learning Machine (ELM) models, 
one for each calendar month. ELM models were chosen because they are known to perform well 
with small sample-size like the one used in this work. Moreover, because of the small sample size 
(40 years in total, hence 40 data points per each calendar month-specific model), the maximum 
number of input features for the models was constrained to 5. All the different combinations of 
features were used to train each model independently, and the set that provided the best, i.e. 
lowest, Mean Squared Error (MSE) was selected. The training, validation and testing of the model 
follows a Leave One Out Cross Validation (LOOCV) approach, as the size of the sample dataset does 
not allow to adopt the canonical procedures. Further details on the model architecture and 
performance are given in the deliverable D2.2 ML algorithms for EE forecast and reconstruction. 
 
In the next section, the resulting LOOCV monthly ELM precipitation predictions for the period 2000-
2018 are compared to benchmark S2S precipitation predictions (blue box forecast accuracy AI-
enhanced against benchmark, Figure 3.1). Their potential added value in drought alert decision 
making for Rijnland water authority is being assessed and discussed (blue box 19-year re-forecast, 
number of hits and false alarms, Figure 3.1). 

Impact model 
The impact model is relatively simple for this case study as it concerns the derivation of potential 
precipitation deficit. The method applied is as defined by the KNMI for the Netherlands, but then 
with a monthly time step instead of daily, as per equation: 
 

𝑃𝑑𝑒𝑓(𝑡)  =  ∑ (𝐸𝑇𝑝𝑜𝑡(𝑡) − 𝑃(𝑡))𝑡=9
𝑡=4   

 
Pdef = Cumulative potential precipitation deficit [mm] 
ETpot = Cumulative Makkink potential evapotranspiration [mm] 
P = precipitation [mm] 
t = timestep [calendar month, where 4 is referring to April and 9 is referring to September] 
 
The precipitation deficit starts at 0 each year 1st of April. The observed cumulative precipitation 
deficit is kept at 0 in case negative (precipitation surplus).  
 
The impact model is used to emulate operational monthly prediction of potential precipitation 
deficit. At the beginning of each month the latest observed cumulative precipitation deficit is 
assimilated and the predicted cumulative ETpot for the coming month is added and the predicted P 
for the coming month is subtracted. This results in the 1-month lead time forecast of cumulative 
precipitation deficit, for each summer month from April to September. This forecast emulation is 
applied to the years 2000-2018 as test period.    
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3.1.3 Results towards potentially added value AI-enhanced CS 

Deliverable D2.2 already presented the benchmark analysis comparing the AI-enhanced ELM 
monthly precipitation forecasts and ECMWF extended range forecasts against ERA5 re-analysis 
precipitation, showing consistently smaller prediction errors (MSE) from the AI-enhanced 
predictions. In this deliverable, however, analyses have progressed towards assessing the potential 
added value for the local scale use case of Rijnland. As this use case concerns droughts as indicated 
by precipitation deficit in the summer months, focus has to be on performance assessment for 
predicting low precipitation amounts in the months April to September. For example, Figure 3.2 
shows the monthly prediction values of April and August for the years 2000-2018. It can be seen 
that the extreme learning machine predictions (ML-ELM) in most years are slightly better, also for 
low values. For some years, however, ECMWF extended range ensemble mean provided better 
predictions of precipitation, notably for the year 2003 of both April and August precipitation. Similar 
results have been found for the months May, June, July, and September. 
 
 

 

Figure 3.2 Comparison of predictions ECMWF S2S, ELM, and ERA5 cumulative 30-day precipitation for months July and 
August 

 
The next step, following the flowchart (Figure 3.1), was to analyse the impact these AI-enhanced 
precipitation predictions would have on 1-month lead time drought alerts as per the operational 
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procedure of the Rijnland water authority of monitoring cumulative potential precipitation deficit. 
Figure 3.3 illustrates the comparison for ECMWF S2S ensemble mean, AI-enhanced ELM predictions, 
and observations for the years 2000, 2003, 2006, and 2018. The horizontal line indicates the pre-
alert threshold applied by Rijnland for droughts (Table 3.1). It can be seen that the no-drought year 
of 2000 was well-predicted by both the ECMWF extended range-based and ELM-based precipitation 
deficit forecasts, with both staying well below the 125 mm threshold. For the drought years 2003, 
2006, and 2018 a mix of results can be seen:  

• the 2003 threshold was exceeded by ECMWF prediction but not by ELM;  

• the 2006 threshold was exceeded by both the AI-enhanced ELM predictions and the ECMWF 
benchmark, with the ELM predictions showing a better match with the more extreme 
observed precipitation deficit that year;  

• and for 2018 both predictions exceeded the threshold, this time with the ECMWF matching 
the maximum exceedance better, but both exceeding the pre-alert threshold of 125 mm a 
month too late (observed exceedance was beginning of July, while the predictions only 
exceed in August). 

 
 

 

Figure 3.3 Comparison of 1-month lead time ECMWF S2S ensemble predictions and AI-enhanced ELM predictions with 
observed cumulative precipitation deficit for the Rijnland case study. 

 
To come to a more comprehensive evaluation of the potential added value, threshold exceedances 
are assessed for all four thresholds operated by Rijnland, and for all years between 2000 and 2018.  
Rijnland operates four early drought alert thresholds for cumulative precipitation deficit as 
presented in Table 3.1. 
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Table 3.1 Cumulative potential precipitation deficit thresholds as used in operational practice for drought awareness and 
increasing alert-level by the Rijnland water authority 

Alert level Cumulative potential precipitation deficit [mm] 

First alert level – pre-alert for drought awareness 125 

Second alert level (potential need for stability check 

most drought-prone embankments) 

150 

Third alert level (potential need for stability check 

drought-prone embankments) 

175 

Fourth alert level (potential need for stability check 

all embankments) 

200 

 
By analysing for each year, false alarms can also be quantified, and verification metrics such as hit 
rate, false alarm ratio, and Critical Success Index (CSI) derived. This is analysed for climatology 
predictions as a reference, ECMWF extended range predictions as benchmark, and the ELM 
predictions as AI-enhanced. The results are presented in Table 3.2 for thresholds 125 and 150 mm 
as examples, and then for all thresholds for the key added value indicators of correct alerts, ‘hits’, 
and wrong alerts ‘false alarms’ in bar charts of Figure 3.4. 
 
Table 3.2 shows that for the lower 125 mm alert threshold, which is assessed based on monthly 
predictions of precipitation deficit, the benchmark ECMWF predictions perform slightly better, with 
one more hit than the ELM predictions. However, neither of them demonstrates added value, as 
the simple climatology predictions score equally well, with a hit rate of 0.7, and all three have a 
critical success index of 0.6. For the 150 mm threshold, the AI-enhanced ELM predictions 
outperform the ECMWF ensemble mean predictions and the climatology predictions, predicting 14 
out of the 20 months above the threshold, against 9 and 10 hits for the benchmark and reference 
forecasts respectively. The AI-enhanced predictions result in less false alarms as compared to the 
ECMWF and climatology predictions. 
 
 
 
 
 
 
 
 
 

 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 
D7.2 Preliminary AI-enhanced Local Climate Services 55 

 

Table 3.2 Comparison of the performance of monthly alerts based on climatology, ECMWF extended range ensemble 
mean, and AI-enhanced ELM predictions of cumulative precipitation deficit for Rijnland 125 and 150 mm drought 
thresholds 

 
 

 
 
It is, however, also important to consider the duration of events, especially when they sometimes 
exceed the forecast lead time. For droughts this is often the case. Scoring a ‘hit’ after the first alert 
of the same event has been given already is not relevant when the decision for action is already 
taken at the first alert. Even more so, when the drought duration is two months or longer, and the 
lead time is 1-month, in the standard verification approach a ‘hit’ may be scored when the event is 
already happening and will already be observed. The forecast alert is at such times no longer 
relevant for decision making. As the potential added value for the Rijnland case study is defined as 
‘increase in number of correct drought alerts for drought preparedness’, the contingency table type 
analysis above is now repeated with hits and missed events conditional to the event not yet taking 
place. The results for alert thresholds 125 and 150 mm are presented in Table 3.3. 
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Table 3.3 Comparison of the performance of alerts for the onset of drought based on climatology, ECMWF extended 
range ensemble mean, and AI-enhanced ELM predictions of cumulative precipitation deficit for Rijnland 125 and 150 
mm drought thresholds 

 

 
 
The results show an added value of the benchmark ECMWF forecasts with 2 more hits than the 
climatology and ELM predictions for the 125 mm, and a clear added value of the ELM predictions 
for the 150 mm threshold of 4 hits against 0 and 1 hits of the ECMWF and climatology predictions 
respectively. It also indicates that, out of a total of 10 events, the hit rate for predicting drought 
onset is not high (0.4).  
 
Figure 3.4, which summarizes correct alerts (hits) and false alarms for all four drought alert 
thresholds, shows that the benchmark ECMWF forecasts perform better for the 125 mm and 200 
mm thresholds, while the AI-enhanced ELM prediction provides more accurate alerts for the 150 
mm and 175 mm thresholds. The lower panel of Figure 3.4 also shows that the AI-enhanced ELM 
predictions result in a reduction of false alarms consistently for all drought alert threshold. 
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Figure 3.4 Potential added value assessment in terms of correct alerts (monthly hits top-left, and only drought onset hit 
top-right) and false alarms for the four drought alert levels as used in monitoring operation by Rijnland water authority 
for cumulative precipitation deficit from April to September, comparing 1-month lead time climatology predictions as 
reference, with ECMWF ensemble mean predictions as benchmark, and CLINT ELM predictions as AI-enhanced, for the 
reforecast period from 2000 to 2018. 

 

3.1.4 Discussion  

From these decision-based 1-month lead time prediction verification analyses, there are several 
interesting findings to be highlighted. For the lower alert threshold of a 125 mm precipitation deficit, 
two-thirds of the months exceeding this threshold, can be predicted a month in advance using basic 
climatology. This alone could be a reason for the water authority to start preparing for and 
monitoring such predictions, as they currently lack outlooks beyond two weeks. This holds, 
however, mainly for assessing whether a current drought will endure for another month or not: 
predicting the first month at which the lower threshold will be exceeded is not that successful, with 
a maximum hit rate of 0.4 for ECMWF extended range. On the other hand, in 13 out of the 19 years 
analysed the precipitation deficit being over the threshold of 125mm, it could also be discussed 
whether this threshold is perhaps too precautionary, even as a pre-alert for awareness. The AI-
enhanced 1-month predictions of precipitation, using key climatic drivers as input to calendar-
month specific extreme learning machines, do have potentially added value over the climatology 
and benchmark ECMWF extended range predictions for the 150 and 175 mm thresholds, ranging 
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from 1 to 5 more correct drought alert decisions over the reforecast period from 2000-2018 (19 
years). The benchmark ECMWF extended range outperforms climatology and the AI-enhanced 
predictions for the lowest and highest precipitation deficit threshold.  
 
The AI-enhanced predictions consistently perform better, for all thresholds, in terms of reduced 
number of false alerts. This will, however, often be of minor added value in the current operational 
practice of the Rijnland water authority because they have indicated that once drought measures 
have been activated, they are preferably kept active to the end of the summer season, September, 
to avoid switching on-off measures multiple times. It would need to be analysed how many of the 
false alarms occur before the event actually starts, or are given in a year that no drought occurs, 
because such false alerts would preferably be minimised. 

3.1.5   Next steps 

Overall, the first potential added value of the AI-enhanced 1-month lead time ELM precipitation 
predictions has been assessed with increased number of correct drought alerts for two of the four 
thresholds applied by Rijnland, and at the same time consistently resulting in fewer false alerts, as 
compared to the ECMWF extended range ensemble mean precipitation predictions. 
 
As a next step the ECMWF extended range predictions and the AI-enhanced ELM predictions will be 
analysed in ensemble mode. The trade-off between hits and false alarms needs to be analysed. For 
preparedness (planning and preparation of mitigation measures) false alarms may have only limited 
adverse effects, while if the warnings will also lead to control measures, such as limiting surface 
water supply and ship-lock operation, false alarms are more damaging. 
 
For the next deliverable (D7.3), also other AI-enhanced prediction methods will be assessed, which 
will extend the assessment of potential added value for the Rijnland case study over more lead times 
(weekly up to a month, and monthly up to 6 months), and to the alert thresholds for too low 
discharge of the Rhine river at Lobith (Deliverable 2.2).  
 

3.2 Aa en Maas 

3.2.1 Introduction 

The Aa en Maas local case study focuses on a sub-catchment of the Dutch Rhine-Meuse delta. The 
sub-catchment covers the river Aa and its tributaries and has a size of approximately 1,600 km2. 
Benninga et al. (2019) describe the study area in detail. The land use in the area consists of 
agricultural fields used for animal and crop farming. The regional water authority Aa en Maas 
manages the sub-catchment. Their daily operations consist of operational management and real-
time control of the surface water system, operation of wastewater treatment plants and the 
maintenance of embankments. The water authority operates a system of weirs and pumping 
stations to minimize water shortages during dry periods. The water authority uses various 
information sources for their operational water management, for example up-to-date observations 
and forecasts of meteorological and hydrological variables, such as precipitation, 
evapotranspiration, and discharge. In addition, the regional water authority cooperates with the 
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national water authority Rijkswaterstaat to align the management of the regional water system and 
the management of the Meuse river.  
 
User definition of extreme event 
The climate of the sub-catchment is temperate oceanic and experiences precipitation spread evenly 
throughout the year with an average amount of 767 mm (at KNMI station Volkel). Temperatures 
typically vary between 3 C˚ in January and 19 C˚ in July. Therefore, evapotranspiration is strongly 
seasonal and exceeds rainfall rates in summer periods, leading to a precipitation deficit. In addition, 
climate change projects show that extreme events will become more pronounced in the area, as 
emphasized by the recently published KNMI’23 climate projections. Thus, future summers will 
become drier and future winters will become wetter. 
 
Meteorological droughts (expressed as precipitation deficit) lead to water supply shortages in both 
the surface water and groundwater systems. Various users in the catchment depend on the 
availability of sufficient water in summer periods. Examples of users are the agricultural sector, 
nature conservation agencies, the transport sector, industry, and domestic water use (e.g., drinking 
water). Droughts due to precipitation deficits have large impacts on these users. For example, 
farmers irrigate their fields from both groundwater reservoirs and surface water due to the 
precipitation deficit in summer periods. The water authority can impose irrigation bans to limit the 
decrease in groundwater levels based on thresholds for groundwater levels. Water shortages thus 
lead to decreased productivity and financial losses for the users. Also, nature conservations are 
impacted as droughts are potentially devastating for susceptible nature ecosystems such as the 
peaty area De Peel. 
 
Decision process 
The water authority is constantly monitoring groundwater levels in its management area. They 
calculate the current drought status by comparing current groundwater observations with long-
term average conditions. The information is used for decision-making on both strategic and 
operational levels, for example:  

• Optimize the system of weirs to optimally distribute surface water in the area; 

• Determine whether irrigation bans should be imposed. 
 
In addition, the water authority is communicating the drought status of the groundwater system to 
the end users using an online dashboard, see Figure 3.5. 
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Figure 3.5 Dashboard of regional water authority Aa en Maas to communicate the current drought status of 
groundwater system using observations. Screenshot from https://www.aaenmaas.nl/actueel/. (accessed 25 March 
2024) 

 
User wishes 
The water authority has a good understanding of the current drought status of the groundwater 
system. A valuable addition would be information on middle to long term evolution of the 
groundwater droughts. Therefore, the goal of this case study the development of an impact 
indicator that informs the water authority on the expected development of groundwater droughts 
on sub-seasonal to seasonal time horizons. 
 
Impact indicators for quantifying the value of AI-enhanced CS 
The water authority currently does not have a climate service that provides (sub-) seasonal 
groundwater forecasts. Thus, a first step is to develop a climate service that provide (sub-) seasonal 
groundwater forecasts using meteorological (sub-) seasonal forecasts and assess its skill. Insight in 
the (sub-) seasonal development of groundwater drought will be of added value for the water 
authority. In addition, we will use CLINT-derived AI-enhanced climate information in the bias-
correction procedure to enhance the skill of the (sub-) seasonal groundwater forecast. 

 

3.2.2 Analysis chain for AI-enhanced CS potential added value 

Figure 3.6 shows the analysis chain for this case study. We will elaborate on the steps: 
1. The ECMWF seasonal forecast SEAS5 (P and ETref) is the meteorological input we use in the 

impact model (Johnson et al., 2019). A bias correction procedure is needed to ensure the 
climatology of SEAS5 is consistent with the climatology of local KNMI observations that are 
used as validation of the impact model.  

a. We perform the bias correction in this stage using local P and ETref observations 
from KNMI (Source: Royal Netherlands Meteorological Institute (KNMI). Last 
accessed March 2024); 

b. We want to enhance the bias correction using CLINT-derived AI-enhanced climate 
data in the coming months. 

https://www.aaenmaas.nl/actueel/
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2. We develop a data-driven impact model for groundwater level forecasting: 
a. The model is trained using both local groundwater observations as well as local 

meteorological observations of P and ETref retrieved from KNMI (Source: Royal 
Netherlands Meteorological Institute (KNMI). Last accessed March 2024); 

b. The data-driven model uses transfer functions to simulate groundwater dynamics. 
We perform a feature analysis to select specific transfer functions that are 
important for explaining groundwater dynamics. 

3. Next, we use the bias-corrected seasonal meteorological forecasts as input to the trained 
impact model to retrieve a six-month forecast of groundwater levels; 

4. Finally, we validate the forecasts in a hindcasting procedure using historical groundwater 
observations to determine the forecast skill and the added value of the climate service. We 
use the full ensemble of SEAS5, so we can calculate terciles (dry, regular, wet conditions). 

5. We will repeat steps 3 and 4 in the coming months using the CLINT-derived AI-enhanced 
bias-corrected seasonal meteorological forecasts. 

 

 

Figure 3.6 Flowchart for assessing potential added value of AI-enhanced climate service for Aa en Maas. (Transparent 
green refers to AI-enhancement still to be assessed) 

 

3.2.3 Results towards potentially added value AI-enhanced CS 

We discuss the results of three aspects in this deliverable: training of the impact model, the result 
of the bias correction, and the groundwater level forecast skill. The climate service is developed for 
various groundwater measuring locations. We show the results for one location in this report. 
 
 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 
D7.2 Preliminary AI-enhanced Local Climate Services 62 

 

Training of impact model 
Figure 3.7 shows the results of training the impact model. The impact model is trained using local 
groundwater observations which are indicated in the figure by the black dots. The seasonal variation 
in groundwater level is clearly visible: high groundwater levels during winters which decrease during 
summer. The results of the trained impact model are visualised using the blue line in the figure. The 
impact model simulates groundwater levels using a daily time step. The impact model is able to 
simulate groundwater level dynamics quite well on a daily scale. We resampled the model results 
to a weekly time step for the remainder of this study. As a general rule of thumb for these kinds of 
simulations, the model is assumed to be accurate when the model validation in terms of the 
coefficient of variation exceeds well over 70% (Collenteur et al, 2019; Pezij et al., 2020). The 
coefficient of variation of this particular model is 78.6%, which means we assume that the model 
can be used for forecasting. 

 

 

Figure 3.7 Observed groundwater time series (meting) and trained impact model. 

 

Results of bias correction 
Figure 3.8 shows the results of the bias correction. The figure shows the empirical cumulative 
density function of the seasonal forecasts and the reference (local) datasets. The climatology of the 
precipitation seasonal forecast already matches the climatology of the KNMI reference data quite 
well. Thus, the bias correction does not have a considerable impact on the precipitation seasonal 
forecast. The climatology of the evapotranspiration seasonal forecast does not match the 
climatology of the KNMI reference data well. Therefore, the seasonal forecast is corrected 
considerably. The result (SEAS5 bias corrected) still shows a deviation to the empirical cumulative 
density function of the reference dataset. In particular, the higher evaporation values, which can be 
expected during dry summer periods, are underestimated by the bias corrected seasonal forecast. 
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Figure 3.8 Result of the linear scaling bias correction approach on precipitation and reference evapotranspiration 
forecasts. 

 

Groundwater level forecasts: skill and added value 
We used a hindcast approach to assess the forecast skill of the impact model. Figure 3.9 shows the 
forecast of the model as well as the skill assessment in terms of hit ratio. We use all ensemble 
members of the bias corrected seasonal meteorological forecast to generate 50 groundwater level 
seasonal forecasts. Next, we determine a tercile group per ensemble member: whether the 
conditions per simulated time step represent average conditions or will become more dry or more 
wet in comparison with long-term climatological conditions.  
 
The top panel of Figure 3.9 visualizes this analysis. Each ensemble member is colour coded. In 
addition, we count the number of occurrences in each tercile group. The lower panel visualises the 
observed groundwater conditions during a time step as a colour code referent to one of the three 
tercile groups. The percentage indicates the hit ratio: the number of occurrences of the forecast in 
the observed tercile group. In other words, the forecast indicates for 15 June 2020 that 27% of the 
ensemble simulations indicate a development towards dry groundwater conditions on that date. 
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Figure 3.9 Groundwater level forecast in top panel and skill assessment in lower panel in terms of hit ratio. The orange 
colour indicates more dry conditions in comparison with long-term average climatological conditions, the blue colour 
indicates more wet conditions, and the green colour represents average conditions. 

 

3.2.4 Discussion 

Perspective on the forecast skill 
In general, the seasonal forecast of groundwater levels has a forecast skill up to one-two months. 
We combine two aspects achieve this skill: 

• Groundwater systems have a long-term memory in comparison with meteorological 
variables. The impact model utilizes this aspect by defining the correct initial conditions for 
the forecast runs; 

• The SEAS5 seasonal meteorological forecasts are available for a period up to six months. 
However, the meteorological forecasting ability in Europe is currently limited and has a skill 
for quite smaller periods. Therefore, we are considering continuing this project by using the 
ECMWF Extended Range forecasts, which provide forecasts up to 42 days. This forecast 
horizon is consistent with the found forecast horizon with skill for the groundwater 
modelling exercise.  

 

Model 
The impact model shows potential in terms of describing the local groundwater system. We have 
identified the following possible enhancements to improve the results of this study: 

• The long-term climatological conditions are now estimated for a small period (8-10 years) 
due to the lack of long-term groundwater observations. We want to extend the availability 
by combining long-term historically meteorological observations with the impact model to 
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generate long-term synthetic groundwater observations, so we can improve our 
understanding of long-term groundwater conditions. 

• The bias correction procedure can be improved for the reference evapotranspiration 
dataset. CLINT partner SMHI developed an AI-based bias correction method including a 
European reference dataset. We want to utilize this new innovative method in the coming 
months. 

 

3.2.5 Next steps 

So far, we used a simple bias correction method. The next step is to improve the bias correction 
using CLINT-generated AI-enhanced climate data We can then repeat steps 3 and 4 of the analysis 
chain to assess the potential added value of using the AI-enhanced climate data for this climate 
service. In addition, we want to work together with operational water managers of regional water 
authority in the summer of 2024 to assess the added value of the CS for their benefits. This will be 
reported in D7.3. 
 

3.3 Main water system of the Netherlands 

3.3.1 Introduction 

In this case study, we consider the impact of extratropical transitions (ETT) on flood risk in the 
Netherlands, in current and future climate. The flood risk along the Dutch coast is primarily 
influenced by storm surges. Currently, storm surges are mainly caused by storm depressions, 
whereas extratropical induced storm events may become relevant for flood risk management if the 
occurrence of extratropical transitions increases in future climate. Potentially, the probability of 
occurrence of extreme wind speeds and corresponding wind directions changes in future climate. 
Moreover, the season in which extreme storms occur may change. The wind statistics play an 
important role in the derivation of design loads for flood defences along the Dutch coast. On the 
other hand, the storm season determines the optimal timing for maintenance of the flood defences. 
Within this case study, we investigate the contribution of extratropical-induced storm surges to 
wind statistics and to the optimal timing of maintenance in the Netherlands in future climate.  
 
The user organisation for this case study is the technical directive for water management of the 
Ministry of Infrastructure and Water, Rijkswaterstaat (RWS). The resulting insights from this case 
study can support future flood risk management for the Dutch coast, concerning the design of flood 
defence measures or changes in maintenance policy, which is of keen interest to RWS. 
 
User-definition of extreme event 
An extreme event is defined as an event that poses a significant flood risk for primary flood 
defences. Each defence has its own safety standard, depending on the area it is protecting. The 
safety standard is expressed as an allowable probability of flooding, which is related to the 
probability of occurrence of an extreme event and the probability that a flood defence fails during 
this extreme event. During this case study, we focus on the first. For the coast, extreme events 
concern high sea levels and waves, which are mainly caused by wind: on the relatively shallow North 
Sea, wind storms can cause set-up (storm surge) of the water, especially from the NW direction. 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 
D7.2 Preliminary AI-enhanced Local Climate Services 66 

 

Besides the direction of the storm, also the duration and the timing of the storm with respect to 
high tide play an important role as so-called driving mechanisms for extreme sea levels.  
 
Decision process for preparedness, adaptation, and event or risk management  
The Dutch approach to flood risk adaptation is a so-called ‘multi-layer safety’ approach, in which 
three layers are distinguished: 

1. Reducing the probability of flooding, for example by constructing flood defences 
2. Reducing the consequences of flooding. This concerns spatial planning, for example avoiding 

buildings in vulnerable areas.  
3. Improving disaster management, for example by informing inhabitants about evacuation 

procedures.  
This case study focuses on the first step by providing information that supports a correct derivation 
of the design load for coastal flood defences in the future, which are based on storm statistics. 
Moreover, the results will support decision-making processes for maintenance, which is also an 
important aspect in reducing the probability of flooding. 

 
User wishes and requirements for enhanced climate services 
The effect of ETTs in future climate is not incorporated in the current statistical models for the 
hydraulic loads at the Dutch coast. RWS is interested in methods that provide insights into the 
contribution of ETTs to future design loads and maintenance planning. It is important that the 
resulting climate service is consistent and compatible with the current models, in order to ensure 
convenient applicability within the Dutch design context.  
 
Impact indicators for quantifying the value of AI-enhanced CS 
When considering flood risk research in the Netherlands, climate services for coastal flood risk are 
primarily used for two applications: (1) early warning systems (forecasting of wind and sea levels) 
to ensure a timely closure of the storm surge barriers; and (2) extreme value analysis of causal 
factors for floods that are used for design and assessment of flood defences. This case study focuses 
on the second application, but the insights may be of interest for the first application as well, as new 
indicators for forecasting. An indicator for the value of AI-enhanced CS is therefore a better insight 
in causal factors of these extreme events. The problem with extreme value statistics is that it is 
difficult to determine whether the estimate is right. That is why insight into the causal factors is the 
most valuable result to obtain. 
 

3.3.2 Analysis chain for AI-enhanced CS potential added value 

Currently, the design hydraulic loads for the coast are based on historic data of measurements, 
which is a period of about 100 years. However, for design of flood defences in the Netherlands, the 
sea level with a return period of 1,000 years or more is relevant (Kok et al., 2016). It is very uncertain 
to estimate this extreme sea level from a limited dataset. Therefore, extensive research is being 
conducted in recent years to use large simulation datasets, such as the wind from SEAS5, for the 
estimation of extreme events (de Valk and van den Brink, 2023). The different ensemble members 
can be combined to create a synthetic time series of 9,000 years. This wind data has been used as 
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input to create an equally long time series of simulated sea levels, using the hydrodynamic model 
WAQUA-DCSMv5. 
 
The same dataset, consisting of SEAS5 wind and WAQUA sea levels, is used for this case study. 
Within this dataset, we want to compare ordinary winter storms and storms that were caused by 
ETTs. The method consists of two research directions: one is focused on comparing the statistics of 
wind speed and wind direction, and the second is focused on comparing the so-called driving 
mechanisms for extreme sea levels. The analysis chain is illustrated in Figure 3.10 and the different 
components are explained below.  
 

 

Figure 3.10 Flowchart for assessing the potential impact of ETTs for flood risk management of the coastal water system 
in the Netherlands.  

 
SEAS5 tropical cyclone track data 
For the identification of ETTs within the SEAS5 dataset, we link the SEAS5 time series of wind speed 
of each ensemble member to the corresponding tropical cyclone (TC) tracks. We consider the 
maximum sustained wind speed as the measure for TC intensity, because it is more consistent with 
the observed climatological distribution. As can be seen in Figure 3.11, the TC tracks are only 
available for the Atlantic Ocean. Only the TCs that reach the area shown in the right map are relevant 
for the Dutch coast. For these TCs (depicted by blue dots) we derive the time step t within the 
corresponding SEAS5 ensemble at which the TC reaches its shortest distance to the Netherlands. 
Since the TC track area is restricted to east of the UK, there is a time lag between t and the moment 
in time that the TC reaches the Dutch coast (depicted in red). To account for this time lag, an 
assumed period of 6 days after t is selected from the corresponding SEAS5 ensemble member as 
the period in which the ETT could have an effect on the wind at the Dutch coast. Several sensitivity 
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analyses will be performed concerning the selection of the ETT-affected period, e.g. for the 6 days 
period and for the area in which TCs are selected. 
 
Comparison of wind statistics 
The ETT-affected time periods will be compared to reference situations with no ETT storm occurring, 
in terms of wind statistics. For the reference situation, the wind data within the same time period is 
selected from a different member of the ensemble for which it is known that no ETT has occurred 
in a period of 12 days before and after t. This is illustrated in Figure 3.12. Then, the selected time 
periods with and without ETT occurrence can be compared. For this, both the mean and standard 
deviation of the wind speed are of interest. Besides, we compare the wind direction during 
maximum wind speed of a storm and the timing of storm occurrence within a year.  
  
 

 

Figure 3.11 Selection area for TC tracks (blue dots) in SEAS5 hindcast data. The red area indicates the Netherlands. 
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Figure 3.12 Illustrative example of the selection of wind speed time series with (upper graph) and without TC occurrence 
(lower graph), for location Vlissingen, for one SEAS5 ensemble member (19810101.10). The data has a time step of 6 
hours. 

 
Clustering storms using k-means 
Beside the statistics of wind speed and wind direction, also other properties of the storm play a role 
as driving mechanisms of extreme sea levels. More specifically, the complete set of driving 
mechanisms consist of the maximum wind speed, the wind direction, the maximum surge height, 
the astronomical tide level, the timing with respect to the next high tide, the duration and the 
rotation of the storm. These storm properties are used as the features for clustering storms. First, a 
set of storms is selected from the SEAS5 data, using Peak-Over-Threshold. For the storms within the 
set, the features are defined.  Based on these features, the storms will be clustered using k-means. 
Self-organizing maps (SOMs) and a maximum dissimilarity algorithm (DMA) will be used to support 
the k-means approach, in order to obtain representative clusters and gain understanding.  
 
Comparison of driving mechanisms of extreme sea levels 
The next step is to identify storms related to ETTs within the different clusters. For this, the same 
approach as described for the statistics is applied. Consequently, it is possible to indicate the amount 
of ETTs in each cluster and to investigate their characteristic features, in comparison to the other 
clusters. If the ETTs are concentrated within one or a few clusters, this could indicate that ETTs show 
a specific behaviour regarding the driving mechanisms of extreme sea levels. If not, it could indicate 
that ETTS behave very similar to ‘regular’ winter storms at the Dutch coast.   
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Indication of the potential impact of ETTs at the Dutch coast in future climate 
The last step will be to describe how ETTs may impact future flood risk management. On the one 
hand, this consists of conclusions concerning the differences between ETTs and regular storms 
concerning their impact on extreme sea levels. On the other hand, it is necessary to give an 
indication on how the occurrence of ETTs at the Dutch coast may change in the future, for this the 
results from TC tracking algorithms (TRACK or TempestExtremes) from global climate models 
(GCMs) will be used. 

3.3.3 Results towards potentially added value  

Regarding the comparison of wind statistics, the results are presented below. Figure 3.13 shows the 
resulting histograms of some statistical properties of wind speed and wind direction during the 
selected 6-day periods (as shown in the figure above). In total, the dataset consists of 6.820 periods 
of TC occurrence (and the same amount for the reference periods). It can be observed from the 
histograms that the statistical properties of wind time series with and without TC occurrence are 
almost identical. Next, we compare the timing of TCs and regular winter storms at the North Sea, 
which is illustrated in Figure 3.14. It can be seen that the peak period for ETTs is in September, which 
is one month earlier than the regular stormy season.  
 

 

Figure 3.13 Comparison of the statistical properties of wind during periods of ETT occurrence and no ETT occurrence 
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Figure 3.14 Comparison of the months with the highest ETT occurrence (dark blue bins) and the months of the regular 
stormy season for the North Sea 

 

3.3.4 Discussion 

The results imply that the impact of ETTs can be expected to be similar to regular winter storms in 
the North Sea, with respect to the statistical properties at specific locations along the Dutch coast. 
However, it is important to notice that it is unknown whether the TC tracks that are shown in Figure 
3.11 actually reach the Dutch coast and cause any effect on the wind. Therefore, the results may be 
distorted in the sense that we falsely include 6-hourly periods to the TC occurrence data set, while 
these periods are not affected by the occurrence of an ETT. To partly overcome this problem, a next 
step is to look into a smaller area, e.g. the upper right corner of the rectangle in Figure 3.11. It may 
be that differences are more significant if we focus on the area with a larger probability that the 
storms reach the Dutch coast.  
 
The timing of ETTs is somewhat different than the regular stormy season at the Dutch coast. ETTs 
occur most frequently in September, which is somewhat earlier than the regular stormy season. If 
the ETT intensity increases in the future, this could imply that the month September could become 
unsuitable for maintenance. 

3.3.5 Next steps 

Concerning the statistics, the next steps are to focus on a smaller, more relevant selection of ETTs 
and to look at the large-scale storm patterns. For now, we only focused on local wind speed and 
wind direction, while more distinct differences between ETTs and regular storms may be visible in 
larger scale patterns. Concerning the clustering of storms, the features have been selected and the 
k-means clustering algorithm (KMA) is in development. The next steps will be to further optimize 
the KMA in order to result in representative storm clusters.  
 
Subsequently, the combined results from both research directions will be used to formulate 
conclusions regarding the relevance of ETTs for flood risk management in the Netherlands, and 
estimations regarding the situation in future climate will be made.  
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4 Snow climate change hotspots 

4.1 Lake Como basin 

Lake Como, Italy, is a large, regulated lake with an active storage capacity of more than 200 Mm3. 
The hydrological regime in the area is that of sub-alpine regions: inflows are high during spring and 
autumn due to snow melt and precipitation, respectively, while low inflows are observed during 
winter and summer. Summer irrigation demand generally exceeds natural water availability, making 
it essential to regulate the lake to increase the summer release by accumulating water in the lake 
during the spring season. On the other hand, storing more water in the lake increases the lake level 
and flood risk, as it limits the buffer capacity of the lake to control floods. The portion of the Adda 
river downstream of the lake feeds a dense network of irrigation canals, which supply four irrigation 
districts with a total surface of about 1,400 km2. The releases from the lake also feed seventeen run-
of-river hydroelectric plants and are used as cooling water in two thermal power stations. The total 
concession along the downstream stretch of the Adda river oscillates between a minimum of 88 
m3/s in March to a maximum of 226 m3/s between June and July, adding up to 4,418 Mm3 each year. 
In the irrigated area served by the lake releases, the most common crop is maize (57.48%), followed 
by cereals (5.76%), rice (2.41%), melon (0.68%) and soy (0.44%). (Giuliani et al., 2016) 
 
Drought events have increased in recent decades, challenging the reliability of the irrigation supply. 
For example, two droughts in 2003 and in 2005 led to severe crop failures and exacerbated the 
conflicts between agriculture and other sectors (Anghileri et al., 2013). Droughts also negatively 
impact lake navigation along with other recreational and touristic interests that suffer during 
periods of low lake levels. The occurrence of floods along the lake shores is also a recurrent problem, 
especially in autumn, when floods are driven by intense rainfall events, but some flooding events 
may occur in late spring due to intense snow-melt peaks (Denaro et al., 2017). Lastly, extreme 
temperature is another factor of risk for agriculture in the area, since early or in-season heatwaves 
and summer persistent anomalously warm nights may jeopardize the yield. 
 
According to the survey’s responses reported in Deliverable D7.1, drought and flood risks in Lake 
Como are primarily managed by Consorzio dell’Adda through the regulation of the lake, which is 
informed by short-term (3-days) hydrological forecasts that are primarily used for flood 
preparedness. These forecasts are however not formally integrated into any Decision Support 
System. No climate services are implemented for predicting or projecting the risk associated with 
temperature extremes. Further interviews with 460 farmers in the region carried out by Ricart et al. 
(2024) revealed the most common adaptation measures implemented, which include the reduction 
in the use of fertilizers, or improving their efficiency in combination with crop diversification and 
rotation. Moreover, 40% of the interviewed farmers also take measures related to the crop planting 
process: changing dates, planting earlier, employing different varieties or drought-tolerant crops. 
 
Among the users’ requirements for enhanced climate services identified by our survey (see again 
Deliverable D7.1), in this report we focus on investigating the value of sub-seasonal to seasonal 
forecasts for informing the lake operations in managing flood and drought risk (Section 4.2), and on 
the value of climate projections of heatwaves and warm nights for informing farmers adaptation in 
terms of changing cropping patterns (Section 4.3). 
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4.1.1 Analysis chain for AI-enhanced CS potential added value for droughts and floods 

The methodological workflow to assess the potential added value of AI-enhanced Climate Services 
for droughts and floods in the Lake Como Basin is based on the assessment of the skill and value of 
multi-timescale forecasts of the lake inflows combined with a Reinforcement Learning method that 
jointly learns how to extract the most useful forecast information (e.g., which product to use, which 
aggregation time) and how to use it for informing the lake operation (Figure 4.1).  
 
The AI-enhancement is therefore associated with the automatic extraction of the most useful 
information from three diverse forecast products, including the short-term forecasts currently used 
by the lake operator and the sub-seasonal and seasonal reforecasts produced by Copernicus EFAS, 
thus grounding our work in the real operational context of the Consorzio dell’Adda. The novelty of 
our RL method is the idea of making a selection not based on forecast skill, but rather on forecast 
value. This allows, for example, the potential selection of a less skilful forecast over a longer lead 
time if this provides more valuable information for drought management than a short-term product 
characterized by a higher accuracy. 
  
We are also working towards a second AI-enhanced CS that will focus on the production of sub-
seasonal to seasonal hydrologic forecasts of the lake inflows using ML models. The results describing 
the added value of this CS will be described in Deliverable D7.3. 

 

Figure 4.1 Flowchart for assessing the potential added value of AI-enhanced CS Lake Como floods and droughts. 
(Transparent green refers to AI-enhancement still to be assessed) 
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Data and benchmark 
Daily time series of observed lake levels and releases are available from 1946 (the start of the lake 
regulation after the dam construction) to 2022. From these observations, the net inflow to the lake 
is estimated by inverting the mass balance equation of the lake storage. This is used as input for the 
simulation of the impact model (see next section) and as a reference for the assessment of the 
forecast accuracy. 
 
The multi-timescale forecasts available to inform the Lake Como operations are the following:  

● Short-term deterministic forecasts (PRO), provided by the local company PROGEA and 
obtained by feeding a locally-calibrated hydrological model with short-term weather 
forecasts from COSMO1. They are single trajectories with an hourly time step and update 
frequency, a lead time of up to 60 hours, and initially available between 2014 and 2022. 

● Sub-seasonal probabilistic re-forecasts (EFRF) produced by Copernicus European Flood 
Awareness System (EFAS) over the whole European domain by forcing the LISFLOOD (Knijff 
et al., 2010) hydrological model (uncalibrated for the Lake Como basin) with extended-
range ensemble forecasts. These ensemble forecasts comprise 11 members with a 6-hour 
time step, a twice-weekly update frequency, a 46-day lead time, and availability over 1999-
2018 (Barnard et al., 2020). In Appendix B, we report a summary of verification of the 
different hydrological forecasts that has been conducted focusing on different aspects of 
probabilistic performance for the EFAS ensemble forecasts. 

● Seasonal probabilistic re-forecasts (EFSR) are produced by EFAS, too. Similarly to the sub-
seasonal product, these ensemble forecasts are obtained by LISFLOOD but forced here 
with seasonal meteorological forecasts from the SEAS5 model. Their characteristics are 25 
ensemble members, daily time step, issued on the first day of each month, up to 6 months 
lead time, and availability over 1999-2019 (Wetterhall et al., 2020). 

 
Given the workflow in Figure 4.1, these forecasts are not used as real benchmarks for assessing a 
new ML-based forecast product but they are rather processed in a hybrid setting by a RL algorithm 
to extract the most valuable information to advance the lake operation.  

Impact Model 
The operational model of the lake is focused on reproducing the controlled dynamics of the lake, 
which is described by the mass balance equation of the lake storage assuming a modeling and 
decision-making time-step of 24 hours, i.e. 
 

𝑠𝑡+1 = 𝑠𝑡 + 𝑞𝑡+1 − 𝑟𝑡+1 
 
where st is the lake storage m3, while qt+1 and rt+1 are the net inflow (i.e., inflow minus evaporation 
losses) and the outflow volumes in the time interval [t, t+1), respectively. The release volume is 
determined by a nonlinear, stochastic function that depends on the release decision (Soncini-Sessa 
et al., 2007). The actual release might not be equal to the decision due to existing legal and physical 
constraints on the reservoir level and release, including spills when the reservoir level exceeds the 
maximum capacity. The lake regulation is determined by a closed-loop operating policy p that 

 
1 https://www.cosmo-model.org  

https://www.cosmo-model.org/
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computes the release decision at each time step as a function of the day of the year, the lake level 
and, possibly, inflow forecasts.  
 
Historically, two primary competing objectives have driven the lake regulation: (i) flood control to 
avoid flooding that affects Como and other populated areas on its shoreline, and (ii) water supply 
to satisfy the demand of downstream agricultural districts and run-of-the-river hydropower plants. 
Recently, a new objective has also been taken into account; this is related to preventing extremely 
low lake levels that are detrimental to several users, including navigation, tourism, and the 
environment. According to previous studies and interactions with the local stakeholders, these 
objectives are formulated as follows:  
• Flood days: the average annual number of days when the lake level (ht) is above the 
threshold hflo=1.1 m: 

𝐽𝑓𝑙𝑜 =  
1

𝐻/𝑇
∑ 𝑔𝑡+1

𝑓𝑙𝑜
;                𝑔𝑡+1

𝑓𝑙𝑜
= {1  𝑖𝑓 ℎ𝑡+1 > ℎ𝑓𝑙𝑜

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐻−1

𝑡=0

 

where H is the simulation horizon (days), and T is the annual period of the year (days).  
• Water supply deficit: the daily mean deficit considering the water released from the lake 
(rt+1) and the water demand of the downstream users (wt): 

𝐽𝑑𝑒𝑓 =
1

𝐻
∑ 𝑔𝑡+1

𝑑𝑒𝑓
;                    𝑔𝑡+1

𝑑𝑒𝑓
= [max(𝑤𝑡 − (𝑟𝑡+1 − 𝑞𝑀𝐸𝐹), 0)]𝛽𝑡

𝐻−1

𝑡=0

 

  
where qMEF = 22 m3/s is the Minimum Environmental Flow constraint ensuring adequate 

environmental conditions in the Adda River, and t is a time-varying exponent that penalizes with 
different importance the deficit during summer and winter. This parameter was tuned to mimic the 
decision-making preferences of the operator, with the deficit squared during the summer (1 April 
to 10 October), while the unitary value is taken during winter. 
• Low lake levels days: the average annual number of days when the lake level (ht) is below 
the threshold hlow=-0.2 m: 

𝐽𝑙𝑜𝑤 =  
1

𝐻/𝑇
∑ 𝑔𝑡+1

𝑙𝑜𝑤;                𝑔𝑡+1
𝑙𝑜𝑤 = {1  𝑖𝑓 ℎ𝑡+1 < ℎ𝑙𝑜𝑤

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐻−1

𝑡=0

 

  
 
The Pareto optimal operating policies are computed by solving a multi-objective optimal control 
problem (Castelletti et al., 2008) formulated as follows: 
 

𝑝∗ = 𝑎𝑟𝑔 min
𝑝

𝑱(𝑝) = | 𝐽𝑓𝑙𝑜, 𝐽𝑑𝑒𝑓 , 𝐽𝑙𝑜𝑤 | 

 
Note that the resolution of this problem does not yield a unique optimal solution but a set of optimal 
solutions exploring different trade-offs between the three competing objectives. A solution is 
defined as Pareto optimal (or nondominated) if no other solution gives a better value for one 
objective without degrading the performance in at least one other objective. The image in the 
objective space of the Pareto-optimal solutions is the Pareto front.  
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AI enhancement 
In this section, we illustrate the proposed RL approach (Figure 4.2) for the design of the optimal 
operations of a multipurpose reservoir leveraging the most valuable information (It) to be extracted 

from a set of candidate forecast available at time t (𝑄̂𝑡). Specifically, we introduce a generic 
parametric function representing the extraction of information from available forecasts: 

𝐼𝑡 = 𝐹𝜁(𝑄̂𝑡) 

This function can include the following operations:  

• selection of the best forecast product (𝛾 ∈ Γ)  

• selection of the best forecast lead time (𝜆 ∈ 𝐿𝑇𝛾), here also called Aggregation Time (AT) as 
forecasts are aggregated over it;  

• selection of the best temporal aggregation operator of the forecasts over the selected lead 
time (𝜓𝜆);  

• selection of the best operator to deal with the forecast uncertainty (𝜓𝑛𝑒
, where ne is the 

dimension of the forecast ensemble).  
Moreover, an implicit operation is always performed to use only the most recent forecast between 
those available at time t.   
 
The formulation of such a parametric information extraction function is then coupled with a Direct 
Policy Search formulation of the operating policy design problem. DPS is based on the 

parameterization of the operating policy (p) within a given family of functions and the exploration 
of the parameter space (𝜃 ∈ Θ) to find a parameterized policy that is optimal with respect to the 
operating objectives (Ruckstiess et al., 2010). Given the presence of multiple competing objectives, 
we used the Evolutionary Multi-Objective Direct Policy Search method (Giuliani et al., 2016) that 
allows an efficient search of the optimal parameters with respect to a multidimensional objective 
space. 
  
Combining these two formulations, the daily release decision of Lake Como is now determined as  

𝑢𝑡 = 𝑝𝜃(𝑑𝑡, 𝑠𝑡, 𝐹𝜁(𝑄̂𝑡)) 

 
The multi-objective optimal control problem introduced in the previous section can be then 
reformulated as finding the best parameters of an Extended Operating Policy (EOP) that will specify 
both forecast information extraction (𝜁∗) and reservoir operation (𝜃∗): 

[𝜁∗, 𝜃∗] = arg min
[𝜁,𝜃]

𝑱         𝑠. 𝑡. 𝜁 ∈ Ζ, 𝜃 ∈ Θ 
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Figure 4.2 Internal structure of the Extended Operating Policy optimized by the joint learning of forecast information 
and operating policy. In the scheme, the circles represent the activation functions in the non-linear approximating 
network used to parameterize the operating policy, and the squares represent the operations that the EOP can 
perform on the forecasts (e.g., selection, temporal aggregation, or post-processing). 

 

4.1.2 Results towards potentially added value AI-enhanced CS 

Assessment of Forecast Skill 
A preliminary analysis is performed to quantify the accuracy of the available forecasts. As more than 
one forecast product is available, comparing their performance may be beneficial to understand the 
results and steer the policy design in the right direction.  
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Figure 4.3 Kling-Gupta Efficiency score (KGE) and its three components as a function of the Aggregation Time (AT) for all 
the available forecast products and a climatology benchmark. The dashed red line indicates the ideal value for the score 
and each component.  

 
Figure 4.3 shows the KGE as a function of the Aggregation Time (i.e., the period over which forecasts 
are averaged). The KGE score is based on the ensemble mean for the probabilistic products (EFRF 
and EFSR) because, in this work, we focus on using deterministic forecast according to the PROGEA 
product currently used by the lake operator. Although forecast accuracy is often analyzed with 
respect to the lead time at the original resolution (e.g., 6-hourly and daily values for EFRF and EFSR, 
respectively), the relationship between KGE and AT is more interesting here, because the lake 
regulation is expected to benefit from information on the cumulative inflow (e.g., the average 
discharge over the next month), and so the period of aggregation of the inflow over a future horizon 
is the key informative parameter here, encompassing more than one forecast lead time. Moreover, 
the strategy used to inform the lake operations is by seamless integration, i.e., by always using the 
most recent forecasts; hence certain lead times may be merged or never used separately.  
 
The forecasts are evaluated using as a benchmark the climatology, i.e., the cyclostationary mean of 
the observed net inflows. PROGEA forecasts outperform the EFAS products at their short AT (i.e., 
up to 3 days). Similarly, the sub-seasonal EFAS forecasts (EFRF) outperform their seasonal 
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counterpart (EFSR) up to their maximum AT of 42 days. This result is in agreement with previous 
studies (Wetterhall and Di Giuseppe, 2018) and is motivated by the more frequent update of the 
initial condition of the sub-seasonal forecasting model, providing more accurate initial conditions.  
However, the climatology benchmark outperforms the forecasts when considering AT longer than 
one month. This is mainly determined by the large bias of EFAS to the local observations from which 
the climatology is derived. This problem is an expected consequence of the lack of calibration of the 
LISFLOOD hydrological model in the region. However, the correlation component of the KGE 
suggests that EFAS forecasts are more correlated with the observations than the climatology 
benchmark at all ATs, and their performance peaks around an AT equal to 14 days. 
 
Assessment of forecast value 
Building on the forecast skill assessment reported in the previous Section, we perform a first 
experiment to verify the learning of the best Aggregation Time of a single fictitious seamless product 
(i.e., 𝜁 = 𝜆). This is called the best-skill product and combines the three available forecast products 
by selecting the forecast with the best KGE score for each AT. This means using PROGEA for the first 
3 days, EFAS EFRF between 4 and 42 days, and EFAS EFSR from 43 days onwards. The performance 
of the EOPs is benchmarked against a set of Basic Operating Policies (BOPs) not informed by any 
forecast and a set of upper-bound solutions obtained by solving a deterministic problem, which we 
called Perfect Operating Policies (POPs). 
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Figure 4.4 Performance of Extended Operating Policies informed by the best-skill product (orange) and all products 
processed in one input (blue). Solutions are grouped for different levels of flood days considering only the ones with less 
than 7 flood days per year. Arrows indicate the direction of preference, with the preferred solutions in the bottom-left 
corner of the figures. There are no POP solutions in the bottom panel as the perfect knowledge of future inflows allows 
attaining a performance in flood control that is always lower than 5.5 flood days per year. 

 
Results in Figure 4.4 show that the EOPs improve the performance of the BOPs, especially for 
solutions with less than 5.5 flood days per year (top panel). The policy design consistently selects 3 
days as AT, corresponding to using the PROGEA forecasts. This choice can be explained by the 
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substantially higher accuracy of the PROGEA short-term forecasts with respect to the sub-seasonal 
and seasonal EFAS products (Figure 4.3). Using more skillful, shorter-term forecasts results in 
policies that outperform those using lower-skill, longer-term products. However, it is interesting to 
observe that the EOPs select the PROGEA forecasts at their maximum AT, although their KGE is 
lower than the one of PROGEA forecasts with 1 day as AT (0.806 vs 0.828). 
  
Figure 4.4 also shows that it is possible to further improve the Water Deficit and Low-Level 
objectives by accepting more flood events (e.g., in the bottom panel, where the flood performance 
is worse than the top one, the three curves shift towards the left thus attaining a better performance 
in the deficit objective). However, the forecast value decreases when moving to solutions with 
higher numbers of flood days because, in this case, the knowledge of future inflows is less critical 
for the lake operation, which can store water in favor of the other objectives without being limited 
by the increasing flood risk. 
 
Given these promising results in learning the best AT, we run a second experiment in which the 
policy design simultaneously learns the best AT and the best forecast product (i.e., 𝜁 = [𝜆, 𝛾]). The 
performance of the resulting EOPs (Figure 4.4) is very similar to the solutions informed by the best-
skill product. This result is not surprising, as the EOP design selects again the PROGEA forecast at 3 
days AT to inform the lake operation.  
 
The use of simulated trajectories of lake level and release under different policies (Figure 4.5) can 
help us better understand the various contributions made by selected forecast information. Thanks 
to the additional information about the predicted inflows, the EOP keeps a higher average lake level 
than the BOP, thus saving more water to meet the summer demand. This is particularly evident at 
the beginning of the irrigation period (April), which represents the crucial timing to have water 
stored for being able to face potential drought periods over the coming summer. Then, all policies 
show similar release trajectories during summer, with only relatively small deviations observed 
mainly at the end of the irrigation season (September). 
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Figure 4.5 Lake Como level (top) and release (bottom) cyclostationary average trajectories (with 5-d moving window) 
under the Basic Operating Policy, the Perfect Operating Policy, and the Extended Operating Policy informed by PROGEA 
forecasts. 

 

4.1.3 Analysis chain for AI-enhanced CS potential added value for heatwaves and warm nights 

The methodological workflow to assess the potential added value of AI-enhanced Climate Services 
for heatwaves and warm nights in the Lake Como Basin is based on the detection of the relationship 
between heatwaves (and warm nights) indices with the crop yield in the area (see Figure 4.6). The 
AI-enhancement is therefore related to the identification of the most critical indices associated with 
the crop failure. The subsequent analysis of the projected values of these selected indices over 
different climate change scenarios provides value to the farmers for planning adaptation strategies 
in terms of changing cropping patterns favouring the cultivation of heat-tolerant varieties. 
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Figure 4.6 Flowchart for assessing the potential added value of AI-enhanced climate service Lake Como for heatwaves. 

Data 
Since the local meteorological data collected by the stations operated by the Environmental 
Protection Agency are available over a relatively short time period (i.e., less than 20 years), we used 
data from the ERA5 hourly reanalysis extracted for the box 46.5° North, 10.9° East, 44.5° South, 
8.65° West. Specifically, the impact model described in the next section requires the following 
inputs:  

• daily minimum and maximum temperature 

• total precipitation 

• daily minimum and maximum relative humidity 

• daily average wind speed (derived from the V and U components) 

• daily total solar radiation. 
 
Daily time series of observed levels, releases, and net inflows of Lake Como are available from 1946 
(the start of the lake regulation after the dam construction) to 2022. The release data are here used 
to simulate the irrigation supply to the agricultural area considered in the analysis. Moreover, the 
inflow timeseries is used for the detection of agricultural drought events by using the Standardized 
Streamflow Index in line with the information collected in Deliverable D7.1. 
 
The projections of the heatwave indices are based on the climate simulations of the EC- Earth model 
(member 6), part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) of the World 
Climate Research Programme. The scenarios considered are the ones used in the IPCC’s Sixth 
Assessment Report (IPCC, 2021), namely SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. 
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Impact Model 
The impact model simulating the dynamic processes in the irrigation districts served by the Lake 
Como releases is the IdrAgra model (Figure 4.7). The model is composed of three distinct modules 
devoted to specific tasks: 
(i) a distributed-parameter water balance module that simulates water sources, conveyance, 
distribution, and soil–crop water balance, including the application of irrigation (Facchi et al., 2004); 
(ii) a crop phenology module that computes the sequence of growth stages as a function of the 
temperature according to the Heat Units theory (Neitsch et al., 2011); and 
(iii) a crop yield module that estimates the optimal and actual yields, accounting for the effects of 
stresses due to insufficient water supply that may have occurred during the agricultural season 
(Steduto et al., 2009).  
 
The water balance module partitions the irrigation district with a regular mesh of cells with a side 
length of 250 m (i.e., each cell covers an area of 6.25 hectares), which allows for the representation 
of the space variability of crops, soil types, meteorological inputs, and irrigation distribution. The 
study area consists of 32,820 grid cells, for a total cultivated area that amounts to 205,125 hectares. 
In addition, the water flows in the different irrigation canals that convey water to the cells of the 
domain were calculated using a set of Support Vector Machine models, one for each canal, that 
were identified using the B-AMA (Basic dAta-driven Models for All) protocol (Amaranto and 
Mazzoleni, 2023). These models use as input the flow in the Adda River released by Lake Como and 
the flow in the Oglio River, which is estimated through a polynomial model that uses as input the 
discharge in the Adda River. 
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Figure 4.7 Overview of the IdrAgra impact model: a) identification of the study area, meteorological stations and crop 
types; a*) identification of the water sources; b) identification of the Irrigation Units (optional); b*) definition of the 
conveyance path from each source to IU or cells; c) space discretization with a regular mesh; c*) irrigation distribution 
module; d) computation of the daily water balance for each cell; e) simulation results in each cell. 

AI enhancement 
The Patient Rule Induction Method (PRIM) was used as an aid in the analysis of the relationship 
between crop production and heatwave-drought indices. PRIM is a statistical clustering method 
originally introduced by Friedman and Fisher (1999). It belongs to a group of algorithms called 
"bump-hunting" algorithms, which are used to find regions, called scenario boxes, in the input 
variable space that are associated with the highest or lowest mean value for the outcome (Nannings 
et al., 2008). Boxes correspond to a simple square in a two-dimensional input variable space and to 
a hypercube in a multi- dimensional space. This is unlike regression models, which seek to model 
the whole population by optimizing a likelihood function. In this work, the input variable space is 
composed of the heatwave and drought indices, whereas the outcome is the yearly yield. More 
specifically, what is of interest is the identification of the indices associated with the low yields, 
which are labelled as crop failures. Therefore, a threshold (defined in the next section) has to be set 
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on the outcome variable so that the algorithm can distinguish between failures and non-failures 
when building the scenario boxes. 
 
The scenario boxes are constructed by optimizing different competing metrics, namely coverage - 
how many failure scenarios are captured within a box - and density - how many of the captured 
scenarios in each box belong to the failure set. Ideally, a scenario box should have both a high 
coverage and density. This guarantees that the inputs used to build a box are able to explain the 
highest number of failure points possible and that the noise generated by uninteresting points is 
minimum, which happens when the density is high. 

4.1.4 Results towards potentially added value AI-enhanced CS 

Heatwaves impact on crop yield 
Figure 4.8 shows the total yearly yield simulated by the IdrAgra model over the period 1946-2022. 
The average yield over the 77 years considered is of 2.45x106 tons, with a standard deviation of 
2.16x105 tons. The maximum yield is equal to 2.99x106 tons and it was recorded in 1972, while the 
minimum is equal to 1.95x106 tons and it was recorded in 2006. 
 
Overall, there has been a slow decline of the average yield in the years 1992-2022 (when the 
heatwave indices show their greatest growth). In fact, the average in the last 30 years is 5% lower 
compared to the average of the period from 1946 to 1991. Despite this, there are still strong 
fluctuations from year to year, and the peaks reached in the last decades are comparable to some 
of the values recorded before 1992.  
 
To identify the potential connections between heatwaves and droughts with crop failures, we chose 
as the threshold the 25th percentile of the empirical distribution of the simulated yields. It is 
interesting to notice that the majority of the most significant failure years have happened in the last 
30 years. 
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Figure 4.8 Simulated yield (1946-2022). The red line represents the 25th percentile of the empirical distribution used to 
identify crop failures. The 1983 yield is missing because of corrupted data.  

 
To understand the link between yearly yield and extreme temperatures, and potentially droughts, 
we considered 51 indices, which fall into the following categories: 

● HWMI calculated with maximum (tmax) and minimum temperature (tmin); 
● NDQ90 (tmax and tmin); 
● Number of heatwave occurrences over the agricultural season (April to September) (tmax 

and tmin); 
● Sum of heatwave intensity over the season (tmax and tmin); 
● Number of heatwave occurrences in the individual months over the season (tmax and tmin);  
● Sum of heatwave intensity in the individual months over the season (tmax and tmin); 
● NDQ90 in the individual months over the season (tmax and tmin); 
● Number of drought months each year; 
● Average SSI during the year; 
● Average drought intensity each year; 
● September SSI, aggregated over 3, 6, 9 and 12 months. 

 
In particular, the monthly heatwave indices were considered to assess whether the yield is more 
sensitive to temperature extremes in specific moments of the season. The September SSI was 
chosen because, since it is calculated at the end of the agricultural season, it can give information 
on water scarcity during the crops' growth period. The standard aggregation is 6 months, but 
different aggregation periods were tested to understand whether considering hydrological 
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anomalies further back in time can be informative for capturing crop stress that negatively affects 
the yield in the Adda River basin. However, numerical results show that correlations with SSI 
aggregated over 12 and 9 months turned out to be statistically insignificant, meaning that anomalies 
that happen before April do not influence crop production. 
 
After an initial filtering based on a correlation analysis, only 27 out of the 51 indices proved to be 
statistically significantly correlated with the simulated yield. All heatwave indices are negatively 
correlated with the yield, while the SSI values show a positive correlation. Since it was impossible to 
rank the indices that showed a statistically significant correlation based only on the values of the 
correlation coefficients and p-values, we used PRIM as a supporting tool for completing the factor 
mapping task, i.e. the identification of the most relevant drivers (indices) of the crop failures.  
 
Specifically, we explored different solutions generated by PRIM that rely on an increasing number 
of indices and differently balance coverage and diversity: 

● NDQ90 in June calculated with maximum temperature; 
● NDQ90 in June calculated with maximum temperature and HWMI calculated with minimum 

temperature      
● NDQ90 in June calculated with maximum temperature, HWMI calculated with minimum 

temperature, NDQ90 in August calculated with maximum temperature and the SSI 
aggregated over 3 months and calculated in September 

● NDQ90 in June calculated with maximum temperature, HWMI calculated with minimum 
temperature, NDQ90 in August calculated with maximum temperature, the SSI aggregated 
over 3 months and calculated in September, number of heatwave days in June calculated 
with maximum temperature and number of yearly heatwave days calculated with maximum 
temperature 

 
The PRIM results show that the most important drivers selected as responsible of crop failures in 
the Adda River basin are the NDQ90 in June (tmax) and the HWMI (tmin). The former, by definition, 
also includes days that are not necessarily part of a heatwave event, meaning that extreme 
temperatures in general are detrimental to crop yield. The latter is particularly interesting because 
it shows the significant role that night-time temperature extremes play in the agricultural sector 
(minimum temperatures are normally reached during the night). A drought index also appears 
among the heatwave indices which signifies that water stress contributes to crop failure but not as 
much as temperature stress since it is selected only starting from the 4-dimensional solution. 
After analyzing the trade-offs between coverage and density for the four scenario boxes, we chose 
to consider only the solution with two drivers (coverage 89.5% and density 44.7%) for our 
subsequent analyses on climate projections. Although we are aware that the density is not 
extremely high, we concluded that moving to the solution with four drivers allowed for an 
improvement of this metric that did not compensate for the reduction in coverage.  
 
Projections of future heatwaves 
The two indices selected by PRIM, namely HWMI calculated with minimum temperature and NDQ90 
June calculated with maximum temperature, were projected into the future (2015-2100) using the 
EC-Earth model and four different scenarios. The projected trajectories of HWMI in SSP1-2.6 and 
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SSP2-4.5 do not exhibit any evident trend, but spikes are present throughout the entire century 
(Figure 4.9). For SSP2-4.5, in particular, the values from 2060 onwards are for the most part higher 
than the highest value recorded for the historical period. SSP3-7.0 and SSP5-8.5, on the other hand, 
show a clear rise in HWMI values starting from the late mid-century. In SSP5-8.5, values from 2060 
onwards are constantly greater than the historical maximum, while this is true for SSP3-7.0 from 
circa the mid 2070s onwards. The values projected for the last decade of the 21st century in SSP5-
8.5 are at least 5 times higher than the historical maximum.  
 

 

Figure 4.9 Projected trajectories (2015-2100) of HWMI (tmin) for the four scenarios considered. 

 
The projections of the NDQ90 June index (Figure 4.10) show a clear growth trend in SSP5-8.5 only. 
SSP3-7.0 also shows an increasing trend from 2060 onwards, with values of the index never reaching 
zero, except for one occasion. Despite not showing any apparent trend, SPP1-2.6 and SSP3-7.0 have 
values of the index that are on average greater than the historical average (2.82), and SSP3-7.0 often 
has peaks that surpass the historical maximum (20).  What is interesting in the instance of the 
NDQ90 June index is that the range of values is rather similar for all four scenarios, contrary to what 
happens for the HWMI.  
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Figure 4.10 Projected trajectories (2015-2100) of NDQ90 June (tmax) for the four scenarios considered. 

 
The comparison of the HWMI (tmin) projections in the middle (2036-2065) and end (2071-2100) of 
the century with the historical period (1993-2022) shows that there is high variability in the 
distributions of the future index values across scenarios (Figure 4.11, top panels). Especially at the 
end of the century, we can observe how the maximum values of SSP1-2.6 and SSP2-4.5 are expected 
to be lower than the median of the other two scenarios. More specifically, the median for SSP3-7.0 
is two times bigger than the 90th percentile in SSP1-2.6 and two units higher than the 90th 
percentile in SSP2-4.5, while the median for SSP5-8.5 is more than three times bigger than the one 
for SSP1-2.6 and twice the median for SSP2-4.5. 
 
The distributions of NDQ90 June (tmax) look more similar than those of HWMI (tmin) in the middle 
of the century (Figure 4.11, bottom panels). Towards the end of the century, the distributions in 
SSP3-7.0 and SSP5-8.5 move decisively upwards. In fact, the median for SSP5-8.5 is projected to be 
three times bigger than in SSP1-2.6 and more than twice the median in SSP2-4.5, whereas the 
median for SSP3-7.0 results more than two times bigger than the ones in the lower emissions 
scenarios. 
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Figure 4.11 Comparison of HWMI (tmin) – top panels – and NDQ90 June (tmax) – bottom panels - across scenarios in the 
middle (left) and at the end (right) of the 21st century. 
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Finally, we summarize the analysis of these climate projections using the references provided by 
Global Warming Levels. The violin plots in Figure 4.12 contrast the projected distributions with the 
one of the indices computed on ERA-5 data, which corresponds to a GWL equal to 0.63°C. Results 
clearly show substantially higher HWMI (tmin) values projected in a world that is 4.0°C warmer than 
pre-industrial times compared to the other two lower degrees of warming. On average, the index is 
equal to 9.78 at GWL 4.0°C while it is 1.23 at GWL 1.5°C and 0.89 at GWL 0.63°C. Besides, the 25th 
percentile at the highest warming level is almost two times bigger than the 90th percentile at GWL 
1.5°C and more than double the 90th percentile at GWL 0.63°C. 
  
The NDQ90 June (tmax) distributions are not blatantly diverse at GWL 0.63°C and GWL 1.5°C: the 
average value of the index is, respectively, 3.77 and 5.25, while the median of the distribution is in 
both cases 3.00 and the 90th percentile is 10.50 and 13.50, respectively. On the other hand, the 
projected average value of NDQ90 June (tmax) at GWL 4.0°C is 15.88 (four times higher than the 
average at GWL 0.63°C and three times the mean at GWL 1.5°C). The 90th percentile of the 
distribution is more than twice the 90th percentile at the other two GWLs.  
 
These results can provide valuable information for the farmers in the Lake Como basin as they 
support a better understanding about crops' vulnerability to projected temperature extremes. In 
fact, the correlation analysis between the critical heatwave indices with the yields of individual 
crops, instead of with the total yield, shows that maize and rice are negatively correlated with both 
indices, whereas melon is correlated only with NDQ90 June (tmax). The correlations on cereals and 
soy are instead not statistically significant, suggesting these crops are particularly resistant to 
extreme temperatures. 
 
In light of the analysis done on the projected heatwave indices HWMI (tmin) and NDQ90 June 
(tmax), it emerges that the HWMI (tmin) is the index that is expected to increase the most - the 
average at GWL 4.0°C is 10 times higher for HWMI (tmin) and three times higher for NDQ90 June 
(tmax). This means that those crops that exhibit a stronger negative correlation with this index are 
the ones that would be more at risk in the future because it is to be expected that, for higher values 
of the index, the values of yield will be increasingly lower. For example, rice shows the greatest 
negative Pearson correlation coefficient with HWMI (tmin) (and also with NDQ90 June (tmax)); this 
probably means that rice will not be a suitable crop in the area, particularly not in the worst-case 
scenarios or at the highest levels of global warming. 
  
Maize shows the second-greatest negative correlation coefficient with HWMI (tmin), therefore it is 
also a crop at risk. It should be noted that maize represents the main crop in the area. A partial 
switch from maize to a more resistant crop type will probably be necessary to avoid frequent crop 
failures in the years to come. If a crop switch were not to be feasible because of reasons dictated by 
market demand or other socio-economic reasons, then investments in heat-tolerant varieties of 
maize would be of the essence, considering the high correlation that this crop also has with NDQ90 
June (tmax). 
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Melon is not significantly correlated with HWMI (tmin) and exhibits a weaker negative correlation 
with NDQ90 June (tmax) compared to the previous crops. Therefore, it might still be a crop worth 
cultivating in the area in the near future in the case of the lowest emission scenarios, for example. 
It might also partially (and momentarily) substitute maize and rice, because even though it is not 
the optimal crop for the area, it, at least, seems to perform better and would not need farmers to 
adapt to a completely new crop variety since it is already present on the territory. 
 
Lastly, neither soy nor cereals showed any significant correlation with the two considered indices. 
Our results suggest these are, therefore, the most promising crops that should be considered in the 
Adda River basin to face the projected increase in temperature. It must be noted, though, that, even 
though there are no apparent correlations with the historical indices' series, there is no guarantee 
that with extremely higher values of the indices soy or cereals will not start to be impacted as well. 
Therefore, constant monitoring and analyses are crucial. 
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Figure 4.12 Values of the two heatwave indices at different warming levels. The number of points in each plot is different 
because the ERA-5 data is composed of yearly values over 30 years, at GWL 1.5°C there are 120 points (30 for each of 
the four scenarios), and at GWL 4.0°C there are 60 points (30 each for SSP3-7.0 and SSP5-8.5 only). 
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4.1.5 Next steps 

This chapter reports the results of Task T7.4 focused on the development and demonstration of AI-
enhanced Climate Services for the snow Climate Change Hotspot of Lake Como. Specifically, we 
report a preliminary AI-enhanced CS that leverages Reinforcement Learning algorithms to improve 
drought and flood management by extracting the most valuable information from multi-timescale 
forecasts of the lake inflows. Moreover, we describe a second preliminary AI-enhanced CS that uses 
the PRIM algorithm to discover the relationship between temperature extremes (both heatwaves 
and warm nights) and crop failures to support farmers’ adaptation to future climate scenarios. 
 
Our results show that the use of selected forecast information, i.e. inflow forecasts with a 3 days 
aggregation time, produce the largest added value for the multipurpose operation of Lake Como, 
especially in terms of reducing the water supply deficit. The analysis of the projected heatwaves and 
warm nights shows that temperature extremes are expected to increase considerably over the 
coming years in all scenarios. These trends suggest the opportunity to replace some of the crops 
currently cultivated in the area, primarily maize, in favour of heat-tolerant varieties, such as soy or 
cereals, in order to ensure more reliable productions in the coming years. 
  
These preliminary results motivate ongoing research efforts aimed to further improve these CS, 
which will be reported in Deliverable D7.3. These new CS will focus on the development of AI-
enhanced sub-seasonal to seasonal hydrologic forecasts by adapting and evolving the approach 
described in Deliverable D2.2 for the meteorological drought forecasting with ML and climate data. 
Moreover, we will investigate the impact of compound heatwave and drought events and the 
possibility of addressing them through a dedicated AI-enhanced CS. 
 

5 Conclusions and outlook 

From the preliminary results of the AI-enhanced climate services as developed to-date for the local 
scale CLINT case studies, it can be concluded that for several extreme events improved forecast skill 
over benchmark predictions has been found already, and for several use cases also the potential 
added value following the user-defined impact indicators has been shown. 
 
For the Zambezi (droughts and tropical cyclone rainfall), Rijnland (droughts), Aa en Maas (droughts), 
and Lake Como (droughts and floods, and heatwaves and warm nights) case studies, AI-
enhancement of CSs has been shown. For Douro (droughts) and Main water system of the 
Netherlands (flood risk), work on AI-enhancement is ongoing.   
 
For Zambezi (tropical cyclone rainfall), Rijnland (droughts), and Lake Como (droughts and floods, 
and heatwaves and warm nights), the potential added value in local decision making context for 
extreme event impact mitigation has been shown. For the other case studies, analysis of potential 
added value of the AI-enhanced services is ongoing.      
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In our opinion, the analysis chain developed for each case study as presented in this deliverable, 
outlining the complete steps up to the added value assessment within the operational context of 
each case study's extreme event management practices, provides a solid foundation for advancing 
the AI-enhanced climate services and their analysis in the next WP7 activities, to be reported in 
D7.3.  
 
The results and discussion also showed that increase in forecast skill or added value in decision 
making is sometimes only limited and may be sensitive to the benchmark forecast systems chosen. 
For each of the case studies, therefore, next steps have been identified, both for further AI-
enhancement and for strengthening the robustness of the added value analyses.  
 
The outcomes of these next steps will be reported in the final deliverables of this work package, 
D7.3 on CS developed and their demonstrated added value, and D7.4 on benchmark analysis. 
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Appendix A - Zambezi Watercourse: Benchmark CS for droughts 

Here we provide a more complete probabilistic evaluation and skill assessment of the two 
benchmark systems considered for the ZW, i.e. GloFAS (v. 3.1) and WW-HYPE seasonal re-forecasts, 
across four different strategic locations in the basin, upstream of the four main dams (Kariba, Cahora 
Bassa, Ithezi-thezi and Kafue Gorge). Monthly historical observations of streamflow upstream of the 
dams are used as reference datasets to assess the seasonal forecast products. This monthly 
historical streamflow dataset is retrieved from ZAMCOM and includes observed inflows at four 
stations: (1) Kafue Hook Bridge along the Kafue River; (2) Luangwa Great East Road Bridge along the 
Luangwa River; (3) Victoria Falls along the Zambezi; (4) Mangochi along the Shire River. 

The probabilistic forecast performance is assessed via the Brier Scores (BS) and the Continuous 
Ranked Probability Score (CRPS), considering the 25 ensemble members of the two systems. Skill is 
assessed with respect to climatology using the Brier Skill Scores (BSS) and the Continuous Ranked 
Probability Skill Score (CRPSS). 

First, the evolution of the Brier Scores with lead time is analysed for two different low-flow 
thresholds (15-th and 25-th percentiles) for the seasonal forecasts (see Figure A.1). Results show a 
very small variability of the score with lead time, suggesting that the low-flow detection is similarly 
good (or poor) at 1-4 month lead times for GloFAS and 1-7 months for HYPE. The low dependency 
on lead times may be due to the strong seasonality of these low flow events in the basin and a good 
long-range predictability of the dry season start. The lower performance of WW-HYPE for low flow 
detection with respect to GloFAS is probably due to the presence of periods of several months with 
zero-flow in HYPE during the dry seasons that suggest a lack of baseflow in the hydrological model 
and is likely to jeopardise the low-flow detection capability of the system. 

Second, the CRPS indicates that GloFAS seasonal forecasts have a much larger bias than WW-HYPE 
(Figure A.2), in line with previous results on the MAE and the bias component of KGE (see Table 2.1). 
WW-HYPE seasonal forecasts are better than GloFAS in terms of biases, but still similar to or worse 
than climatology at almost all stations, except for Kafue Gorge for which WW-HYPE just reaches the 
performance of the benchmark and does not add much information in terms of the overall 
distribution of probabilities of events with respect to a simple mean observed flow benchmark. 

In terms of skill assessment, the Brier Skill Scores show the skill of the two forecast systems removing 
the bias component effect, as ‘unbiased’ (forecast-based) thresholds are used, where thresholds 
are computed based on forecasts for defining forecasted events (i.e., thresholds exceedances). The 
unbiased definition of the BS is in contrast with the normal procedure for calculating the BS that 
would be extracting the thresholds from the historically observed data to define both observed and 
forecasted events. As expected from previous results on the better accuracy of low-flow event 
probabilities of GloFAS with respect to HYPE (Figure A.1), the skill of GloFAS for drought prediction 
at the seasonal scale is relatively good (Figure A.3). The skill is then further assessed by using the 
Continuous Ranked Probability Skill Score (CRPSS) that is again clearly affected by the forecast bias 
(Figure A.4), which is large in GloFAS. The score is close to zero for WW-HYPE, showing that despite 
a better agreement of the water balance with observations, HYPE does not add much information 
on the probability distribution of streamflow events of all classes with respect to a simple 
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climatology benchmark. This is in line with the results of other scores and shows that a poorer 
correlation of WW-HYPE with respect to observation (Table 2.1) and a poor capacity of detecting 
low-flow events (Figure A.1) brings down the general skill of this system in the Zambezi Basin.  

 

Figure A.1. Brier Score (BS) obtained for GloFAS and WW-HYPE seasonal ensemble forecast using two low-flow percentile 
thresholds (15th and 25th monthly flows) at the four selected river gauge stations in the Zambezi River Basin, as a 
function of lead time (up to the maximum available lead time for each product). The optimal value is 0. 
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Figure A.2. Continuous Ranked Probability Score (CRPS) obtained for GloFAS and WW-HYPE seasonal ensemble forecast 
at the four selected river gauge stations in the Zambezi River Basin, as a function of lead time (up to the maximum 
available lead time for each product). The optimal value is 0. 
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Figure A.3. Brier Skill Score (BSS) obtained for GloFAS and WW-HYPE seasonal ensemble forecasts at the four selected 
river gauge stations in the Zambezi River Basin, as a function of lead time (up to the maximum available lead time for 
each product). The optimal value is 1. The reference benchmark is climatology. 
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Figure A.4 Continuous Ranked Probability Skill Score (CRPSS) obtained for GloFAS and WW-HYPE seasonal ensemble 
forecast at the four selected river gauge stations in the Zambezi River Basin, as a function of lead time (up to the 
maximum available lead time for each product). The optimal value is 1. The reference benchmark is climatology. 
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Appendix B - Lake Como Basin: Benchmark CS 

Here we provide a more complete probabilistic evaluation and skill assessment of the probabilistic 
benchmark systems considered for the Lake Como Basin, i.e. EFAS sub-seasonal (EFRF) and seasonal 
(EFSR) ensemble re-forecasts. The probabilistic overall performance is assessed via the Continuous 
Ranked Probability Score (CRPS) and the Brier Scores (BS), considering all the ensemble members of 
the EFAS systems (11 members for EFRF and 25 for EFSR). As the CRPS can be easily interpreted also 
for deterministic forecasts, corresponding to the Mean Absolute Error (MAE), we compare the 
overall performance of the two EFAS products also with respect to the deterministic forecasts of 
PROGEA based on the CRPS. Forecast skill is assessed with respect to climatology using the 
Continuous Ranked Probability Skill Score (CRPSS) and the Brier Skill Scores (BSS). 

First, the evolution of the CRPS with lead time (LT) is analysed (see Figure B.1). Results show a small 
variability of the score with lead time for EFAS forecasts, that are again outperformed by PROGEA's 
forecasts at short lead times, as expected, given that the CRPS is affected by the forecast bias which 
is much larger in EFAS (see Figure 4.3). For the seasonal forecasts, despite the erratic behaviour of 
the CRPS with lead time, it is interesting to note that there is a slight improvement in performance 
on average for longer lead times (>35 days). The same behaviour can be noted even more clearly 
for the CRPS as function of the aggregation time (AT; see Figure B.2), where the average error of the 
probabilistic seasonal forecasts decreases from about 70 m3/s when the prediction is aggregated at 
a weekly-scale (or shorter), to about 55 m3/s with an aggregation over 5 months. 
 

 
 

Figure B.1. Continuous Ranked Probability Score (CRPS) obtained for the inflows forecasts from PROGEA's short-term, 
EFAS sub-seasonal (efrf) and seasonal (efsr) ensemble, as a function of the lead time (LT), up to the maximum available 
LT for each product. For the CRPS, the optimal value is 0. 
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Figure B.2. Continuous Ranked Probability Score (CRPS) obtained for the inflows forecasts from PROGEA's short-term, 
EFAS sub-seasonal (efrf) and seasonal (efsr) ensemble, as a function of the aggregation time (AT), up to the maximum 
available LT for each product. For the CRPS, the optimal value is 0. 

 
For the Brier Score, a comparison is carried out between the BS for EFAS sub-seasonal forecasts 
using thresholds computed with two different methods (to define forecasted events): (i) thresholds 
computed as percentiles from observations, that we refer to as ‘biased’, given the known bias in 
EFAS forecasts with respect to observations; and (ii) thresholds computed as percentiles from 
forecasts, i.e. ‘unbiased’ (Figure B.3Figure ). The difference between the BS from the two 
methodologies shows that the unbiased version of the score outperforms the biased one. This 
confirms that biased forecasts can be more informative in terms of EE detection when events are 
defined based on thresholds that are derived from the biased forecast itself. Thus, the unbiased 
thresholds are then used to assess the quality of EFAS for drought and flood event prediction at 
both sub-seasonal and seasonal scales (Figure B.4 and Figure B.5). Results show that the forecast 
performance does not vary much (and not steadily) with the lead time, with a slightly erratic 
behaviour of the seasonal forecast scores that can be explained by the sampling of EE that changes 
with lead-time. EFAS sub-seasonal forecasts perform slightly worse than the seasonal one, in the 
short-range and up to the Extended Range (ER) for droughts (Figure B.4), but also for floods (to a 
lower extent) in the short- to medium-range (Figure B.5) which is a surprising finding. This can be 
explained again by the different sampling of EE of the two reforecast datasets, given the interplay 
of the lead time with the different forecast update frequency (monthly for EFAS seasonal, twice per 
week for EFAS sub-seasonal reforecasts) and given the different resulting unbiased thresholds 
(higher for the sub-seasonal than the seasonal system). 
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Figure B.3. Brier Score (BS) obtained for the forecast inflows from EFAS sub-seasonal (efrf) ensemble, with the observed 
(biased) and forecast-based (unbiased) threshold definition, as a function of the lead time from 1 day to 41 days. For 
the BS, the optimal value is 0. The selected threshold is the 20th percentile of daily flows over the whole period. 

 

  

Figure B.4. Brier Score (BS) obtained for the forecast inflows from EFAS sub-seasonal (efrf) and seasonal (efsr) 
ensemble, for different low-flow thresholds with the unbiased definition, as a function of the lead time (up to the 
maximum available LT for each product). For the BS, the optimal value is 0. The thresholds are the 2nd, 5th, 10th and 
20th-percentile of daily flows over the whole period (as indicated by the quantile number, after 'qtA', in the legend). 
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Figure B.5. Brier Score (BS) obtained for the forecast inflows from EFAS sub-seasonal (efrf) and seasonal (efsr) 
ensemble, for different high-flow thresholds with the unbiased definition, as a function of lead time (up to the 
maximum available LT for each product). For the BS, the optimal value is 0. The thresholds are the 80th, 90th, 95th and 
98th-percentile of daily flows over the whole period (as indicated by the quantile number, after 'qtA', in the legend). 

 
 
The forecast skill is first assessed by using the Continuous Ranked Probability Skill Score (CRPSS), 
where the benchmark is the cyclostationary mean (climatology). Again, this score is clearly affected 
by the forecast bias, which is large in EFAS. Despite this problem, the score is close to zero for both 
EFAS products (Figure B.6Figure Figure ) across lead times, meaning that they are performing 
similarly to the cyclostationary mean. However, given the known large bias in EFAS, we expect a 
better correlation and ability in predicting events of the forecast over the climatology benchmark, 
as the larger bias compensates for this. 
 
The longer the time scale over which we aggregate the observed/forecast inflow, the more 
predictable it becomes by a simple climatology benchmark. This is reflected by the fact that the 
cyclostationary mean, which is used as a benchmark in the CRPSS, is gaining more and more power, 
leading to an apparent decrease in the skill of the forecast (Figure B.7).  
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Figure B.6. Continuous Ranked Probability Skill Score (CRPSS) obtained for the inflows forecasts from PROGEA's short-
term, EFAS sub-seasonal (efrf) and seasonal (efsr) ensemble, as a function of the lead time (up to the maximum 
available LT for each product). For the CRPSS, the optimal value is 1. 

 

 

Figure B.7. Continuous Ranked Probability Skill Score (CRPSS) obtained for the inflows forecasts from PROGEA's short-
term, EFAS sub-seasonal (efrf) and seasonal (efsr) ensemble, as a function of the aggregation time  (up to the 
maximum available AT for each product). For the CRPSS, the optimal value is 1. 

 
Finally, the Brier Skill Score (BSS) are analysed to evaluate the skill of the forecasts with respect to 
climatology in detecting drought and flood events, defined by using different inflow thresholds. 
Figure B.8 shows that for drought detection there is an improvement with respect to climatology 
for the prediction of droughts of medium to high severity (between 20th to 5th percentiles) for 
extended range to seasonal aggregation time scales (> 3 weeks). On the other hand, there is no skill 
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for the most extreme events (2nd percentile of daily flows) for both sub-seasonal and seasonal 
forecasts, as the skill improves for both systems only for less extreme events (5th percentile or 
above), especially as the aggregation time increases. Focusing on the class of low-flow events of 
interest for the lake operator (10th percentile) there is skill with respect to climatology for both sub-
seasonal and seasonal forecasts for aggregation time scale of two weeks or longer. A similar 
improvement with respect to climatology is observed for the prediction of floods of severity 
between 80th to 98th percentiles (Figure B.9) for time scales longer than two weeks, on average. 
 

 
Figure B.8. Brier Skill Score (BSS) obtained for the forecast inflows from EFAS sub-seasonal (efrf) and seasonal (efsr) 
ensemble, for different low-flow thresholds with the unbiased definition, as a function of the aggregation time (up to 
the maximum available AT for each product). For the BSS, the optimal value is 1. The thresholds are the 2nd, 5th, 10th 
and 20th-percentile of daily flows over the whole period (as indicated by the quantile number, after 'qtA', in the legend). 

 

 
Figure 1 Brier Skill Score (BSS) obtained for the forecast inflows from EFAS sub-seasonal (efrf) and seasonal (efsr) 
ensemble, for different high-flow thresholds with the unbiased definition, as a function of the aggregation time (up to 
the maximum available AT for each product). For the BSS, the optimal value is 1. The thresholds are the 80th, 90th, 95th 
and 98th-percentile of daily flows over the whole period (as indicated by the quantile number, after 'qtA', in the legend).  
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