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EXECUTIVE SUMMARY 

This deliverable lays out the preliminary results on Artificial Intelligence and Machine Learning 
(AI/ML) enhanced climate services at the European scale. The analysis focuses on historical, 
forecasted, and projected climate conditions and discusses the implications for extreme 
impacts. 

In the dynamic realm of climate research, the integration of AI/ML into climate services is 
transforming our understanding and response strategies to climatic changes impacting the 
water, energy, and food sectors. This transformation is heavily reliant on the accessibility and 
integrity of data, as demonstrated by the application of methods and case studies in this 
deliverable, spanning a broad array of environmental parameters including temperature, 
river discharge, and precipitation.  

Progressing from preliminary findings, the methods and applications detailed in this 
deliverable underscore the evolving understanding of specific data and climate service needs 
across vital sectors. Each sector strives to pinpoint the most pertinent climate parameters to 
integrate into impact models effectively. Moreover, there is a focus on selecting suitable 
AI/ML methodologies to address the climate data complexity and enhance its integration into 
modeling frameworks. 

 

Water Sector 

For AI-enhanced hydrological modeling, we applied four post-processing methods to runoff 
simulations produced by the E-HYPE model. Moreover, to better understand the climate 
service for future projections, we analyzed how changes in climatic factors influence runoff 
variations in present and future conditions. 

As a result of post-processing, the model was significantly improved in terms of both total 
runoff volumes and extreme flow conditions. Spatial patterns of the model enhancement 
have been observed, with more accurate predictions occurring in Central Europe, especially 
under conditions of extreme events. These enhancements in hydrological modeling will be 
operationalized to provide climate services with more reliable tools for predicting water 
availability and managing water resources efficiently. In particular, the ability to capture 
extreme events with higher accuracy is crucial for developing resilient water management 
strategies in response to climate change. 

On the other hand, results of attribution analysis for runoff variations have provided us 
knowledge of leading drivers for future water resources under different climate change 
scenarios, therefore deepening our understanding of the outputs from climate projection 
service. 

 

Energy Sector 

To ensure the link between climate-induced data and power demand and hydropower 
generation profiles, climate data have been processed to feed into the PRIMES-IEM's 
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modeling framework. The focus of work under this deliverable has been on variations in air 
temperatures and river discharge under historic and projected climate conditions. This 
approach employs machine learning techniques to correlate climate data with energy 
production and consumption metrics. 

In preliminary results, we demonstrate an application that links variations in the river 
discharge and air temperature into the energy modeling framework. The power demand is 
linked with changes in air temperature, with emphasis on electric-driven heating and cooling 
demand in European countries. Moreover, river discharge derived by the AI-enhanced E-HYPE 
model, is linked with hydropower generation. Its availability is projected for future climate 
scenarios, indicating the variations in available hydropower potential among scenarios and 
regions. In both cases this will enhance the understanding of how extreme weather events 
can affect the energy sector. 

Improved data representation and modeling capabilities enable better projections for energy 
demand and supply and ensure resilience and more stable energy supply in response to 
climate variability. 

 

Food Sector 

In this deliverable, we present the preliminary results from the development of an AI/ML-
enhanced crop model ECroPS, which includes downscaled and calibrated climate forecasts to 
assess the impacts of climate extremes on crop yields. 

The emulator has shown that concurrent climate extremes have a profound impact on crop 
yields. The integration of seasonal climate forecasts into the emulator allows improved crop 
performance prediction under various climate scenarios. 

These advancements provide crucial insights into food systems' vulnerability to climate 
extremes, aiding in the development of more effective agricultural strategies and policies. 
This is vital for ensuring food security and optimizing crop productivity in the face of global 
climate change. 

 

 

The methods and applications outlined in the deliverable represent preliminary findings that 
lead to a deeper comprehension of the specific needs and the extent of data required across 
the water, energy, and food sectors. Each sector has endeavored to identify the most relevant 
climate parameters necessary for effectively integrating climate data into their respective 
impact models. Additionally, these sectors have focused on selecting appropriate methods, 
enhanced with AI/ML techniques where possible, to manage the complexity of the available 
data and improve the accuracy of the overall modelling framework.  
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1. INTRODUCTION 

1.1. CLIMATE SERVICES 

Climate services (CS) are increasingly acknowledged as pivotal in facilitating adaptation, 
mitigation, and disaster risk management in the face of escalating climate change challenges. 
These services play a crucial role in preparing for and responding to extreme events (EE), 
which are predicted to grow in frequency and intensity. CS have emerged as a critical tool in 
the global response to climate change, particularly following the urgency highlighted by the 
Paris Agreement in 2015. These services transform climate-related data into customized 
products and tools, essential for informed decision-making in areas like adaptation and 
mitigation strategies and enable climate-informed decision-making and climate-smart policy 
and planning. 

Climate services cover a broad range of climate-related data across different sectors and 
across different user groups. Transformation of data and enriching it with user-relevant 
information into customized products is the main task of CS. Delivering the CS through 
projections, forecasts, trends, economic analyses, and assessments facilitates climate-
informed decision-making and counseling (see the definition of CS, according to the European 
Commission’s Roadmap for Climate Services (2015)). The value of CS lies in its accessibility, 
understanding of user needs, and provision of scientifically based and credible information to 
diverse user groups across society and aid to cope with climate variability, climate-related 
disasters and related social and economic damages. CS contributes significantly by engaging 
society and institutions directly in information and communication about climate-driven 
impacts on the agriculture, water, and energy sectors, and helping to develop appropriate 
adaptation strategies (see goals of the Climate Europe Project 2021 and 2022)1. Development 
and design of CS must take into account that the data and tools provided are not only 
scientifically robust but also practically usable and tailored to the specific needs of diverse 
user groups. The scope of users varies by the requirements to the CS, as time resolution and 
variables, see Figure 1-1. 

 
1 Climateurope2 is coordinated by the Barcelona Supercomputing Center. The goal of the project is to develop 

standardization procedures and recommendations for climate services. Project web page: 
[https://climateurope2.eu/] 
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Figure 1-1 Different needs and requirements to the time resolution provided by end-users of CS, based on the CLINT User 
Survey results, presented in Deliverable 6.1. 

The evolution of CS is driven by the integration of advanced climate data and machine 
learning techniques. The implementation of CS involves sophisticated AI frameworks for 
analyzing climatological data, thereby enhancing the detection, prediction, and attribution of 
EEs and their impacts. This synergy enables the provision of accessible, timely, and decision-
relevant information, vital for policymakers and end-users across various socio-economic 
sectors. 

The challenge lies in ensuring the accessibility and usability of climate information. Recent 
advances in modeling capabilities, combined with improved observation tools, have 
expanded the range of available climate information. Yet, the emphasis is on tailoring this 
information to fit the specific needs of climate-sensitive sectors and overcoming barriers that 
limit societal uptake allowing for more standardization, conceptualization, operationalization 
and evaluation of CS information and data (Weichselgartner & Arheimer, 2019). 

CS cover the needs of urban planners, financial investors, and communities to effectively 
anticipate and adapt to projected climatic trends and variations. Essential to this process is 
high-quality, reliable data, including but not limited to climate variables like temperature, 
precipitation, wind patterns, soil moisture levels. This climate data provided to the users of 
climate services streams into the direct applications as well as to the professional users that 
need access to long-term historical averages, maps, climate projections and scenarios to 
elaborate risk and vulnerability analyses, impact assessment studies dedicated for different 
sectors, see Figure 1-2. Climate data and information products combined with impact 
assessment models, enrich CS with non-climate information on agricultural production, 
health trends, distributional effects across affected population, energy and other socio-
economic variables. 
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Figure 1-2 Overview of CS and end-users, flows of information (specific for the work accomplished within WP6)   

Advancements in the availability of climate data, and development of AI/ML techniques gives 
a positive impact on CS, as stated in Haupt et al. 2021: “ML post-processing can act as a bridge 
between the physical representation of the atmosphere provided by numerical weather 
prediction and the decision-making requirements of end-users.”  

Recent observations of extreme weather events, such as tropical cyclones, tropical nights, 
heatwaves, droughts, and floods, have heightened the attention of policymakers and the 
public. The increasing frequency and intensity of these events necessitate an enhanced focus 
on the forecasting and warning of such extreme weather phenomena and contributing to CS.  

Extreme Events (EE) are defined as significant occurrences with substantial societal and 
economic impacts, spanning critical sectors including water, food, and energy. The 
identification and forecasting of these events over multiple regions or countries, across trans-
boundary river systems demands attention not just at the regional level but also at national 
and pan-European scales. The IPCC special report defines extreme weather events as 
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"risks/impacts to human health, livelihoods, assets and ecosystems from extreme weather 
events such as heatwaves, heavy rain, drought and associated wildfires, and coastal flooding" 
(IPCC 2018, p. 11). 

Power and food sectors are exposed to EE and climate variability at all temporal scales and at 
various spatial scales. The report gives a demonstration of how the enhancements of data 
availability at different time and spatial scales can improve the impact assessments. 

Until recently, applications in the power sector only partially included the impacts of climate 
variability and EE due to issues such as limited data coverage or spatial resolution (Dubus et 
al, 2023). Recent dataset developments, notably European Meteorological derived High 
Resolution RES generation time series for present and future scenarios (EMHIRES) and 
Renewables Ninja2, provide time series for wind and solar power in Europe, but lack 
comprehensive coverage on hydropower and electricity demand. The most recent services, 
as C3S Energy operational service (C3S-E) (Dubus et al, 2023), provide high resolution and 
large temporal coverage of data that encompasses all key renewable energy variables (wind, 
solar PV, hydro, and demand) across a range of timescales. The Destination Earth (DestinE)3 
the undertaking, supported by the European Commission, aims to develop and maintain 
accurate, interactive and dynamic simulations of the Earth system to better prepare for 
natural disasters, adapt to climate change and predict the socioeconomic impacts. 
Empowered by AI and maintaining a pool of observational data and simulation, this initiative 
develops tools for climate-informed decision making. These improvements in data availability 
positively contribute to the development of long-term planning and investment strategies 
across Europe. Power sector will benefit from further enhancement of CS to also include and 
improve detection and forecasting of EE.  

The impacts of weather and climate on the food sector and its relevant spheres, from 
production to distribution chains and food security, are well discussed in the scientific domain 
and within stakeholders’ ecosystems (Jägermeyr et al., 2021). There is a multitude of studies 
and reviews around the impacts of climate and climate change especially during the 
unprecedented recent years of compound events and EEs such as droughts (e.g., Zscheischler 
& Fischer (2020), Lesk, et al., (2022), Brás, et. al., (2021)). However, the challenge remains 
around the wider access of interested parties on affordable, accurate, timely and highly 
resolved characterization, assessment and prediction of food related impacts following EE 
due to their most severe and mitigation-demanding nature in the socioeconomic sense. 

CS that can provide these attributes to its served products can be of great value for the food 
sector for short- to long-term assessments, utilizing seasonal forecasts, historical climate 
observations and future projections such as CMIP6. This is greatly reinforced by the available 
open data streams of Copernicus Climate Change Service (C3S) seasonal forecast service 
which provide standardized data of ensemble forecasts for probabilistic analyses and the 
Coupled Model Intercomparison Project, currently in Phase 6 (CMIP6) by WCRP, which allows 

 
2 EMHIRES (https://data.jrc.ec.europa.eu/collection/id-0055); Ninja (https://www.renewables.ninja/) 
3 Destination Earth (destination-earth.eu) 

https://data.jrc.ec.europa.eu/collection/id-0055
https://www.renewables.ninja/
https://destination-earth.eu/
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studying the impacts of future weather and climate to the crop production, under different 
assumptions and scenarios. 

By leveraging advancements in climate data and AI/ML techniques, CS provides a 
comprehensive understanding of EE, facilitating effective adaptation and mitigation 
strategies. Thus, the growing value of CS lies in their ability to quantify the impacts of extreme 
weather events, aiding decision-makers in navigating the challenges posed by such events 
and shaping resilient responses at both local and wider geographical levels. The current 
deliverable focuses on improvements to current CS available in water, energy and food 
sectors. The deliverable demonstrates AI/ML methods and their implementation in the 
impact assessment models. The preliminary results highlight the achieved improvements for 
better CS and climate-informed decision making in the respective sectors.  

1.2. STRUCTURE AND OBJECTIVE OF THIS DOCUMENT 

Objective of this report is to enhance methods and data that can be used in CS. The 
Deliverable focuses on the European scale and makes use of the global scale climate modeling 
results. By using selected examples, the report will illustrate how climate data can be used by 
the integrated models for water, energy and food sectors. We also discuss what 
enhancements of sector specific models can be implemented to take advantage of combining 
the available climate data and AI/ML techniques. These illustrations can bridge the gap 
between the abundance of information provided by CS and informed policy and planning 
decision making. 

The deliverable is structured in 6 chapters. Chapter 1 (current chapter) introduces CS, 
discusses the main challenges, and outlines the deliverable. Throughout Chapter 2, we 
provide the description of the impact models for the water, energy, and food sectors and 
discuss model-specific enhancements. In the following chapters, we will present the 
preliminary results for AI/ML applications in impact models. Dedicated chapters present AI 
enhanced climate services for each sector represented by the model: Chapter 3 is dedicated 
for the water sector, Chapter 4 - the energy sector, and Chapter 5 - the food sector. Following 
the methodology description, each chapter presents the results and outlines the next steps. 
Chapter 6 presents the summary of work done in the deliverable, conclusions and moving 
forward for water, energy, and food sectors. 

1.3. CONNECTION TO OTHER WORK PACKAGES 

This deliverable is complementary to the findings and methodologies described in the WP2, 
WP3, but does not necessarily reinforce the ML/AI methods developed in these work 
packages. The methodologies presented in this deliverable at Pan-European Scale can be 
streamlined to activities under WP7 for local case studies. 
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2. IMPACT MODELS DESCRIPTION AND ENHANCEMENTS 

2.1. WATER SECTOR – E-HYPE HYDROLOGICAL MODEL 

2.1.1. The hydrological model structure 

The Hydrological Predictions for the Environment, HYPE, model (Lindström et al., 2010) is an 
advanced semi-distributed, process-based hydrological model designed for basin-scale 
analysis. It incorporates conceptual routines to simulate key land and subsurface hydrological 
processes, including snow and ice dynamics, evaporation, flow mechanisms, soil moisture 
variations, groundwater movements, and water distribution through various water bodies, 
driven by parameters related to the landscape's physical characteristics (Figure 2-1, left). The 
model features the degree-day method for snow processes and accounts for spatial 
differences through Hydrological Response Units (HRUs) and layers the soil into three sections 
for detailed water path simulation. Rainfall and snowmelt infiltration are modelled based on 
soil type, with excess water leading to macropore flow, surface runoff, or overland flow, 
depending on soil moisture levels. Potential evaporation rates are calculated using the 
modified Jensen-Haise model (Oudin et al., 2005), with actual evaporation dependent on soil 
moisture. Runoff and water percolation dynamics are triggered by soil moisture thresholds, 
with groundwater levels reflecting soil zone saturation. 

   

 
Figure 2-1 (Left) Schematic representation of the processes described in the HYPE model structure. (Right) Domain of the pan-
European E-HYPE hydrological model. 

The HYPE model routes generated discharge through subbasins, using a river routing routine 
that simulates flow attenuation and delay. If lakes or reservoirs exist within a subbasin, their 
flow is managed using rating curves. Lakes, classified by area, accumulate runoff and 
upstream river flow, with direct precipitation and evaporation accounted for until depletion. 
Lake outflow is determined by rating curves, with specific regulation for managed lakes and 
reservoirs, which can include constant or seasonal outflow adjustments. Irrigation is modelled 
based on crop water demands, using either the FAO-56 method (Allen et al., 1998) or 
reference levels for submerged crops (e.g. rice), with water sourced from local water bodies 
or groundwater, adjusted for conveyance losses. Water needed is sourced from rivers, lakes, 
reservoirs, and groundwater, both within and outside the originating sub-basin, subject to the 
availability at these sources. After accounting for conveyance losses, the withdrawn water is 
then used to increase infiltration in the soils requiring irrigation. 
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2.1.2. The pan-European E-HYPE hydrological setup 

The HYPE model is configured on a continental scale, covering the entire pan-European area 
of 8.8 million km² (Figure 2-1 right). This configuration is known as E-HYPE and divides the 
region into approximately 35,400 sub-basins, averaging 215 km² each, while it operates on a 
daily time-step (Hundecha et al., 2016). This setup (version 3.0) utilizes open data, 
incorporating 8 soil types and 15 land use categories to define up to 75 Hydrological Response 
Units (HRUs). The model's construction leveraged a variety of open data sources for 
continental and global analysis, and details can be found in Hundecha et al., (2016). River 
networks and sub-catchments were outlined using WWF’s Hydrosheds data, while HRUs were 
established from land use and soil information from several databases. CORINE provided land 
use data, while lakes and reservoirs data were sourced from the GLWD (Global Lakes and 
Wetlands Database) and GranD (Global Reservoir and Dam) databases. Irrigated areas were 
identified using GMIA (Global Map of Irrigation Areas) and MIRCA (Monthly Irrigated and 
Rainfed Crop Areas) datasets, and soil types were derived from the Harmonized World Soil 
Database (HWSD). 

2.1.3. Meteorological forcing input 

The E-HYPE hydrological model relies on the HydroGFD v3.0 meteorological dataset (Berg et 
al., 2021) to simulate soil, lake, and river conditions during both the spin-up phase and 
historical simulations. Due to the scarcity of daily meteorological data at large scales, this 
challenge has been addressed by adjusting reanalysis data with monthly global observations 
to ensure the monthly water balance aligns with observed data, while short-term processes 
are predicted by meteorological models (Weedon et al., 2014). However, such datasets are 
typically static, covering only historical periods until updated. 

The HydroGFD method, developed at the Swedish Meteorological and Hydrological Institute 
(SMHI), merges various global data sources to enable near real-time updates of 
meteorological data (Figure 2-2). This operational system at SMHI integrates global models 
from the ECMWF and observations for precipitation from the GPCC and temperature from 
the CRU and CPC. The composition of these data sources varies over time, producing different 
datasets. The historical HydroGFD dataset (1979-2016) corrects the ERA5 reanalysis with 
GPCC precipitation data and CRU temperature data. For more recent periods up to three 
months ago, the HydroGFD-Extended dataset updates observations with the latest from 
GPCC, CRU, and CPC. The most recent data, from the last two to three months, is provided by 
the HydroGFD-Near Real-time product, utilizing the ERA5t forecast with a five-day delay. The 
system outputs data with a spatial resolution of 0.25 degrees (approximately 25 km). It 
provides data every 3 hours for the HydroGFD-Historical and HydroGFD-Extended products, 
and every 6 hours for the HydroGFD-NearRealtime product. From this information, daily totals 
for precipitation and daily averages, as well as minimum and maximum temperatures, are 
derived. 
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Figure 2-2 The HydroGFD system that creates meteorological data for hydrological modeling, tracking both current and 

historical weather conditions. 

2.1.4. The hydrological model performance across Europe 

The E-HYPE model has been calibrated using in-situ and satellite data for different variables 
in order to ensure reliable hydrological simulations. This calibration approach following a 
multi-period, a multi-variable and a multi-criteria framework (Figure 2-3), allows parameter 
transferability across catchments, facilitating modeling in both gauged and ungauged areas. 
Calibration and validation of the model employed data from 115 gauging discharge stations 
and 538 independent stations, respectively. The model shows good performance having 
streamflow as a target variable across different catchment types with a median Nash-Sutcliffe 
Efficiency (Nash and Sutcliffe, 1970) around 0.54 and volume errors within ±2%, indicating 
robustness across varied hydrological settings (see Hundecha et al., 2016). Variation exists in 
model performance among catchment types, influenced by factors like rainfall patterns, 
baseflow contributions and land use, with overall tendencies to underestimate streamflow in 
calibration catchments and overestimate in validation ones. Despite some variability, 
especially in arid regions where performance drops, the model's general capability is affirmed, 
with median NSE and volume errors remaining stable across calibration and validation phases. 
The model's performance could be linked to the geographical gradient, with better accuracy 
in northern forested catchments compared to southern agricultural ones.  
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Figure 2-3 E-HYPE model performance using different streamflow signatures (accounting for volume, coefficient of variation, 
autocorrelation, and 5th, 30th, 70th and 95th percentiles). 

Earth observation products were also used in the model evaluation, with particular focus on 
modelled monthly actual evaporation and the corresponding MODIS dataset in the period 
2000-2012 (Figure 2-4; see also Hundecha et al., 2020). The evaluation of E-HYPE against the 
MODIS actual evaporation indicates that over the entire pan-European domain, the model is 
capable of representing the long-term actual evaporation and its temporal dynamics. Overall, 
the results emphasize the E-HYPE adaptability to diverse environmental conditions, while 
highlighting areas for potential improvement. 

 

Figure 2-4

 
Figure 2-4 E-HYPE performance using MODIS monthly actual evaporation as reference in the period 2000-2012. The 
performance is assessed in terms of volume (RE; relative error), timing (CC; correlation coefficient) and variability (STD; 
standard deviation) including also their histograms. Finally, the bottom right subplot compares E-HYPE and MODIS actual 
evaporation for all 35408 sub-basins. 
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2.1.5. Hydro-climatic data under current and future conditions 

Daily precipitation and air temperature data for the pan-European domain at the catchment 
scale were sourced from seven bias-adjusted regional climate models, which are members of 
the Euro-CORDEX model ensemble (Berg et al., 2021). Three representative concentration 
pathways (RCPs) are used accounting for a low, medium and high emission scenario (RCP2.6, 
4.5 and 8.5 respectively). The ensemble includes 3 different emission scenarios, 3 global 
circulation models (GCMs), 5 regional climate models (RCMs), and two spatial resolutions 
(Table 2-1). The dataset included a reference, 1971-2000, and three future periods 2011-
2040, 2041-2070, and 2071-2100 (Berg et al., 2021), named early, mid and late centuries. 
Note that the ensemble does not comprehensively cover all sources of uncertainty within the 
modeling chain, with for instance the MPI-ESM-LR GCM and the CCLM4-8-17 RCM over- and 
under-represented within the ensemble, respectively. Moreover, there are instances where 
the same model combinations are utilized, yet the projections are produced using different 
initial Earth system states of the GCM scenarios (projection ID 6 and 7). Nevertheless, we 
hypothesize that all available climate models are equally probable to project the future 
conditions, meaning also that they are free of systematic errors and have acceptable historical 
performance. 

Table 2-1 The ensemble of Euro-CORDEX projections used to produce hydrological impacts. All members are available for the 
RCP2.6, 4.5 and 8.5 emission scenario. 

ID GCM RCM Abbreviation 
1 EC-EARTH CCLM4-8-17 EC-EARTH+CCLM4-8-17 

2 RACMO22E EC-EARTH+RACMO22E 

3 HadGEM2-ES RACMO22E HadGEM2-ES+RACMO22E 

4 RCA4 HadGEM2-ES+RCA4 

5 MPI-ESM-LR RCA4 MPI-ESM-LR+RCA4 

6 REMO2009 MPI-ESM-LR+REMO2009 r1 

7 REMO2009 MPI-ESM-LR+REMO2009 r2 

Note: RCMs have a 0.11 degree (about 12.5 Km) horizontal spatial resolution. The GCM model MPI-ESM-LR has two 
realizations, r1i1p1 (r1) and r2i1p1 (r2), indicating a different initial Earth system’s state of the GCM scenarios. 

2.2 ENERGY SECTOR – PRIMES MODEL 

2.2.1. PRIMES and PRIMES-IEM models for European energy system  

The PRIMES model is a large-scale applied energy system model designed to provide long-
term energy system projections and system restructuring, both on the demand and supply 
side on a country-by-country basis and the entire European energy system. The modeling 
suite is based on interlinked models, including the detailed model of the power generation 
sector and dedicated models for industrial, transportation, residential, and services sectors 
to assess changes in the demand for energy. The PRIMES framework incorporates behavioral 
aspects as well as formulations of discrete choice theory to capture the idiosyncratic behavior 
of individual actors. The detailed model description is given in E3-Modeling (2018).  
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The model is formulated based on microeconomic foundations with explicit representation 
of engineering constraints, technologies (existing and perspective) and vintage of 
infrastructure characteristic to each sector.  The model includes non-linear formulation of 
potentials by type (e.g., for renewable energy resources, fossil fuel availability and trade, 
acceptability, compliance with policies etc.) and technology learning. Microeconomic 
principles (utility maximization, cost minimization and market equilibrium) are combined with 
detailed engineering constraints and integrate EU and national energy and climate policies. 

A series of research programs funded by the European Commission led to the development 
of the PRIMES model. The PRIMES model has been peer reviewed (European Commission, 
2011). The model is used for the EU impact assessments and development of the EU reference 
scenario. Recent applications include the EU Reference scenario 2020 to project changes in 
energy, transport and GHG emissions trends to 2050 (European Commission, 2021), which 
updates the previous version published in 2016 (European Commission, 2016). The PRIMES 
model is used in the impact assessment of EU climate and energy policies such as the Fit-for-
55 policy package, focusing on reaching ambitious targets in 2030 and building the roadmap 
for climate neutrality in 2050. The European Commission (2020) impact assessment relies on 
PRIMES scenarios that outline the effects of macroeconomic changes, fuel price changes, and 
technological changes on EU energy, transport systems, and greenhouse gas (GHG) emissions. 
The PRIMES model was applied to the assessment of the recent energy crisis caused by the 
Russian war in Ukraine, developed to assess the necessary measures to reduce the 
dependence on Russian fossil fuels in the EU energy system, the RepowerEU plan, (European 
Commission 2022). The latest application in 2024 includes the analysis of the 2040 roadmap, 
an assessment of the Europe's 2040 climate target plan (European Commission 2024). 

 
Figure 2-5 PRIMES model and its components. 

2.2.2. The pan-European model setup PRIMES-IEM 
The PRIMES model covers all energy sectors (Figure 2-5) and ensures the continuity between 
the available Eurostat statistics for historic periods and projections. The model covers the 
EU27+UK as well as 10 non-EU countries including the EFTA countries Norway, Switzerland 
and Iceland. With 5-year steps, the model covers horizons until 2100. 
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PRIMES - Biomass. The model analyzes the supply of biomass and waste for energy needs. 
The model quantifies the required transformation capacity to produce bioenergy 
commodities, associated production costs and end user prices. The Biomass module links the 
energy system model and the available projections from acknowledged European models 
such as CAPRI, GLOBIOM, GAINS for the projections on agriculture, forestry and non-CO2 
emissions. 

PRIMES - TREMOVE. The dedicated model of the transport system, equipped to analyze 
changes in the demand for passengers and freight transport. The model includes a specter of 
transport modes and vehicles to produce the projections of activity levels, vehicle fleet, 
energy consumption by fuel type and transport mode, emissions. The model produces 
detailed long-term outlooks per country and EU overall, taking in consideration EU and 
national policies, standards and characteristics of the vehicle fleet.  

PRIMES - Maritime. Within the energy-economy-environment modeling nexus, this model 
represents the maritime sector. For each of the EU Member-States, the model produces long-
term energy and emission projections, as well as integrated projections with PRIMES-
TREMOVE and PRIMES-PRIMES. 

The current deliverable uses the PRIMES-IEM model (see Figure 2-5 on the right). This model 
has a flexible choice of time-steps per year with up to 8760 single-hour steps. This model has 
a detailed representation of the European power and heat generation. PRIMES-IEM has a 
stylized representation of the network for supply and exchanges of power, heat and steam 
simultaneously. The model produces long-term projections of the power mix needed to 
satisfy electricity and heat demand in demand sectors: industry, residential, services, and 
transportation. The model is based on the microeconomic foundations and captures the 
competition between power generation technologies, combined heat and power (CHP) plants 
and boilers, self-production and grid-based supply of energy. The model includes a detailed 
representation of the power generation technologies and their development, including 
introduction of prospective technologies (e.g., carbon capture storage and use CCS/U) and 
fuels, including prospective use of synthetic fuels and renewable fuels of non-biological origin 
(RFNBO). The long-term projections take into account changes in the power mix driven by the 
policy, economy and technological framework. The PRIMES-IEM model inherits the key 
characteristics of the PRIMES model (as implementation of policy instruments and climate 
targets) and is dedicated to the analysis of the electricity market under different climate 
conditions. 

2.2.3. EU policy roadmap to climate neutrality under future climate conditions 
 
Recent applications of PRIMES include the official evaluation of the Fit-for-55 legislative 
package, aiming to reduce greenhouse gas emissions to -55% below 1990 levels by 2030 
European Commission (2021c). The long-term assessment focuses on the energy efficiency 
measures, pathways for renewable energy development in the demand and supply sectors. 
The EU long-term climate plan is driven by the overall climate neutrality target in 2050 (Figure 
2-6). Improving the long-term strategies for the energy sector with the impact from climate 
change, contributes to our preparedness and development of adaptation measures necessary 
to increase the resilience of the European energy system. 
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Notes:  

*Greenhouse gas emissions (Domestic & Intra-EU Maritime and Aviation)  

**2030 -55% GHG emission reduction target and 2050 climate neutrality target outlined in the European Green Deal; for 
2040 -90% GHG emission reduction target in the political agreement announced in the communication of the EC 
(COM/2024/63) 

Figure 2-6 EU emissions pathways to 2050.  

Climate change introduces specific challenges for technological and socio-economic 
frameworks, particularly highlighted during the summer of 2018 in Europe and globally. This 
period evidenced heatwaves in North America, Western Europe, and the Caspian Sea region, 
and extreme rainfall in Southeast Europe and Japan, showcasing the direct impacts of climate 
variability (Kornhuber et al. 2019). In Europe, prolonged droughts and heatwaves disrupted 
electricity production, notably in France and Germany, due to reduced output from nuclear 
and coal power plants. This situation led to spikes in electricity prices, especially in Italy and 
Spain, in anticipation of rising temperatures. The energy transition towards renewable 
sources faces tests from extreme weather patterns, such as the February–March 2018 cold 
spells and the July 2018 heatwaves (Platts 2018, EDO 2018). These incidents underscore the 
importance of flexibility and balancing capacity in power systems heavily reliant on variable 
renewable energy. Thermal plants, essential for such capacity, depend on the availability and 
temperature of cooling water, rendering them vulnerable during hot periods. Thermoelectric 
power plants could suffer significant capacity reductions, up to 84–86%, by 2040–2069 due 
to cooling water limitations, emphasizing the need for enhanced risk preparedness in the 
power sector (van Vliet et al. 2016). While carbon capture technologies offer a pathway to 
decarbonize electricity generation, they significantly increase water demand for cooling, 
highlighting the risk of water scarcity during droughts and the need for investment in efficient 
cooling technologies (Byers et al. 2016).  

There are several dimensions of the power generation and power demand that are vulnerable 
to changing climate conditions, in particular  to the increased occurrence of extreme weather 
events, such as heatwaves, droughts, and cold spells. Some of these dimensions are: changing 
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demand for power for cooling and heating; efficiency losses and cooling needs of the thermal 
power generation; changing availability of hydropower generation. 

Within the ongoing CLINT project, the PRIMES-IEM modeling framework is being extended to 
include the risks of extreme events on the energy production in Europe, to improve the long-
term projections and understand the risks associated with climate change. The work will 
contribute to policy dialog for adaptation measures necessary to increase the resilience of the 
European energy system. The PRIMES-IEM modeling framework can be improved with ML 
techniques to facilitate the use of available climate data to assess impacts of changing climate 
and rising risks of extreme events over Europe. 

2.3 FOOD SECTOR – ECROPS MECHANISTIC CROP GROWTH MODEL 

2.3.1. The crop growth model 
Crop growth modeling has been a cornerstone of advancing and establishing a spatiotemporal 
knowledge on yield prediction and impact assessment of climate and human practices on crop 
production. 

Crop growth models like ECroPS (Engine for Crop Parallelizable Simulations) and WOFOST 
(World Food Studies) simulate and predict crop growth under varying environmental 
conditions, integrating complex biological, physiological, and environmental processes to 
simulate the growth and development of crops over time (Toreti et al., 2019). 

At the core of models such as ECroPS lies a comprehensive understanding of the physiological 
mechanisms governing crop growth. By simulating processes such as photosynthesis, 
respiration, transpiration, and nutrient uptake, these models offer insights into how crops 
respond to environmental factors such as temperature, rainfall, soil moisture, and nutrient 
availability. 

One of the primary applications of crop growth models like ECroPS is yield prediction. By 
simulating crop growth across different agro-climatic regions and management practices, 
these models can forecast potential yields under various scenarios. This capability is 
important to farmers, policymakers, and agribusinesses, enabling them to make informed 
decisions regarding crop selection, planting dates, irrigation scheduling, fertilizer application, 
and pest management among others. Furthermore, yield predictions facilitate risk 
assessment and management, helping stakeholders mitigate the impacts of adverse weather 
events or other environmental stressors on agricultural production. 

In the context of climate change, crop growth models play a critical role in assessing the 
vulnerability and adaptive capacity of agricultural systems. By simulating future climate 
scenarios and their potential impacts on crop growth and yield, these models provide 
essential information for climate change adaptation and mitigation strategies. In this sense 
we can evaluate the resilience of different crop varieties, cropping systems, and management 
practices to projected changes in temperature, precipitation, and extreme weather events. 
This information empowers stakeholders to develop tailored adaptation measures, such as 
shifting planting dates, adopting heat-tolerant cultivars, implementing water-saving 
technologies, and adjusting agronomic practices to optimize resource use efficiency and 
minimize environmental impacts. 
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More specifically, ECroPS is in principle a dynamical process based crop model developed to 
simulate crop growth for a wide range of crops and crop varieties anywhere on the globe, but 
focuses its functionality and final products by the EC-JRC on the European domain. ECroPS is 
a new modeling framework developed to deal with the high computational demand of high-
resolution regional climate model simulations. The core of ECroPS is the mechanistic crop 
growth model WOFOST that explains crop growth on the basis of the underlying processes, 
such as photosynthesis, respiration and how these processes are influenced by environmental 
conditions. Internally, various modules include phenological development, light interception, 
gross CO2 assimilation, growth and maintenance respiration, dry matter partitioning, source 
and sink limited leaf area development, soil water balance and soil nutrition balance. 

 
Figure 2-7 Simplified general structure of the dynamic, explanatory crop growth model ECroPS (based on the WOFOST core, 
see de Wit et al., 2019). 

2.3.2. ECroPS inputs and output data streams 
As a summary of its key mechanisms, ECroPS integrates: 

● Biophysical Processes: ECroPS simulates the biophysical processes involved in crop 
growth, including photosynthesis, respiration, transpiration, and biomass 
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accumulation. These processes are influenced by environmental factors such as 
temperature, solar radiation, humidity, and soil moisture.   

● Crop Development: The model tracks the growth stages of the crop based on thermal 
time, which is the accumulation of heat units required for crop development. Different 
crops have specific phenological stages (e.g., emergence, flowering, maturity), and 
ECroPS simulates these stages based on empirical relationships.   

● Crop Management: ECroPS allows for the simulation of various crop management 
practices, such as planting dates, irrigation, fertilization, and crop residues. These 
management inputs influence crop growth and yield potential by affecting factors 
such as water and nutrient availability.  

● Water Balance: The model simulates the water balance of the crop system, accounting 
for rainfall, irrigation, evaporation, and transpiration. Soil water availability is a critical 
factor affecting crop growth, and ECroPS calculates soil moisture dynamics based on 
water inputs and losses. 

● Nutrient Dynamics: ECroPS considers the dynamics of nutrient uptake and cycling 
within the soil-plant system. It simulates the availability of essential nutrients (e.g., 
nitrogen, phosphorus) in the soil and their uptake by the crop, which influences 
biomass accumulation and yield formation. 

● Environmental Stress: The model incorporates factors that can cause environmental 
stress to crops, such as drought, heat stress, and nutrient deficiencies. These stresses 
can affect crop growth and yield, and ECroPS simulates their impact based on 
physiological responses.   

● Yield Formation: Based on the simulated crop growth processes and environmental 
conditions, ECroPS predicts crop yield potential under different scenarios. Yield 
formation is influenced by factors such as biomass accumulation, crop development, 
and environmental stress.   

 
Note: Graph’s legend is Total Weight of Storage Organs (TWSO) that represents the harvestable product (the yield) of the 
crop in kg/ha. 

Figure 2-8 Example simulations of potential and water-limited configurations for grain maize. 

Overall, ECroPS is a comprehensive crop growth model that integrates biophysical processes, 
crop development, management practices, and environmental factors to simulate crop 
growth and yield potential. It is used worldwide for agricultural research, decision support, 
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and policy analysis. Furthermore, the impact of highly relevant climate extremes can be 
simulated, including heat stress and droughts. 

 

 

 
Note: Graph’s legend is Total Weight of Storage Organs (TWSO) that represents the harvestable product (the yield) of the 
crop in kg/ha. 

Figure 2-9 From left to right: The 2003, 2008 and 2020 heatwaves and droughts are visible through the ECroPS simulations 
for grain maize. 

The crop model is parameterized to account for the spatial variability in crop model 
parameters across Europe, thus considering different spatial variety distribution for the main 
crops (Ceglar et al., 2019). The latter is based on pan-European spatial calibration of several 
crop model parameters relating to variety prevalence in different European growing regions. 
ECroPS distinguishes three levels of crop production: potential production (determined by 
crop variety, radiation and temperature), water limited production (water availability limits 
potential production) and nutrient limited production (in which nutrient availability limits 
water limited production). 

2.3.3. Crop growth modeling challenges and their surrogate potential 

Today, within the canvas of crop growth modeling, AI is emerging as a compelling alternative 
to traditional crop growth models, offering novel approaches for simulating and emulating 
complex agricultural systems with accuracy and efficiency. While conventional mechanistic 
models like ECroPS and WOFOST indeed serve as valuable tools for understanding crop-
environment interactions, they often struggle for visibility, wider utilization and are rarely 
encompassed to operational schemes. 

AI-based techniques, including ML and deep learning (DL), present a disruptive paradigm for 
crop modeling by leveraging various streams of data to infer complex relationships and 
patterns. Unlike mechanistic models that rely on predefined equations and assumptions, AI 
algorithms learn directly from data, enabling them to uncover nonlinear and dynamic 
relationships between environmental variables and crop responses. 
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One of the most important traits of AI-based models is that they offer superior scalability and 
computational efficiency compared to traditional simulation approaches, making them well-
suited for large-scale applications and real-time decision support. By leveraging parallel 
computing architectures and distributed processing frameworks, AI algorithms can analyze 
massive datasets and perform complex computations in a fraction of the time required by 
conventional models, enabling rapid scenario analysis and sensitivity testing. 

AI techniques such as emulation and surrogate modeling have emerged as powerful tools for 
accelerating the calibration, validation, and uncertainty quantification of complex crop 
models. By training ML/DL algorithms to mimic the behavior of computationally expensive 
simulation models, researchers can create lightweight and interpretable emulators that 
replicate model outputs with high fidelity while drastically reducing computational costs. 
These emulators enable efficient sensitivity analysis, optimization, and ensemble modeling, 
facilitating robust decision-making under uncertainty. 

ECroPS and its internal modular components are highly complex and resource demanding. 
This is due to the nature of ECroPS, which is a sophisticated mechanistic crop growth model 
that integrates all the abovementioned modeled biophysical processes related to plants, with 
multiple weather, soil and crop parametrization inputs and calibration requirements. This 
particular aspect of the crop growth model poses an important limitation towards a scalable 
and widely adopted solution. Overall, the usage complexity, special data demanding and the 
overall configuration of ECroPS, make the integration into existing decision support pipelines 
outside research environments very difficult, if possible at all. In summary, we aim at 
operationalizing a crop growth modeling process while lowering the inherent uncertainty that 
emerges from the multiple weather variables that ECroPS uses. This is achieved by the current 
AI-based surrogate modeling efforts, a model that will also allow the realizations of a vast 
number of runs (ensemble runs) of the surrogate model, thus achieving more statistically 
robust mean outputs and probabilistic interpretations. 
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2 INVESTIGATION ON AI-ENHANCED CLIMATE SERVICES FOR 
EXTREME IMPACTS - WATER SECTOR 

3.1. HYDROLOGICAL KNOWLEDGE ENHANCEMENT THROUGH AI - BACKGROUND AND 
OBJECTIVES 

3.1.1. Hybrid hydrological modeling to enhance performance at local scale 

Hydrological modeling has significantly advanced our understanding of the water cycle, 
offering insights into the flow, allocation, and quality of water resources (Guse et al., 2021; 
Yang et al., 2021). This progress has enabled both scientists and policy-makers with an 
improved understanding of water's dynamics and its interaction with both climate and 
environmental parameters (Barendrecht et al., 2019; Botzen et al., 2009; Di Baldassarre et al., 
2019). Such an improved understanding is important for effective water resource 
management, optimizing water usage, ensuring supplies, and enhancing resilience against 
natural disasters, like floods and droughts. It enables the formulation of accurate risk 
assessments and the development of targeted mitigation strategies. The application of 
catchment-scale hydrological models has been widely focusing on understanding and 
predicting water movement, storage, and quality within specific, often small drainage areas, 
allowing for detailed analysis of local water resources and environmental impacts 
(Pechlivanidis et al., 2011). However, many river systems across the world cover a large 
domain, are transboundary, and even interconnected through water reallocation or 
groundwater interactions. In such cases, large-scale hydrological models (LSHM) have been 
preferred to extend the hydrological predictions over broader geographical areas, including 
entire river basins, continents, or the global scale, to address regional to global water cycle 
dynamics and interactions with climate change and human activities (Pechlivanidis and 
Arheimer, 2015). 

Deploying LSHMs on national to global scales introduces a set of challenges. These include 
uncertainties in model structural and parameter identification, which can degrade model 
accuracy and lead to gaps in our understanding of water cycle dynamics. Variability in 
hydrological responses, driven by diverse climatic conditions, soil types, topographical 
features, and human activities, such as irrigation practices and reservoir management, 
complicates the modeling process further, especially in regions with insufficient gauging 
stations, where traditional data gathering methods fall short. This scarcity of data complicates 
the calibration and verification of LSHMs, which are crucial steps for ensuring model reliability 
and robustness. Moreover, the absence of a comprehensive meteorological dataset that can 
accurately reflect regional weather patterns, especially precipitation, introduces significant 
errors/uncertainties in hydrological predictions.  

Machine learning (ML) and statistical methods can be used to assist hydrological modeling by 
analyzing complex patterns within hydrological data, thereby enhancing the accuracy and 
reliability of water cycle simulations (Bézenac et al., 2019; Geer, 2021; Kraft et al., 2022; 
Moradkhani et al., 2005; Xu and Liang, 2021). By employing advanced ML or statistical 
algorithms (i.e. neural networks, decision trees, ensemble learning, quantile mapping and 
regression models) hydrologists can now capture the nonlinear relationships between various 
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hydrological processes and environmental factors more effectively (AlDahoul et al., 2023; 
Hauswirth et al., 2021; Papacharalampous et al., 2022). This has led to significant 
improvements in predicting water distribution, flow, and quality across different landscapes 
and climatic conditions. Particularly, ML methods are useful at handling large datasets, 
allowing for the extraction of data information, correlations between variables and the 
refinement of model outputs to closely align with observations. The integration of these ML 
and statistical methods into hydrological modeling and/or hybrid combination of these two 
model families allows for more advanced approaches in understanding and predicting the 
impacts of extreme events (Slater et al. 2023). 

In line with the above challenges, post-processing techniques have emerged as important 
tools for refining hydrological and meteorological model outputs, including both statistical 
and ML-based techniques. Statistical methods, like quantile mapping, adjust and downscale 
outputs to align with observed data, while ML techniques, such as neural networks and 
ensemble learning, explore complex data patterns to improve prediction accuracy (Enayati et 
al., 2020; Liu et al., 2022; Papacharalampous and Tyralis, 2022). These advanced post-
processing tools have shown their capability of reducing uncertainties and increasing forecast 
accuracy. However, the effectiveness of these post-processing ML methods can be 
compromised by issues such as overfitting and the "black box" nature of some ML models, 
which questions their applicability for decision-making. Similarly, traditional statistical 
methods may lack the flexibility to capture complex, nonlinear relationships within the data, 
leading to less accurate predictions. Additionally, both statistical and ML methods often 
require a large amount of high-quality historical data, which may not be available in all 
regions. Despite their limitations, there are potential ways of improving their performance, 
for example, to take account of unique characteristics of each local catchment by considering 
topography, soil type, vegetation, and climate (Du et al., 2023; Pechlivanidis et al., 2020). By 
integrating local regimes into post-processing strategies, hydrological modeling takes a 
significant step forward, into more refined, reliable, and regionally relevant predictions.  

Within CLINT, the objective is to enhance the quality of streamflow simulations derived from 
large-scale hydrological models at the catchment and regional level, thereby enhancing their 
applicability for local decision-making processes. Specifically, we investigate two scientific 
questions: (1) Can the outputs from process-based hydrological models be post-processed 
using statistical/machine learning models at the local scale across various hydrological 
regimes? (2) Can this hybrid hydrological modeling improve the performance at the local 
scale? To address these questions, we apply a comprehensive post-processing approach to 
the streamflow outputs of the pan-European E-HYPE process-based hydrological model, using 
a combination of four statistical and machine learning techniques. This approach is tested 
against a substantial dataset covering approximately 2000 streamflow gauging stations, which 
represent a wide range of hydrological gradients in Europe. 

3.1.2. Attributing runoff changes to climatic drivers in present and under future conditions 

Various studies have investigated the hydro-meteorological changes across the European 
domain, reporting significant shifts in runoff patterns due to climatic change. The 
Intergovernmental Panel on Climate Change (IPCC, 2022) refers to pronounced streamflow 
variations due to rising temperatures and evolving precipitation regimes. The results 
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specifically highlight the Mediterranean region's vulnerability, with the projections indicating 
drier conditions with diminished annual precipitation (Schneider et al., 2013; Yeste et al., 
2021), whereas the boreal climate zone is anticipated to experience runoff increments due to 
increased precipitation and temperature (Donnelly et al., 2017). The temperate zone's flow 
regimes are expected to exhibit varying degrees of impact, from minimal in oceanic to 
substantial in continental areas. Furthermore, the incidence and severity of hydrological 
extremes, such as floods (Thober et al., 2018) and droughts (Gu et al., 2023), are likely to 
increase alongside seasonal streamflow changes. 

Empirical analyses, including those by Stahl et al. (2012), have observed increased trends in 
annual streamflow within western and northern Europe, contrasting with downward trends 
in the south and parts of eastern Europe over the period 1962-2004, signifying seasonal 
adjustments in hydrological patterns. Gudmundsson et al. (2019) identified significant 
streamflow increases in Central Europe from 1960 to 2000, with notable annual streamflow 
variations in Northern Europe during the last three decades (1971-2010). Regional 
assessments in Central Europe have spotlighted divergent seasonal runoff changes, 
particularly influenced by infrastructure developments and snow cover alterations in recent 
decades (Rottler et al., 2020). Overall, the existing research has advanced our knowledge of 
the interplay between climatic fluctuations and hydrological responses, yet gaps remain in 
identifying the exact impacts of distinct climatic variables. The complexity of disentangling 
climate-induced changes from those driven by anthropogenic actions, such as land-use 
transformation and water management practices, remains a key challenge, highlighting the 
necessity for refined hydrological attribution techniques. 

Various methodologies have been deployed for attributing observed hydrological changes to 
climate change, each with inherent strengths and limitations. Statistical approaches and 
hydrological modeling have been instrumental in correlating observed changes to climatic 
drivers, especially in catchments that are not affected by human activities (Hannaford et al., 
2013; Hundecha and Merz, 2012). Nonetheless, the inherent uncertainties in hydrological 
simulations necessitate cautious interpretation when attributing streamflow changes to 
climate change or human disturbances (Tang et al., 2022). 

The Budyko framework offers a conceptual approach for estimating the hydrological 
sensitivity to changes in precipitation and potential evapotranspiration within a catchment, 
facilitating the delineation of climate change contributions based on the water balance 
equation (Liu et al., 2021). The framework helps in explaining how climate and other factors 
influence long-term average runoff and evaporation in river basins. By delineating the 
relationship between climate variables and hydrological responses, the Budyko framework 
facilitates the attribution of changes in runoff to variations in precipitation and 
evapotranspiration. This has been instrumental in assessing the impacts of climate change on 
water resources, enabling hydrologists to predict how alterations in climate patterns may 
affect water availability and distribution. Its simplicity and the minimal data requirements 
have made it a foundational tool in hydrological studies, particularly in analyzing the effects 
of climatic variability and change on hydrological regimes across diverse geographical 
locations. Up to this date, the application of the framework was done on single or few river 
systems, and although such studies provide detailed insights, continental-scale analyses yield 
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a broader perspective on transboundary climate and hydrological dynamics, albeit with a 
compromise on localized resolution, thereby enabling the identification of overarching 
hydrological trends through comparative analyses. 

Within CLINT, the aim is to elucidate the connection between European runoff variations and 
climatic alterations, including associated uncertainties, both in the current and future 
conditions. We aim to answer three questions: (1) How will runoff, precipitation and potential 
evapotranspiration change under future conditions? (2) What is the sensitivity of runoff 
changes to precipitation and potential evapotranspiration across Europe? and (3) How do 
precipitation and evapotranspiration changes relatively contribute to runoff changes under 
future conditions? To address these questions, we take advantage of the Euro-CORDEX data 
and assess the runoff changes in the three future periods and the climatic elasticity (see 
Section 2.1.5). We then use the theoretical Budyko framework to quantify and attribute 
runoff changes to precipitation and evapotranspiration under different future periods and 
emission scenarios. 

3.2. METHODOLOGY – HYBRID HYDROLOGICAL MODELING TO ENHANCE PERFORMANCE AT 
LOCAL SCALE 

3.2.1. Description of the methods 

To enhance hydrological model performance at local scales, several statistical and machine 
learning based methods are adopted to post-process the modeled streamflow to the local 
observations. Here we briefly explain the four methods, including two statistical (generalized 
linear model and quantile mapping) and two machine learning (random forest and long short-
term memory) methods. Detailed information of the machine learning methods can be found 
in Deliverable 2.2. 

Generalized Linear Model (GLM): GLM is a statistical method which extends linear regression 
to accommodate non-normal distributions of the error terms (Madsen and Thyregod, 2010). 
It allows for the inclusion of different types of predictor variables and the modeling of 
response variables that follow distributions other than the normal, such as Gaussian, to 
provide a flexible framework for understanding the relationships between variables.  

Quantile Mapping (QM): QM is a statistical technique used for bias correction by adjusting 
the distribution of  one variable to match the target variable distribution, therefore it 
effectively corrects systematic biases in model outputs (Gudmundsson et al., 2012). The 
technique involves comparing the quantiles of the input data with those of the target data 
and applying corrections to align them. This method is particularly useful for improving the 
accuracy of hydrological predictions, as it ensures that the corrected model output maintains 
the statistical properties of the observed data across the entire distribution. The tricubic 
spline method is adopted here to allow for a smooth adjustment of the cumulative 
distribution functions, thereby providing a refined approach to addressing biases in both the 
center and tails of the distribution. 

Random Forest (RF): RF is an ensemble learning method that builds multiple decision trees 
and merges their predictions to improve accuracy and control over-fitting (Pham et al., 2021). 
By employing a multitude of decision trees, each trained on random subsets of the data and 
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features, RF provides a robust predictive framework that can handle high-dimensional spaces 
and non-linear relationships without requiring extensive parameter tuning. 

Long Short-Term Memory (LSTM) model: LSTM model is a type of recurrent neural network 
designed to capture long-term dependencies in sequential data, an essential feature for 
modeling hydrological processes (Kratzert et al., 2018). In our study, with a configuration that 
includes three layers with a varying number of cells (100-50-20), LSTM models are trained for 
learning from the temporal patterns in runoff data over a 3-day lookback period. Its 
mechanisms for adding or removing information to a cell state enables it to learn from the 
temporal dynamics in the data. 

Next, in order to better understand the performance results after the post-processing and 
link the performance to the local physiographic characteristics, we apply the classification and 
regression trees ML-based method. 

Classification And Regression Trees (CART): CART is a non-parametric decision tree learning 
technique that models the prediction of a target variable by recursively partitioning the data 
set and fitting a simple model within each partition (Breiman et al., 2017). In this study, CART 
is used to identify the most important predictors of model performance and to model the 
complex, non-linear relationships between them. The algorithm splits the data into subsets 
based on the values of the input features that result in the largest reduction in heterogeneity 
of the target variable. This process continues until further splitting does not significantly 
improve the model's accuracy or until predefined stopping criteria are met, such as a 
minimum number of observations in each leaf of the tree. To avoid overfitting, the technique 
of pruning is used by removing branches that have little to no contribution to the model's 
predictive power, aiming to find the optimal balance between the tree's complexity and its 
accuracy on a validation set. 

3.2.2. Application: post-processing for hydrological services 

A significant challenge in enhancing continental and global hydro-climate services lies in the 
insufficient integration of local knowledge and datasets from end-users, necessitating 
advanced post-processing techniques. Recent advancements have demonstrated the efficacy 
of statistical and machine learning (ML) methodologies in elevating the accuracy and 
reliability of hydrological models, ensuring outputs more accurately reflect specific local 
hydrological dynamics (Slater et al., 2023). This investigation, therefore, explores four post-
processing strategies aimed at refining streamflow predictions, with the objective being to 
enhance the precision of volume estimates and the characterization of hydrological extremes, 
thereby bridging the gap between generic model outputs and localized hydrological realities.  
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Figure 2-1 Framework for post-processing hydrological model outputs using local observations. 

In Figure 2-1, we present the architecture of our post-processing framework. This framework 
is benchmarked against a process-based model E-HYPE that is driven by forcing data, i.e. 
temperature and precipitation, to produce hydrological simulations across the pan European 
domain. Despite the efficiency of this model, discrepancies (referred to as residuals) persist 
between the simulated outputs and observational data. During the post-processing phase, 
specific algorithms (i.e. statistical or machine learning based) are employed to bridge this gap, 
thereby minimizing the residuals. In our experiment, two statistical methods (GLM and QM) 
and two machine learning based methods (RF and LSTM) are employed. The performance of 
these post-processors is evaluated from various perspectives using selected metrics which 
are introduced in 3.2.2. Furthermore, we investigate the significance of features by linking the 
performance of the post-processors with potential influencing factors, including climatology, 
topography, human impact, and hydrological regimes (Section 3.2.3). 

Simulated runoff from E-HYPE was obtained for the period 1961-2023. Observations were 
collected in the pan European domain from various data sources, including GRDC, EWA, SMHI, 
BHDC, Spanish and Italian authorities. Detailed information can be found in Hundecha et al 
2016. Around 2000 stations were selected based on data availability with at least 10 years of 
data (Figure 2-2), which is divided into training and testing periods with 80%/20% split. The 
figure illustrates comprehensive spatial coverage of the stations across the entire study 
domain, with a higher concentration in Central Europe and relatively fewer stations in the 
southern (e.g. Spain) and the eastern part of the region. 
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Figure 2-2 Data availability: stations and length of the observation data. 

3.2.2. Evaluation: improvement of post processing framework 

To evaluate the added value of the post processing algorithms, three evaluation metrics were 
used to assess the volume, high and low streamflows.  

Mean Absolute Error (MAE): MAE is a measure of errors between paired observations 
expressing the same phenomenon. It calculates the average magnitude of errors in a set of 
predictions, without considering their direction. MAE is a linear score which means that all 
individual differences are weighted equally in the average. The Scaled Mean Absolute Error 
(SMAE) serves to adjust the MAE in relation to the average runoff observed at each station, 
thus facilitating the comparison of MAE values across stations that have different runoff 
magnitudes.  
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Logarithmic Nash-Sutcliffe Efficiency (logNSE): The logNSE modifies the traditional NSE to 
emphasize the performance of a model in predicting low flow conditions. By applying the 
logarithm to both observed and predicted values before calculating efficiency, logNSE is 
particularly sensitive to differences in low flow predictions, making it valuable for evaluating 
hydrological models where capturing low flows is critical. 

𝑙𝑜𝑔 𝑁𝑆𝐸 = 1 −
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Improvement at each station is denoted by calculation of skills, which quantifies the 
performance of post-processing methods relative to raw simulations, where negative skill 
values indicate deterioration, and positive values denote improvements. A skill value 
approaching 1 signifies a greater enhancement in predictive performance, highlighting the 
effectiveness of the post-processing techniques in refining hydrological forecasts. 

𝑆𝑘𝑖𝑙𝑙 =
𝑆𝑐𝑜𝑟𝑒𝑝𝑝 − 𝑆𝑐𝑜𝑟𝑒𝑟𝑎𝑤

𝑆𝑐𝑜𝑟𝑒𝑝𝑒𝑟𝑓𝑒𝑐𝑡 − 𝑆𝑐𝑜𝑟𝑒𝑟𝑎𝑤
 

3.2.3. Detection: drivers of post processing efficacy 

To improve climate services through a deeper understanding of the hydrological model 
process, assessing model performance and its potential drivers is crucial. Machine learning 
techniques have shown their capability of uncovering relationships between influencing 
factors and the target variables, especially when these relationships are non-linear and 
complex. In our study, we use CART analysis to identify key drivers that affect the 
performance of the E-HYPE model across Europe, with a focus on general model performance 
on volume and both high and low flows.  

CART is an algorithm that classifies the space defined by the input descriptors (i.e., 
physiographic, hydrological, and climatic) based on the output variable (e.g., performance 
metric of the E-HYPE simulation). By splitting data into subsets based on certain criteria, it 
builds a binary tree structure that represents decision paths. The method also provides 
information on the probabilities of different output groups at each “leaf”. In this study, we 
chose to divide the model performance into four groups by quartiles. A terminal “leaf” exists 
at the end of each branch of the “tree,” where the probability of belonging to any of the four 
output groups was inspected. The original trees were pruned to avoid overfitting. We next 
calculated the descriptors' importance by summing changes in the probability of splitting on 
every descriptor and dividing the sum by the number of branch nodes (Pechlivanidis et al 
2020). This importance score was then standardized, spanning from 0 to 100 for 
comparability. 

The association between model performance and potential drivers were investigated using 
the method above, by calculating the feature importance of each potential driver. The 
considered potential drivers were listed in Table 2-1, including topography, climate, human 
impact and hydrological regimes. Some drivers are highly interdependent and therefore 
introduce uncertainty to CART analysis. Here the highly interdependent drivers (Pearson 
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correlation coefficient > 0.6) were removed, and therefore 8 potential drivers were kept for 
CART analysis, as shown by bond font in Table 2-1.  

Table 2-1 Potential drivers considered in this study, including topography, climate, human impact and hydrological regimes. 

No. Name Abbreviation Unit 

1 Precipitation Prec mm 
2 Temperature Temp °C 
3 Snow depth Snow cm 
4 Actual evapotranspiration AET mm 
5 Potential evapotranspiration PET mm 
6 Dryness index PET/Prec -- 
7 Evaporative index AET/Prec -- 
8 Upstream Area Area km2 

9 Elevation Elev m 
10 Relief ratio Relief -- 
11 Slope Slope % 
12 Degree of Regulation DoR % 
13 Hydrological Clusters Cluster -- 

 

By applying the concept of feature importance, a comprehensive ranking index, as defined by 
Jiang et al. (2015), enables the evaluation and comparison of potential drivers' influence 
across various models. This ranking index (RI) is mathematically expressed as, 

𝑅𝐼 = 1 −
1

𝑛𝑚
∑ ⬚𝑛

𝑖=1 𝑟𝑎𝑛𝑘𝑖, 

m represents the total number of potential drivers, which in this study is eight, and n denotes 
the number of models, set at five (raw model and four post processing methods) for this 
analysis. 𝑟𝑎𝑛𝑘𝑖 indicates the assigned rank of each potential driver, with 1 being the most 
critical and 8 the least. Thus, an RI value approaching 1 signals a more accurate and effective 
simulation outcome. 

With this rank index, the analysis identifies the three most influential drivers across both the 
unprocessed model and the various post-processing methods. This approach can reveal the 
underlying drivers of the model performance and provide information on where post-
processing methods can significantly refine the model's accuracy. These insights are 
invaluable for the strategic application of statistical and AI techniques to enhance model 
accuracy and contribute to the reliability of climate services. 

3.3. METHODOLOGY – ATTRIBUTING RUNOFF CHANGES TO CLIMATIC DRIVERS IN PRESENT 
AND UNDER FUTURE CONDITIONS 

3.3.1. Enhanced attribution of extreme events to climate change 

The Budyko framework (Figure 2-3) was adopted to attribute future runoff changes to 
precipitation and potential evaporation as primary climatic factors of these changes. The 
Budyko framework explains the division of precipitation (P) into evapotranspiration (E) and 
runoff (Q) by balancing the water supply from the atmosphere (P) and the water demand by 
the atmosphere (potential evaporation, E0). In this framework the theoretical equation of the 
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water-energy balance expressing the changes in E due to changes in P and E0 for a given 
catchment and deviations from the original Budyko relation is combined with the water 
balance equation governing runoff changes in long-term periods to obtain the runoff changes 
(ΔQ) as a function of the climate drivers. In this approach changes in catchment storage were 
assumed negligible compared to changes in P, E, and Q as the changes are considered to occur 
between the long-term period of 30-years typical of hydroclimatic applications. The 
attribution of runoff alterations to climate changes was calculated as the relative contribution 
of the influencing climate factor to runoff changes (δp, δE0), i.e. the ratio between the 
contribution of each climatic factor (ΔQp, ΔQE0) and the total, ΔQp+ΔQE0, climatic contribution 
(Liu et al., 2017): 
 

𝛿𝑝 =
∆𝑄𝑝

∆𝑄𝑝 + ∆𝑄𝐸0
;  𝛿𝐸0 =

∆𝑄𝐸0

∆𝑄𝑝 + ∆𝑄𝐸0
 

 
The contribution of each climate factor on runoff changes in the early (2011-2040), middle 
(2041-2070), and late (2071-2100) centuries was obtained by multiplying the elasticity 
coefficient (εp, εE0) by the relative change of the climatic factor (ΔP, ΔE0) to the reference 
period (1971-2000). 
 
The elasticity coefficients express the sensitivity of runoff to changes in the climatic drivers 
and represent the changes (increase/decrease) in runoff response to a 1% increase in 
precipitation and potential evaporation (Roderick and Farquhar's, 2011).  

 
Figure 2-3 Conceptualized illustration of the Budyko diagram (here PET and AET are the potential and actual 

evapotranspiration, respectively). 

3.4. RESULTS – HYBRID HYDROLOGICAL MODELING TO ENHANCE PERFORMANCE AT LOCAL 
SCALE 

3.4.1. Tailoring hydrological services to local conditions through post processors 

With three metrics, we assess the performance of post-processing methods at different 
stations. Figure 2-4 presents results from an example station, where we show the time series 
of the raw and post processed simulations, and corresponding metrics. The analysis of four 
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distinct post-processing methodologies reveals an overall enhancement of the initial 
simulation's performance, specifically regarding volume metrics and the accuracy of high flow 
extremes. This improvement is quantitatively supported by a reduction in MAE and an 
increase in NSE, indicating a more accurate representation of hydrological dynamics by the 
post-processed models compared to the raw simulations. However, the examination of low 
flow predictions reveals a special pattern for the GLM, where it achieved a marginally lower 
logNSE compared to the raw simulation data. This slight decrease in logNSE for GLM indicates 
a reduction in model performance when predicting low flow conditions. Such a discrepancy 
underscores the challenge of enhancing model accuracy across the full scale of hydrological 
conditions. This detailed analysis, on one hand, proves the general success of post-processing 
techniques in refining hydrological forecasts, and on the other hand, also emphasizes the 
importance of method selection based on the specific hydrological process being modelled. 
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Figure 2-4 Example of post-processing (Spain). 

As illustrated in Figure 2-5, an extensive analysis that extends to all stations within the study 
domain. This figure plots the cumulative distribution of three evaluative metrics for both 
unprocessed and post-processed time series, allowing for a comparative analysis of their 
overall performance. From the visual representation, it is evident that all four post-processing 
approaches enhance model performance across the three key streamflow characteristics: 
total volume, and the extremes of high and low flows. This enhancement is indicated by the 
distributions' shifts towards optimal values, 0 for the SMAE and 1 for both the NSE and the 
logNSE. Such shifts in the cumulative distributions suggest that, in terms of total volume, the 
four methods show comparable adequacy across various performance levels. However, 
distinctions among the methods become more obvious when focusing on extreme flow 
conditions. Machine learning methods outperform statistical ones within the 'fair' 
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performance category (ranging from 0.2 to 0.5), indicating a superior capability in handling 
both high and low flow extremes. The patterns are even more noticeable in the 'very poor' 
and 'unsatisfactory' performance categories (below 0.2), where the QM method shows 
relatively the weakest performance for both high and low extremes. This detailed analysis 
underscores the capabilities of post-processing techniques in enhancing hydrological model 
accuracy, particularly highlighting the strengths and limitations of ML versus statistical 
methods in predicting extreme flow conditions. 

 
Figure 2-5 E-HYPE performance and post-processed performance for three metrics (SMAE, NSE and log NSE) accounting for 
errors in volume, and high and low extremes. 

Based on the metrics presented in Figure 2-5, skill scores were calculated for each station to 
investigate the comparative added value provided by various post-processing methods over 
raw simulations. These calculations are depicted in Figure 2-6, where skills are color-coded 
as: green-blue shades indicate higher skills, yellow means lower skills, and grey denotes 
stations where no improvement in skill was found. A consistent pattern emerges across the 
different post-processing techniques, with stations in Central Europe generally showing 
higher skills. This trend is particularly notable for extreme values, where an increase in skill 
levels of both NSE and logNSE, relative to the SMAE, indicates that post-processing 
significantly improves model performance at both high and low extremes. 

Spatial variations of the improvement across different post processing methods are evident, 
as shown by the performance in the UK, where the QM method shows limited improvement, 
with many stations showing no skill enhancement. In contrast, two machine learning methods 
reveal considerable skill improvements in this region. This distinction may be attributed to 
the machine learning algorithms' superior capability to detect complex and nonlinear 
relationships within the dataset, which is less pronounced in traditional statistical 
approaches. 

When comparing these outcomes to the baseline performance of raw model simulations, it is 
observed that stations with suboptimal raw performance are precisely those where 
significant improvements are obtained through post-processing. This observation 
underscores the post-processing methods' effectiveness in enhancing model accuracy, 
particularly in areas initially having lower predictive quality. 

Overall, the analysis suggests that there is no universally superior model; each post-
processing method presents varying degrees of skill across different spatial locations and 
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according to different evaluation metrics. This variability highlights the importance of 
selecting the appropriate post-processing technique based on specific regional characteristics 
and the particular aspects of hydrological behavior being modeled. 

 
Figure 2-6 Skills achieved from post processing: EHYPE raw simulation metrics, and skills for four methods. 

3.4.2. Detection of drivers of post processing performance 

Building on the insights gained from evaluating performance, we further examined the 
potential drivers of the performance of hydrological services, with a particular focus on both 
volume and extremes. Through CART analysis, we explored the importance of various factors 
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by considering them as inputs, with performance metrics and skill scores serving as the 
targets. Figure 2-7 illustrates the importance of each feature for the raw model and each post-
processing approach, using SMAE as a representative metric, alongside the comprehensive 
rank index highlighting the three most influential drivers. 

In Figure 2-8, we graphically represent the relationship between the performance metric/skill 
for a specific model and its most critical drivers. This analysis is exclusively conducted for the 
model where a given driver is identified as having the highest significance. For instance, the 
hydrological cluster gained highest significance in the raw E-HYPE simulation among the 
hybrid approaches, accounting for over 40% importance, then the SMAE of the raw E-HYPE 
model is decomposed and plotted according to these clusters. This allows us to observe the 
variations across different clusters, including their distribution and median values, offering a 
deeper understanding of how each cluster contributes to the overall performance. Similar 
plots are also drawn for mean temperature and mean precipitation, where a clear trend is 
observed between the skill and the driver. This approach not only highlights the critical drivers 
affecting hydrological service performance but also allows a targeted analysis of how these 
drivers influence specific models.  

 

Figure 2-7 Feature importance of local physiographic drivers to the performance of hydrological simulation in terms of the 

volume (denoted by SMAE). 
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Figure 2-8 Examples of SMAE change corresponding to the leading drivers. 

Similarly, the same analysis extends to include both NSE and logNSE, identifying the three 
most impactful drivers for each metric. For NSE, mean precipitation, mean temperature, and 
hydrological clusters emerge as the top drivers; while for logNSE, the leading factors are 
hydrological clusters, elevation, and mean precipitation, each with its unique ranking across 
the different metrics. 

The recurring presence of the hydrological cluster as one of the leading drivers in both volume 
and extremes underscores its important role in understanding the model performance. 
Recognizing such key factors is essential for refining hydrological models, as it directs 
attention to the elements that most significantly impact the accuracy and reliability of water 
cycle simulations. Through this analysis, we gain deeper insights into the mechanisms driving 
model performance, allowing targeted improvements in hydrological services. 

3.4.3. Summary of results 

In this section, we applied four post-processing methods to runoff simulations generated by 
the E-HYPE model and evaluated their performance using three different metrics while also  
the spatial distribution of the skills. Moreover, we have extended the investigation in order 
to identify the primary factors that improve the performance for each post-processing 
method. The key findings are: 

- The analysis reveals a notable improvement by post-processing the raw simulations, 
in terms of both total volume and high and low extremes. This is evidenced by a 
decrease in SMAE and an increase in NSE and logNSE, which suggests that post-
processed models provide a more accurate representation of hydrological dynamics 
than the raw simulations. 
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- Across the different post-processing techniques, a similar spatial pattern of skill 
improvements is observed, showing higher skills in stations located in central Europe. 
This pattern is enhanced in the context of extreme events, which also indicates the 
added value from post processing methods on high and low streamflow extremes. 

- Key drivers were identified for influencing the model performance after post-
processing and these are: mean precipitation, mean temperature, hydrological 
clusters and elevation. Each driver ranked differently across the various metrics, 
indicating their different impacts on model performance. Notably, the recurrent 
identification of hydrological clusters as a significant factor for both volume and 
extremes emphasizes its importance in refining model accuracy, in terms of volume 
and extremes. 

3.5. RESULTS - ATTRIBUTING RUNOFF CHANGES TO CLIMATIC DRIVERS IN PRESENT AND 
UNDER FUTURE CONDITIONS 

3.5.1. Hydro-climatic changes under future conditions 
Figure 2-9 illustrates the ensemble precipitation changes over Europe in the early, middle and 
late centuries for the low (RCP 2.6), medium (RCP 4.5) and high (RCP 8.5) emission scenarios. 
Northern Europe experienced an increase in precipitation under low emission scenarios, 
specifically in North Eastern Europe and Scandinavia, in contrast to the reference period 
(Figure 2-9a-c). On the other hand, in the early and middle century, Southern Europe 
encountered a decrease in precipitation, particularly in Portugal, Spain, Greece, and Cyprus, 
displaying a different spatial behavior. This difference was more pronounced under the 
medium (Figure 2-9d-f) and high emission scenarios (Figure 2-9h-g) in the present and future 
periods in comparison to the low emission scenario (Figure 2-9a-c). 

Based on the findings presented in Figure 2-10, it is evident that there has been a notable rise 
in potential evaporation in Europe when compared to the reference period. The increase in 
potential evaporation was particularly prominent in the North European and Alps regions for 
all three periods under the low emission scenario (Figure 2-10a-c). Furthermore, the potential 
evaporation continued to increase in these areas under medium and high-emission scenarios. 
In Central and Southern Europe, potential evaporation showed a significant increase observed 
in the middle and late century under medium (Figure 2-10e,f) and high emission scenarios 
(Figure 2-10h,i). 
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Figure 2-9 Model ensemble median of precipitation changes for the RCP 2.6 (a,b,c), RCP 4.5 (d,e,f) and RCP 8.5 (g,h,i) 

emission scenarios in the early (a,d,g), mid (b,e,h) and late (c,f,i) century relative to the historical period (1971-2000) across 
Europe. 
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Figure 2-10 Model ensemble median of potential evapotranspiration changes for the RCP 2.6 (a,b,c), RCP 4.5 (d,e,f) and RCP 
8.5 (g,h,i) emission scenarios in the early (a,d,g), mid (b,e,h) and late (c,f,i) century relative to the historical period (1971-
2000) across Europe. 

3.5.2. Sensitivity of runoff changes to precipitation and evaporation 
Figure 2-11 displays the elasticity coefficients of runoff to precipitation (P) and potential 
evaporation (E0) in the European domain. These coefficients reveal the percentage changes 
in runoff, either increase or decrease, in response to a 1% increase in precipitation and 
potential evaporation. The results show that runoff tends to respond positively to 
precipitation changes and negatively to potential evaporation. The elasticity coefficient of 
precipitation  between zero and five in 90% of European regions (Figure 2-11a), whereas for 
potential evaporation, it ranges between zero and three (Figure 2-11b). The median ensemble 
elasticities over Europe were 1.2 for precipitation and 0.5 for potential evaporation, 
respectively. This result means that on average, a 10% increase or decrease in precipitation 
would lead to a 12% increase or decrease in runoff, respectively. Similarly, a 10% increase in 
potential evaporation would result in a 5% decrease in runoff. Northern and central Europe 
exhibited a higher sensitivity to precipitation changes than to evaporation changes, while in 
some regions, such as Eastern Europe, the sensitivity to both climatic factors was comparable. 
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Figure 2-11 Elasticity coefficients of runoff changes to (a) precipitation and (b) potential evaporation (E0) across Europe. 

3.5.3. Spatial variability of runoff changes under future conditions 
Figure 2-12 presents the results of the ensemble runoff changes in the different periods under 
future conditions. The findings reveal that under low emission scenarios, there was an 
increase in runoff compared to the reference period in North-western Europe and the Alps, 
while a decrease was observed in Southern and Eastern Europe (Figure 2-12a-c). This spatial 
variability was more significant in the middle and late century under medium (Figure 2-12e,f) 
and high emission scenarios (Figure 2-12i,g) than under the low emission scenario (Figure 
2-12b,c). Furthermore, runoff decreased in central Europe under medium and high emission 
scenarios, especially in the middle (Figure 2-12e-f) and late century (Figure 2-12h-i).  
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Figure 2-12 Ensemble median of projected runoff changes for the RCP 2.6 (a,b,c), RCP 4.5 (d,e,f) and RCP 8.5 (g,h,i) emission 
scenarios in the early (a,d,g), mid (b,e,h) and late (c,f,i) century relative to the historical period (1971-2000) across Europe. 

3.5.4. Attribution of precipitation and evapotranspiration to runoff changes 

Figure 2-13 displays the contribution of climatic factors such as precipitation and evaporation 
to the changes in runoff during the early, mid and late centuries under low, medium and high 
emission scenarios. Temporal and spatial differences in the contribution of precipitation and 
evapotranspiration were found across Europe with the severity of the emission scenarios. 
Precipitation mainly contributed to runoff changes in Scandinavia and North-eastern Europe, 
especially under medium (Figure 2-13d-f) and high (Figure 2-13g-i) emission scenarios. While 
precipitation contributed to runoff changes in central and eastern Europe under low-emission 
scenarios, evapotranspiration changes became the main factor of runoff changes in central 
Europe from the early to late century under both the medium (Figure 2-13d-f) and high (Figure 
2-13g-i) emission scenarios. In southern Europe, precipitation was the climatic factor 
contributing to decreased runoff, especially under medium scenarios (Figure 2-13d-f). In 
contrast, evapotranspiration contributed more than precipitation (Figure 3.13g-i) to runoff 
under high-emission scenarios. The Budyko elasticity framework provided a quantitative 
understanding of how changes in climatic factors affect alterations in runoff, bringing new 
insights into the context of hydroclimatic attribution under future scenarios. 

 
Figure 2-13 Ensemble median ratio of the relative precipitation (𝛿p) and evapotranspiration (𝛿E0) contributions to runoff 
changes for the RCP 2.6 (a,b,c), RCP 4.5 (c,d,e) and RCP 8.5 (e,f,g) emission scenarios in the early (a,d,g), mid (b,e,h) and late 
(c,f,i) century relative to the historical period (1971-2000) across Europe. 
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3.5.5. Summary of results 

Here, we showed the application of the Budyko framework to provide a quantitative 
understanding of how changes in climatic factors affect alterations in runoff during the early, 
mid and late centuries under low, medium and high emission scenarios across Europe. The 
key findings include: 

- Under future conditions, precipitation showed a contrasting spatial behavior with 
increasing precipitation in Northeastern Europe, specifically in Northeastern Europe 
and Scandinavia and a substantial decrease in Southern Europe towards high emission 
scenarios. Evaporation increased with the increasing severity of the emission scenario. 

- On average, the sensitivity of runoff to precipitation changes was more substantial 
than to evaporation across Europe. Northern and central Europe showed a higher 
sensitivity to precipitation than evaporation changes, while in other regions, the 
sensitivity to both climatic factors was comparable. 

- Precipitation was the main factor of increasing runoff in Scandinavia and North-
eastern Europe, especially under medium and high emission scenarios, while it 
contributed to decrease runoff in southern Europe.  

- Evaporation changes were the main factor of runoff alterations in central Europe from 
the early to late century and with the increasing severity of the emission scenario.  

These findings provide a foundation for the next phase of our work, which involves using 
machine learning to investigate how the attribution of runoff extremes to climatic factors is 
connected to the local hydrological regimes to evolve climate services towards hydrological 
attribution in the context of centennial projections. 
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3 INVESTIGATION ON AI-ENHANCED CLIMATE SERVICES FOR 
EXTREME IMPACTS - ENERGY SECTOR 

Recent literature has explored the topic of closer linking of weather and climate data with 
energy models. The increased dependency of the energy system on climate and weather 
variables requires the energy models to be able to accurately represent the effect of climate 
variability (De Felice M et al., 2023). The effects of extreme weather events on the energy 
sector can fall into two categories: either on operational impacts or on infrastructure 
destruction, e.g. a tropical cyclone or a flood permanently destroying a power plant or power 
grids (Xu et al.,2024). Although tropical cyclones are not pertinent to the European region, 
climate projections point to the higher risk of colder and stormier winters, heavier rainfalls, 
storms and summer heatwaves (Collins et al., 2019). This work focuses on the operational 
impacts to the energy sector. 

There are several dimensions of the operational impacts that are vulnerable to changing 
climate conditions, as especially to the increased occurrence of extreme weather events, such 
as heatwaves, droughts, and cold spells. The following chapters focus on the two dimensions: 

Power demand: heats and droughts cause an increase to the electricity demand for cooling in 
households and the food industry. Taking into account seasonal forecasts plays a great role in 
the planning (Orlov et al., 2020). The decarbonization of the industrial, buildings and transport 
sectors among other foresees higher electrification. Higher demand for power is magnified in 
the periods of high and low temperatures for heating and cooling needs. Despite regional 
differences, there is a general increase in electricity demand for cooling across various sectors 
(Rujiven et al., 2019). 

Hydropower generation: changes in hydropower generation at the national or regional level 
induced by climate change. By considering the space-time dependencies of both increases 
and decreases of change in climate-induced runoff, recent advanced studies have significantly 
contributed to finding gains between aggregate hydro power potential (Yalew et el., 2020, 
Gernaat et al., 2021). Climate-driven fluctuations in hydropower availability across large 
spatial distances contributed to the understanding of the future decarbonized power sector 
needs for time flexibility (Wörman et al., 2020). Coordinating hydropower operations over 
extensive geographical areas can lead to a more consistent availability of power, thereby 
minimizing the reliance on energy storage systems to buffer periods of reduced energy 
generation.  

The methodological approach comprises two parallel processes for an assessment of the 
impacts of extreme weather events on the European power generation system with the 
detailed unit commitment model PRIMES (PRIMES-IEM): 

● an analysis of the impact of heatwaves and cold spells on cooling/heating demand, is 
accomplished with the simulation of demand load curves. 

● an assessment of changes in power generation from run of river hydropower and 
pumped storages, modeled based on hydro inflows provided by SMHI.  
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By using both methods, we can better understand and model energy systems' reactions to 
extreme events like droughts and cold spells. Hydro inflows are mainly driven by such factors 
as precipitation, temperature, snow and ice melt, depending on the region (Quaranta et al., 
2022). A change in the temperature also affects the amount of energy required for cooling 
and heating. Reaching the EU climate neutrality target in 2050 requires the transformation of 
the energy, industry, transport and buildings sectors. The target can be achieved through 
different decarbonization pathways, including increasing renewable energy uses, reaching 
higher energy efficiency, introducing carbon capture and storage. Other options include 
electrifying heating systems, introducing bioenergy, using hydrogen and synthetic fuels that 
increase demand for green electricity. To achieve carbon neutrality, the power generation 
system should be designed to be resilient to the effects of climate change, including the 
increasing probability of extreme weather events. 

  

Figure 3-1 PRIMES model framework design to include climate services data for the energy sector 

The following chapters describe the process (Figure 3-1) of implementing the ML-techniques 
to take into account the climate data and hydrologic projections (E-HYPE) into the PRIMES-
IEM model. 

The long-term energy scenarios will benefit from the modification of the PRIMES IEM 
modeling suite to include EE effects on the energy system and especially power supply 
modules. The PRIMES IEM modeling suite can integrate both supply and demand side effects 
of climate change on the energy sector, considering current and planned EU climate and 
energy policies. The model applies constraints associated with water supply for hydropower 
production and feedstock supply curves for biomass production and can also be extended to 
taking into consideration such EE as tropical cyclones and extreme droughts. The PRIMES IEM 
demand module can reflect structural changes in the industrial and domestic demand for 
energy and electricity for heating and cooling services induced by EE, such as an increased 
occurrence of heatwaves and warm nights. 
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4.1. ADJUSTING POWER DEMAND TO TEMPERATURE CHANGES UNDER CLIMATIC DRIVERS 
IN PRESENT AND UNDER FUTURE CONDITIONS 

Climate and weather fluctuations impact both the supply and demand for energy. High and 
low temperatures indicate significant energy requirements for heating and cooling. The 
relationship between temperature and electricity consumption is nonlinear: rising 
temperatures increase the amount of energy needed for cooling in summer or heating in 
winter. For example, significant heatwaves struck Europe in August 2003, July 2010, and June–
August 2015. These events increased the need for cooling power. In the same way, lowering 
the wintertime thermal comfort threshold causes an abrupt increase in the amount of energy 
needed for heating. This work aims to identify the thresholds and the heating and cooling 
thermo-sensitivity of power demand. 

4.1.1. Methodology - constructing adjusted load curves 

There is general agreement that temperature is a key weather driver of electricity demand 
and the relationship between electricity demand and outside temperature follows a U-shaped 
curve (Bloomfield et al., 2020). The temperature-energy demand function (or temperature 
response function) describes the typical response of energy demand with temperature, and 
it comprises a thermosensitive part, which is temperature-dependent, and a non-
thermosensitive part, which is considered as baseload. At low temperatures, when 
temperature 𝑇 is already below the heating temperature point 𝑇ℎ (𝑇 < 𝑇ℎ), with later 
temperature increase the demand for heating decreases. At high temperatures, when 
temperature 𝑇 is above the cooling temperature point 𝑇𝑐 (𝑇 > 𝑇𝑐), the temperature increases 
and the cooling demand also increases. 𝑃𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑 is the non-thermosensitive part of demand. 
𝑇ℎ  and 𝑇𝑐  are the temperature threshold points that indicate the range of temperatures that 
are relevant for heating or cooling respectively. These are also the threshold points that are 
used to calculate heating degree days (HDD) and cooling degree days (CDD). 

 
Figure 3-2 Temperature - demand response curve 

The temperature-demand response curve is schematically presented on Figure 3-2. It is typical 
for the temperature-demand response curve to be analyzed for different times of the day 
(day, night, individual hours of the day) or different days of the week (weekday, weekend, 
holiday). Common approaches for modeling the temperature-demand relationship include 
multiple linear regressions, building energy consumption simulation and machine learning 
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methods such as artificial neural networks (ANNs) and random forests (RFs). More recently, 
models using multivariate adaptive regression splines (MARS) have become common in 
literature (Hiruta et al., 2022), primarily due to their ability to model non-linear interactions 
between the variables using hinge functions (Friedman, 1991). They are also preferred over 
machine learning methods like ANN or RFs due to their explainability and capacity to reflect 
the effect of each variable on the model construction and output. 

In the current study, the goal is to identify the statistical relationship between temperature 
and electricity demand at a country level and use this to analyze the change in demand due 
to temperature changes in future climatic conditions. We are using the following hourly 
temperature and load data for each country: 

● 2-meter temperature data from ERA5 reanalysis (Felice & Kavvadias, 2022), 

● aggregate electricity demand from the ENTSO-E Transparency platform.4  

The py-earth package5 implements the MARS algorithm from (Friedman, 1991), and simplifies 
fitting a MARS model (or an Earth model using the package’s terms) to load-temperature data 
for a country. Considering a max number of 2 coefficient terms (one for heating and one for 
cooling), we get a MARS model that follows: 

𝐸(𝑇𝑡)  =  𝑎 ∗ (𝑇𝑡 −  ℎ𝑖𝑛𝑔𝑒)+ +  𝑏 ∗ (ℎ𝑖𝑛𝑔𝑒 −  𝑇𝑡)+  +  𝑐 

Where,  

𝑇𝑡  the hourly mean temperature observation 

ℎ𝑖𝑛𝑔𝑒  the temperature threshold points for heating (𝑇ℎ) and cooling (𝑇𝑐) 

respectively 

𝑎, 𝑏  the slope coefficients  

𝑐  the intercept    

The model shows reasonable results for countries where the temperature response function 
relies on one temperature hinge point, as for example the relationship between temperature 
and heating demand in Estonia in 2015, see Figure 3-3 below, on the right. However, when 
both demand for heating and cooling determine the relationship between temperature and 
power demand, the MARS model estimates day and night temperature hinge points that are 
skewed towards high temperatures. This leads to underestimating the cooling share of 
thermosensitive demand. 

 
4 https://transparency.entsoe.eu/ 
5 https://contrib.scikit-learn.org/py-earth/ 
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Figure 3-3 Temperature-load data for Greece-2015 and Estonia-2015 

Degree-day models usually apply fixed temperature thresholds to calculate degree days and 
then use linear functions to translate degree days into demand for heating or cooling. 
Eurostat’s Energy Statistics unit uses fixed temperature thresholds across all countries to 
calculate degree days. The thresholds are 15°C for heating degree days (HDD) and 24°C for 
cooling degree days (CDD). However, this ignores differences between countries and leads to 
over- or under-estimation of demand (Wenz et al., 2017). Staffell et al., (2023) highlight the 
importance of having optimal parameters to derive HDDs and CDDs, including temperature 
thresholds. 

Improved representation of temperature-load relationship  

We implement an improvement over the MARS model that is based on the simplicity of linear 
regression methods but attempts to capture the climatic and thermal comfort differences 
between European countries. Below we illustrate our method in Figure 3-4. The steps in our 
method are as follows: 

a. We assume that there are two temperature threshold / hinge points for each country. 
For heating we expect this will be in the range 10°C - 25°C and for cooling in the range 
13°C - 29°C. 

b. For each temperature in this range, we calculate Spearman’s correlation for the 
relationship between HDD (or CDD) and load observations. We consider only positive 
Spearman correlation values with p-value over 0.05. 

c. We consider the temperature point for which Spearman’s correlation maximizes, as 
the optimal temperature threshold point. We identify one temperature threshold for 
heating 𝑇ℎ based on the Spearman correlation values of HDDs, and one temperature 
threshold for cooling 𝑇𝑐 based on the Spearman correlation values of CDDs. For 
countries where only heating load is observed via a single negative gradient curve  
(e.g., Scandinavian countries), only 𝑇ℎ is calculated. 

d. For selected cases, we verify the temperature threshold points by performing a visual 
inspection of the Spearman correlation against temperature. 
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e. We consider that temperature points outside the range of 𝑇ℎ to 𝑇𝑐, represent 
thermosensitive loads. We fit two separate linear models:  

● For(𝑇 < 𝑇ℎ): 𝐸(𝑇𝑡)  =  ℎ𝑐𝑜𝑒𝑓𝑓 ∗ 𝑇𝑡  + ℎ𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑  

● For (𝑇 > 𝑇𝑐): 𝐸(𝑇𝑡)  =  𝑐𝑐𝑜𝑒𝑓𝑓 ∗ 𝑇𝑡  + 𝑐𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑  

● Where ℎ𝑐𝑜𝑒𝑓𝑓 or  𝑐𝑐𝑜𝑒𝑓𝑓 is the slope and ℎ𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑 or 𝑐𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑  is the line 

intercept 
f. We follow this process separately for combinations of (i) daytime and nighttime (ii) 

weekday and weekend observations as it was observed that these sets have 
different behavior. 

 
Figure 3-4 Steps (a) to (c), finding the temperature balance point for HDD and CDD using the Spearman correlation for a 
country and a particular year, time of day and day of week. Step (e), fitting a linear model for each segment. 

Bias adjustment 

Using the above model to describe how load varies with temperature in each country, we aim 
to build an adjusted demand time series for temperature predictions of different climatic 
scenarios. Our method is based on additive delta load correction enhanced by making use of 
temperature hinge points. 

The uncertainty of climatic data has often been highlighted in climate science, especially in 
terms of bias and limitations found in observations (Bloomfield et al., 2021). There are two 
methods that are commonly found in literature for using climate model data: (1) the simple 
additive delta correction and (2) a seasonal quantile-based correction (Bloomfield et al., 
2022). We perform the bias correction with delta method by associating the temperature 
difference between base and future year with a load difference, as in the following steps: 

a. We consider a base year as reference for the graphical representation of the 
temperature-load relationship and derive the model parameters: 

 ℎ𝑐𝑜𝑒𝑓𝑓,𝑏𝑎𝑠𝑒 , 𝑐𝑐𝑜𝑒𝑓𝑓,𝑏𝑎𝑠𝑒  coefficient for heating and cooling in the base period 
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ℎ𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑,𝑏𝑎𝑠𝑒 , 𝑐𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑,𝑏𝑎𝑠𝑒 baseload for heating and cooling in the base period 

 𝑇ℎ,𝑏𝑎𝑠𝑒 , 𝑇𝑐,𝑏𝑎𝑠𝑒    temperature threshold (hinge point) for heating and 
cooling in the base period 

b. For a future year with hourly temperatures 𝑇𝑡,𝑓𝑢𝑡𝑢𝑟𝑒  , we estimate the change in load 

𝑑𝐸 for the associated change in temperature 𝑑𝑇 compared to the base year. We 
consider a change in heating or cooling load, depending on the base year temperature 
hinge points. 

● For 𝑇𝑡,𝑓𝑢𝑡𝑢𝑟𝑒  ≤  𝑇ℎ,𝑏𝑎𝑠𝑒  →  𝑑𝐸 =  ℎ𝑐𝑜𝑒𝑓𝑓,𝑏𝑎𝑠𝑒 ⋅ 𝑑𝑇  

● For 𝑇𝑡,𝑓𝑢𝑡𝑢𝑟𝑒  ≥  𝑇𝑐,𝑏𝑎𝑠𝑒  →  𝑑𝐸 =  𝑐𝑐𝑜𝑒𝑓𝑓,𝑏𝑎𝑠𝑒 ⋅ 𝑑𝑇 

● For 𝑇ℎ,𝑏𝑎𝑠𝑒 <  𝑇𝑡,𝑓𝑢𝑡𝑢𝑟𝑒 <  𝑇𝑐,𝑏𝑎𝑠𝑒  →  𝑑𝐸 = 0 

● where 𝑑𝑇 =  𝑇𝑡,𝑓𝑢𝑡𝑢𝑟𝑒  − 𝑇ℎ,𝑏𝑎𝑠𝑒 

c. We consider that the future demand at each hourly step will be the base year load 
corrected by the calculated 𝑑𝐸. So for each hourly Tt, future: 

● If 𝑇𝑡,𝑓𝑢𝑡𝑢𝑟𝑒 ≤  𝑇ℎ,𝑏𝑎𝑠𝑒 →  𝐸𝑡,𝑓𝑢𝑡𝑢𝑟𝑒 =  ℎ𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑,𝑏𝑎𝑠𝑒 + 𝑑𝐸 

● If 𝑇𝑡,𝑓𝑢𝑡𝑢𝑟𝑒 ≥  𝑇𝑐,𝑏𝑎𝑠𝑒 →  𝐸𝑡,𝑓𝑢𝑡𝑢𝑟𝑒 =  𝑐𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑,𝑏𝑎𝑠𝑒 + 𝑑𝐸 

4.1.2. Results - constructing adjusted demand curves 

Using 2020 as a reference year, we showcase the different temperature hinge points 
calculated by the degree-day delta correction method for each country. For Northern 
countries like Finland and Latvia, our method estimates HDD hinge points at just above 10°C, 
considerably lower than the Eurostat’s 15°C baseline for HDD, see Figure 3-5. For CDD, our 
method finds temperature hinge points close or higher than Eurostat’s baseline for CDD of 
24°C, Figure 3-6. 
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Figure 3-5 Temperature hinge points for HDD for 2020; comparison between degree-day delta correction method and 

Eurostat threshold. Results from the degree-day delta correction method are for daytime - weekday observations. 

 

 
Figure 3-6 Temperature hinge points for CDD for 2020; comparison between degree-day delta correction method and Eurostat 
threshold. Results from the degree-day delta correction method are for daytime - weekday observations. 

Based on the above described method we explore the relationship between temperature and 
heating or cooling demand for electricity for 2020. Figure 3-7 below shows the hourly power 
demand for Greece and the hinge points for HDD/CDD obtained from the degree-day delta 
correction method. Figure 3-7 shows the similar results for Finland. On both figures, heating 
and cooling demand are marked as red or blue depending on whether the mean hourly 
temperature is above or below the calculated HDD or CDD hinge points.  

Figure 3-8 for Greece shows that the need for cooling is visible primarily on peaks of hourly 
demand, whereas heating is across the whole range of demand. As expected, the period 
December to February is the most common period for heating and the summer months are 
more prevalent for cooling. For both countries the demand time series shows variability 
across the year, although this is more obvious in the case of Finland. This is an indication that 
Finland is more driven by the demand for electricity for heating and therefore its heating 
demand is more temperature dependent. Temperature hinge points for nighttime are lower 
than daytime temperature thresholds, showing that thermal and cooling comfort thresholds 
might be stricter at nighttime.  
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Figure 3-7 (i) Hourly demand for Finland 2020; blue indicates cooling and red indicates heating load based on the identified 

hinge points. (ii) Temperature hinge points for HDD and CDD for each set of daytime/nighttime, weekday/weekend 
temperature - load observations. 
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Figure 3-8 (i) Hourly demand for Greece in 2020; blue indicates cooling and red indicates heating load based on the identified 
hinge points. (ii) Temperature hinge points for HDD and CDD for each set of daytime/nighttime, weekday/weekend 
temperature - load observations. 

We have used the degree-day delta correction method to construct an adjusted demand time 
series for historical temperature data from 1980 to 2021, based on the hinge points defined 
for the base year 2015. Figure 3-9 shows the adjustments in power demand curves, achieved 
with the above-described method for historic periods with known 2-meter temperature from 
ERA5 reanalysis data. The Figure 3-9 below demonstrates how we can use data on electricity 
demand from a base year to get adjusted load curves for historic periods, as well as for the 
different climatic scenarios in the future. 
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Figure 3-9 Simulated (adjusted) demand time series for historical temperature data. Example for Spain using 2015 as base 

year and historical temperature data for 1980 - 2021 for the period from July 13th to 19th for all years  

Table 3-1 demonstrates how annual electricity demand can vary for different climatic years 
for different countries. The annual adjusted demand for each country was simulated using 
2015 as base year and temperature values for each climatic year from the period 1980 to 
2020. 

Table 3-1 Descriptive statistics of simulated (adjusted) annual demand for historical temperature years from 1980 to 2020, 
using 2015 as a base year (excluded from min / max / median statistics). 

Country Simulated (adjusted) annual demand 

Median CV Min Max 
GW  GW Temp. 

Year 
Tdaily mean 

(°C) 
GW Temp.Y

ear 
Tdaily 

mean (°C) 

Austria (AT) 61.7 0.56 61 2014 8.14 62.3 1985 5.2 

Belgium (BE) 75.6 0.7 74.7 2020 11.5 76.9 1985 8.3 

Bulgaria (BG) 34.3 0.63 33.8 2019 12.7 34.6 1987 10.3 
Czechia (CZ) 56.4 0.62 55.8 2014 9.79 57.25 1996 6.4 
Germany (DE) 460.8 0.51 456.8 2020 10.6 466.5 1996 7.2 

Denmark (DK) 29.7 0.66 29.4 2020 10.1 30.2 2010 7.1 
Greece (GR) 44.7 0.75 44.1 1983 14 45.6 2012 15.5 
Spain (ES) 217.3 0.36 215.9 1993 12.8 219.9 2017 15 
Finland (FI) 74.6 1.51 72.3 2020 4.7 77.8 1985 -0.09 
France (FR) 427.5 1.54 415.3 2020 12.6 444 1985 9.9 
Hungary (HU) 35.7 0.32 35.5 1980 9.3 36 2012 11.9 
Italy (IT) 273.3 0.79 269.8 1980 11.36 279 2003 13.4 
Netherlands (NL) 100 0.22 99.6 1988 10.3 100.8 2018 11.3 

Portugal (PL) 131.8 0.14 131.4 2020 10 132.1 1985 6.7 

Romania (RO) 46.1 0.29 45.8 2019 11.4 46.4 1985 8.2 
Sweden (SE) 123.1 1.87 118.4 2020 5.5 129.5 1985 1 
United Kingdom (UK) 302.3 0.69 299.8 2007 9.8 308 2010 8.3 
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Note: Red indicates years when adjusted demand reflects a higher or lower demand for heating due to very low or very high 
temperatures during winter, respectively. Blue indicates years when adjusted demand reflects higher demand for both 
heating and cooling. This is due to lower temperatures during winter and higher temperatures during summer. 

The Table 3-1 shows the minimum and maximum adjusted demand, the temperature year in 
which this was found and the daily mean temperature in that year. We excluded 2015 from 
finding the min, max and median values, as this was the year used as base year for the 
simulation. We derive the following key points: 

● 1985 is the year with the maximum adjusted electricity demand for 7 out of the 17 
countries used in the simulation. 1985 featured lower than average temperatures and 
for many countries it was a year with extremely low winter temperatures, reaching as 
low as -35°C. Very low temperatures led to increased need for heating and therefore 
higher simulated annual electricity demand. 

● In contrast, 2020 is the year with the minimum adjusted demand for 7 countries. 2020 
featured higher mean daily temperatures and, more specifically, higher temperatures 
during winter. The lowest daily temperature across the simulated countries was -2.1°C 
in 2020, compared to -8°C for the whole period 1980-2020. Higher temperatures led 
to lower need for heating and therefore lower simulated annual electricity demand. 

● For Greece, Spain, Hungary and the Netherlands, the simulation showed that both 
heating and cooling demand can lead to increased annual demand. The maximum 
adjusted demand was for a year when daily temperatures varied from very low to very 
high, thus leading to increased demand for heating and cooling. 

● The coefficient of variation (CV) is a unitless measure of the level of dispersion around 
the mean. A higher value (over 1), such as for Finland, France and Sweden shows 
higher variation of annual electricity demand.  

Focus on extreme events – Case 1: Warm winter  

We use the method described in section 4.1.1 to get the adjusted demand time series for two 
cases of extreme weather: the warm winter of 2020 and the heatwave in 2018. This allows us 
to explore the impact on demand if mean hourly temperatures changed from their base year 
values to the extreme event values. For both cases we are using 2015 as the reference year.  

2020 was an especially warm winter for EU countries, with significant lower HDDs than the 
20-year average. The Market Observatory for DG Energy reported that higher than usual 
temperatures during the first quarter of 2020 led to 247 HDDs below average, translating to 
2.7°C higher temperature than usual per day (DG Energy 2020). 

Germany saw the largest deviation in February 2020 with almost 100 HDDs lower than its 
long-term average. Less HDDs led to lower demand for heating. Looking at the first week of 
February 2020 (2nd to 9th February), Figure 3-10 shows that warmer temperatures in winter 
can lead to lower power demand load. Using 2015 as our base year, we estimate that for a 
mean hourly temperature increase of 5.6°C, the simulated (adjusted) load during that week 
was 4% lower than in 2015 (for the same period).  
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Figure 3-10 Simulated (adjusted) demand time series and temperature trend for 3 - 9 February 2020 using 2015 as base year 
for Germany. 

Focus on extreme events – Case 2: Heatwave 

Similarly, we examine the case of the 2018 heatwave. July and August featured particularly 
hot weather, which had an impact on cooling demand especially in Southern EU countries (DG 
Energy 2018). 

During August 2018, Spain saw higher temperatures than the long-term average, reaching 
almost 30°C. We estimate that for the week 13 to 19 August 2018, the mean hourly 
temperature was 1.6°C higher than the base year (2015) for the same period. Higher 
temperature increases the need for cooling demand. As Figure 3-11 shows the simulated 
(adjusted) demand for that period is over the base year load and the overall demand for the 
week increased by 3.34%. 
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Figure 3-11 Figure: Adjusted demand time series and temperature trend for 13 - 19 August 2018 using 2015 as base year for 
Spain. 

Focus on future climate – Scenario RCP 4.5 

We used daily air temperature data from 9 climate models covering three representative 
concentration pathways. We focused on scenario RCP 4.5 and used temperature projections 
for the period 2025 – 2070 to simulate the impact on adjusted energy demand. 

Temperature data from each climate model  sub basin. We matched sub basins to countries 
and used the sub basin area values to obtain a weighted average of daily air temperature. 
Before constructing adjusted load curves, we performed bias correction with quantile 
mapping on the daily temperature values for the same historical period as the temperature 
observations in the ERA5 reanalysis dataset. We also downscaled the initial timeseries to an 
hourly step, using as reference the average hourly temperature profile of each country’s ERA5 
temperature observations for 2020, which we consider as base year. 

 

 

Note: Black line shows the median adjusted hourly load based on the ensemble of 9 EURO-CORDEX models’ simulation 
of energy demand with the degree-day delta correction method. Light blue area represents the 5th to 95th percentile 
range, and the 25th to 75th percentile is represented by the dark blue shaded region. Red dash line shows the hourly 
load for the base year 2020 for the same period. 

Figure 3-12 Simulated (adjusted) load patterns for 2030 and 2050 years for Germany under RCP4.5 for the period 4 to 10 

February. 
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Figure 3-12 demonstrates the impact of the rise in average temperature to hourly electricity 
demand for Germany in two separate time periods. Our simulations indicated that there is 
little change in the average hourly electricity load. The biggest differences between the 
models' ensemble simulations of load occur during peak electricity demand during the 
daytime, at times of very high or very low air temperatures. The results show variation of the 
temperature projections in the model ensemble during the peak demand hours (see light and 
dark blue shaded areas on the Figure 3-12).  

We compare changes in simulated (adjusted) demand due to (simulated) predicted changes 
in temperature compared to the base year 2020. During the week in February, hourly 
temperatures show up to 12.48°C higher by 2050, which leads to lower need for heating 
demand and therefore a decrease in hourly electricity load up to 4.86GW.  

 

4.2. ADJUSTING HYDRO POWER GENERATION PROFILES TO CHANGES IN RIVER DISCHARGE 
UNDER CLIMATIC DRIVERS IN PRESENT AND UNDER FUTURE CONDITIONS 

Run-of-river hydropower generators are weather-dependent generators that rely on the flow 
of water through rivers to drive their turbines. The application of machine learning can be 
used to find a non-parametric relationship between run-of-river hydro generation and river 
discharge. Recent literature has focused on the application of machine learning techniques to 
predict weather-dependent electricity generation (De Felice, 2020; Ho, Dubus, De Felice, & 
Troccoli, 2020). This paper explores using machine learning techniques to predict run-of-river 
hydro generation based on hydrological data for Europe. It trains a machine learning model 
for each relevant EU Member State. It then uses the model to predict run-of-river generation 
up to year 2100 using river discharge projections for a given climate scenario.  

There is some literature on using machine learning techniques to predict run-of-river hydro. 
De Felice (2020) used four years of data on river discharge from the JRC-EFAS-Hydropower 
database and run-of-river generation data from ENTSO-E to fit a machine learning model. 
Using linear regression, the paper explored ridge regression and random forest models and 
evaluated the performance using root mean squared error (RMSE). Felice (2020) found that 
ridge regression and random forest yielded the best results. Ho et al. (2020) uses a random 
forest regression model to predict hydro generation in 12 European countries based on 
temperature and precipitation data. Lagged values were included to capture the delay 
between temperature and precipitation’s effect on hydro generation. For example, using lags 
allowed the dataset to capture a proxy for snow depth. The paper found that the random 
forest regression model performs better at predicting run-of-river generation than reservoir 
hydro, and attributes this to “human intervention and management” of reservoir-based hydro 
(Ho, Dubus, De Felice, & Troccoli, 2020). 

In the following chapters we introduce methods used to find the relationship between river 
discharge for each subbasin and run-of-river hydro generation at European level. Two 
machine learning methods were explored to find the best fit: XGBoost and Artificial Neural 
Networks (ANN). The goal of the research was to prepare the country specific run-of-river 
hydro generation time series for the input in the PRIMES-IEM model. The purpose of this 
modification is to improve the scenarios for the European energy sector based on the ML/AI 
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enhanced datasets on river discharge from the dedicated impact assessment models for the 
European energy sector. 

4.2.1 Methodology – constructing the run-of-river hydro power generation profiles 

Data used 

The chapter describes the two main datasets used and preprocessing steps: 

● dataset containing daily sub basins’ river discharge at the European scale prepared by the 
E-HYPE model (Europe Hydrological Predictions for the Environment), 

● dataset containing hourly time series on power generation from run-of-river (ROR) hydro, 
available from ENTSO-E Transparency Platform. 

River discharge. Sub basins’ river discharge data was provided by SMHI European hydrological 
model E-HYPE (Europe Hydrological Predictions for the Environment). The dataset contains 
information on 35408 sub basins and their geometry. For the reference period, the dataset 
has a daily resolution from Jan 1st, 2015 to Jan 31st, 2023.  Daily river discharge projections 
are available from 2025 to 2100 for 9 EURO-CORDEX model ensembles under RCP2.6, RCP4.5 
and RCP8.5. 

 
Figure 3-13 E-HYPE model subbasins (catchments) and hydropower generation plants. 

Source: catchments: SMHI shape file; power plants’ locations: hydro: JRC Hydro-power plants 
database, thermal power plants: JRC Open Power Plants Database (JRC-PPDB-OPEN) based 
on v. 1.0, PLATTS (2020). 
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Each subbasin in the E-HYPE dataset was matched to a given European country. As the E-HYPE 
data contains sub basins outside the boundaries of the Eurostat data on hydro power 
generation (i.e. Russia, Turkey, etc.), the number of sub basins reduced from 35408 to 24597. 

ROR power generation. Data on power generation from run-of-river (ROR) hydro power 
plants, available from ENTSO-E Transparency Platform, contains hourly data on ROR power 
generation in MWh, aggregated by each country for a period from 2015 to 2023. This dataset 
is resampled to daily frequency to match the daily resolution of the E-HYPE river discharge 
dataset. 

The time series of the ROR power generation dataset was shortened to eliminate an impact 
from structural changes identified in the data (such as changes in reporting format). These 
changes were visible in the first few years of ENTSO-E data collection compared to later years. 
Instead of 1st Jan 2015, the dataset starts at 1st Jan 2017. Consequently, the training dataset 
for machine learning methods will be smaller. 

Data pre-processing. Several steps of data pre-processing were carried out to prepare the 
data for machine learning methods. For the reference period, from 1st Jan 2017 to 31st Jan 
2023, both E-HYPE and ENTSO-E data needed to be aligned before being used for training the 
machine learning regression models. Both E-HYPE and ENTSO-E datasets were processed, to 
identify missing entries. If found, the observation was removed from both the river discharge 
and ROR generation datasets. The data on sub basins and generation is split into country-
specific samples.  

Methodology: machine learning methods 

Two machine learning methods were explored to find the best fit: XGBoost and Artificial 
Neural Networks (ANN). XGBoost (also known as Extreme Gradient Boosting) is an ensemble 
learning technique and more specifically a version of Gradient Boosting models that add 
sequential models to correct the performance of the previous model. ANN, on the other hand, 
uses artificial neurons to find the relationship between the input and output data. It can 
contain multiple layers of neurons and uses weights to calibrate the strength of each neuron. 
Backpropagation is used to optimize the weights over multiple iterations. 

A supervised machine learning regression model can be used to find the relationship between 
the multivariate features dataset (in our example this is river discharge for each subbasin) and 
the target variable (ROR hydro generation). After preprocessing the data, the discharge of 
each subbasin in each country becomes part of the country's model, while the aggregated 
ROR generation in the same country is used as the target variable. The dataset was split into 
a training and testing sample, where the testing sample accounted for the last 20% of days in 
the dataset. The training sample was then shuffled to reduce autocorrelation and 
consequently the chance of overfitting. 

The two models, ANN and XGBoost, were fitted and their performance was compared for all 
countries at European scale. To obtain the optimal parameters for the XGBoost model, a grid 
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search was undertaken6. Austria was chosen as the country to find the optimal 
hyperparameters, due to its medium size with a significant amount of run-of-river and 
poundage hydro generation capacity (5.25 GW in 2020, see Table 3-2). Comparing default 
parameters with hyperparameters optimized for Austria, it was observed that default 
parameters performed better in general across all countries than hyperparameters optimized 
for Austria. Therefore, all countries were given the default XGBoost parameters. 

At the country level, the features importance method in XGBoost was used to determine the 
sub basins with the best predictive power for hydro power generation. The most important 
sub basins were plotted on a map using GeoPandas together with the locations of ROR hydro 
generators available from the JRC Hydro power plants database.  

For the ANN model, a sequential model was used with an input layer of nodes equal to the 
number of sub basins in a country, and a rectified linear unit (ReLU) activation function was 
applied. A single output node was added with a linear activation function. The Adam7 

optimizer was used to compile the model using the mean squared error to minimize the loss 
function. 

Limitations of the method 

There may be other external factors affecting the results that cannot be explained by changes 
in the river discharge. For example, generator outages can be caused by exogenous impacts 
not related to weather conditions. Planned outages for maintenance, technical failures, start-
up failures, etc., are completely exogenous and will impact the generation levels of the plants, 
Figure 3-14. Non-ROR-dominant countries with few ROR hydro generators, such as the Czech 
Republic, will likely be more affected. 

 
6 The RandomizedSearchCV module from scikit-learn (Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 

2011) was used searching over the following hyperparameters in the XGBoost model: learning rate, number of estimators, max depth and 
alpha. The learning rate determines the step size when searching for the minimum point of the loss function. The number of estimators is 
the number of boosting rounds in XGBoost. The max depth is the maximum tree depth of the decision tree. The alpha hyperparameter 
determines the L1 regularization term sensitivity, where a higher number makes the model more conservative. The grid search was done 
using a 5-fold cross-validation sample. Based on this search, the optimal hyperparameters for Austria were learning rate = 0.1, max depth = 
2, alpha = 5, and number of estimators = 300. 
7 The Adam optimizer stands for Adaptive Moment Estimator. 

https://ricardogroup.sharepoint.com/sites/ED19262/Shared%20Documents/Project/2%20Project%20delivery/1%20Reports/Run-of-river%20Hydro%20ML%20report%20V0.2.docx#_msocom_1
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
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Note: Unplanned outages of the production units available from ENTSO-E Transparency platform from 2015-12-31 to 2022-
03-31 for the European bidding zone. A95, B18, B20 are code reasons of the unplanned outages as given by the operator to 
ENTSO-E, the full list of codes is available at ENTSO-E Code List, Apr 28, 2023, Version 88. 

Figure 3-14 Frequency of unplanned outages in the European bidding zone from 2015 to 2022. 

Additionally, changes in the ROR generation capacity in a country can impact the training of 
the model and future predictions. Changes to ROR capacity that occur within the ML model 
training period, can bias the results. And changes in future capacity can bias the future 
predictions, if for example, the Czech Republic is to double ROR capacity from between 2020 
and 2040. To overcome this problem, a version of the ML model has been trained on the ROR 
generation data normalized by the installed ROR capacity in the historic period. For each 
country, future ROR generation patterns can be derived in relation to the predicted 
normalized ROR generation. 

Another limitation of the results is that the future predictions (2025-2100) are over a much 
longer time horizon than the historical data on ROR generation available (2017-2023). A 
longer time horizon of training data could make the ML model more robust (De Felice, 2020). 
As part of the ENTSO-E generation dataset, pondage generation is also included, so the ROR 
pattern for training can also include capacities that store water to maximize revenues. There 
is also a concern regarding the data quality of the ENTSO-E Transparency Platform, where 
there are missing values in some generation datasets (Hirth, Muhlenpfordt, & Bulkeley, 2018). 
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4.2.2. Results – constructing hydro power generation profiles  

This section presents the results and performance of the models. Both the results from 
XGBoost and Neural Networks model are presented for comparison. The mean absolute error 
(MAE) and normalized root mean squared error (NRMSE) are used as metrics to evaluate and 
compare the two models. The NRMSE is normalized by dividing by the difference between 
the maximum and minimum value observed in the test dataset. 

Table 3-2 below shows the metric for each country. When using the NRMSE as the metric, 
ANN performs better on 56% (8 out of 18) of countries, while XGBoost performs better for 
the remaining 44% countries (8 out of 18). 

Table 3-2 Metrics on test data of different models. 

Country MAE 
(XGBoost) 

NRMSE 
(XGBoost

) 

MAE 
(Neural 

networks) 

NRMSE 
(Neural 

networks) 

NRMSE 
(XGBoost, 
weekly) 

NRMSE 
(Neural 

Networks
, weekly) 

Preferred 
model 

(NRMSE, 
daily) 

Austria 353.96 12.03% 392.20 11.96% 14.08% 17.17% ANN 

Belgium 11.10 31.49% 10.43 29.50% 32.19% 24.45% ANN 

Croatia 44.85 29.72% 40.91 26.50% 38.43% 37.69% ANN 

Czech 
Republic 

27.64 27.67% 28.87 29.52% 30.16% 32.34% XGBoost 

Finland 243.02 18.58% 302.00 22.21% 15.85% 34.04% XGBoost 

France 607.44 15.05% 487.67 12.24% 16.79% 14.37% ANN 

Germany 291.14 30.59% 151.43 16.99% 36.44% 30.68% ANN 

Hungary 2.19 18.53% 2.33 18.57% 22.86% 21.75% XGBoost 

Ireland 22.40 17.20% 25.47 18.64% - - XGBoost 

Italy 612.68 21.86% 422.90 15.25% 26.28% 31.98% ANN 

Latvia 94.15 12.38% 118.88 15.08% 11.54% 13.18% XGBoost 

Lithuania 17.30 29.90% 14.58 24.03% 26.01% 21.61% ANN 

Poland 15.74 8.53% 39.66 19.35% 9.89% 34.88% XGBoost 

Portugal 251.03 14.24% 260.96 16.38% 12.45% 45.67% XGBoost 

Romania 164.81 13.67% 142.79 14.71% 14.21% 49.52% XGBoost 

Slovakia 110.62 24.51% 103.94 22.79% 31.20% 30.38% ANN 

Slovenia 196.53 24.17% 169.82 19.76% 26.93% 61.73% ANN 

Spain 353.96 12.03% 392.20 11.96% 26.28% 31.98% ANN 

Based on the results, we define countries into groups of ROR-dominant and non-ROR 
dominant countries for further analysis. We define a ROR-dominant country where ROR 
represents more than 5% of total generation or more than 0.5 GW of ROR capacity in the 
reference year 2020. The differences between the models for ROR-dominant and non-ROR-
dominant countries are discussed below. The performance of the models for each country is 
presented in the Annex 1. 

Table 3-3 Run-of-river generation share and capacity in each country (2020) 

Country ROR % of overall 
generation (2020) 

ROR capacity (GW, 2020) Grouping 

Austria 27.6% 5.25 ROR-dominant 
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Belgium 0.4% 0.09 Non-ROR-dominant 

Bulgaria 0.4% 0.31 Non-ROR-dominant 

Croatia 20.3% 0.93 ROR-dominant 

Czech Republic 1.8% 0.29 Non-ROR-dominant 

Finland 11.4% 1.85 ROR-dominant 

France 1.4% 1.71 ROR-dominant 

Germany 2.4% 4.01 ROR-dominant 

Hungary 0.7% 0.06 Non-ROR-dominant 

Ireland 0.0% 0.00 Non-ROR-dominant 

Italy 7.0% 3.12 ROR-dominant 

Latvia 48.2% 1.59 ROR-dominant 

Lithuania 13.0% 0.12 Non-ROR-dominant 

Poland 0.9% 0.48 Non-ROR-dominant 

Portugal 13.9% 3.05 ROR-dominant 

Romania 15.5% 3.62 ROR-dominant 

Slovakia 2.3% 0.15 Non-ROR-dominant 

Slovenia 3.9% 0.21 Non-ROR-dominant 

Spain 6.4% 4.51 ROR-dominant 

Focus on ROR-dominant countries 

The run-of-river hydro-dominant countries were identified: Austria, Croatia, Finland, France, 
Germany, Italy, Latvia, Portugal, Romania, and Spain. 

In the example below, we demonstrate how the method is implemented for Austria, which is 
a ROR-dominated country. Reports on other countries in the group are available in the 
Annex 1. Figure 3-15 below presents the XGBoost and ANN results for Austria, using daily data 
for the period from 2025 to 2030. The first row shows the training, test and future prediction 
using the XGBoost model. The predictions for future ROR generation in each country was 
prepared using the dataset as an input to the ML model. The second row presents the same 
plots using the ANN model. The third row shows the cumulative distribution function (CDF) 
of the ground truth and the two predictions (XGBoost and ANN), the cumulative distribution 
function of the residuals, and a map of Austria with its ROR generators in blue and the most 
relevant subbasins (red) in the XGBoost model. The table in the last row of Figure 3-15 
demonstrates that ANN has lower RMSE and NRMSE, but higher MAE, than XGBoost. The 
cumulative distribution functions (CDF) show that the ANN model is upwards biassed on the 
test data, where more than 80% of the predictions are above the ground truth. The XGBoost 
model predicts roughly 50% of predictions above ground truth and is thus more balanced in 
its prediction in relation to the ground truth. The map on the Figure 3-15 below, shows that 
the XGBoost model picks up a diverse set of sub basins located in the west, north and east of 
the country to explain the country-aggregated ROR target variable. These sub-basins are 
located in the mountainous regions of Austria. 
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Note: The first row shows the training, test and future prediction using the XGBoost model and the second row - for the ANN 
model. The third row shows the CDF of the residuals. The last plot in the third row shows the map of Austria, and locations of 
ROR generators in blue dots (hue intensity is scaled by the installed ROR generation capacity) and the most relevant sub 
basins in red (hue intensity is scaled by the importance feature in the ML model) identified by the XGBoost model. A table of 
relevant metrics for training and test data is shown in the fourth row. 

Figure 3-15 Results from XGBoost and Neural Networks for Austria using daily data. 

Another ROR-dominant country is Finland. Finland has large variations in its generation at a 
daily resolution, which is explained by its large lakes used to regulate the rivers (De Felice, 
2020). It can then optimize the river flow based on the prevailing prices in the spot market. 

Figure 3-16 shows the comparison of the XGBoost model using daily and weekly data. The 
MSE is significantly lower in the weekly averaged data compared to daily data, and from a 
visual inspection it is clear that the model cannot explain the daily variation using exogenous 
river flows. 
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Note: The first row shows the training, test and future prediction using the XGBoost model and the second row - for the ANN 
model. 

Figure 3-16 Daily and weekly simulation of ROR generation for Finland. 

Spain, also a ROR-dominant country, shows a different performance than Austria comparing 
ANN and XGBoost model results in the testing period. Figure 4-15, table in the third row, 
demonstrates that ANN has lower RMSE, NRMSE and MAE than XGBoost. The cumulative 
distribution functions (CDF) show that the XGBoost model is upwards biassed on the test data, 
where more than 80% of the predictions are above the ground truth. Roughly 70% of the ANN 
model predictions are above the ground truth. The map on the Figure 3-15 below, shows the 
location of the set of sub basins located in the eastward to the country ROR capacities, 
revealing the likely bias of the selected river catchments to the ones located within the 
national borders, in the valley of the river Ebro and adjacent regions of Pyrenees. 
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Note: The first row shows the training, test and future prediction using the XGBoost model and the second row - for the ANN 
model. The third row shows the CDF of the residuals. The last plot in the third row shows the map of Austria, and locations of 
ROR generators in blue dots (hue intensity is scaled by the installed ROR generation capacity) and the most relevant  sub 
basins in red (hue intensity is scaled by the importance feature in the ML model) identified by the XGBoost model. A table of 
relevant metrics for training and test data is shown in the fourth row. 

Figure 3-17 Results from XGBoost and Neural Networks for Spain using daily data. 

Focus on non-ROR-dominant countries 

Group of the non-ROR-dominant countries include Belgium, Bulgaria, Czech Republic, 
Hungary, Ireland, Lithuania, Poland, Romania, Slovakia, and Slovenia. 

The Czech Republic serves as an example of a non-ROR dominant. country. Figure 3-18 shows 
the models’ performance. The model has a good fit on the training data, but it does not 
perform particularly well on the test data. There is only one significant ROR hydro generator, 
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see the map of the Czech Republic on Figure 3-18 third row, while the XGBoost model picks 
up subbasins from around the country. It is possible that the model is overfitting. This model 
has identified a pattern from the surrounding sub basins that can predict the one ROR hydro 
generator, but it has not identified the single catchment that this generator depends upon, 
and therefore the results are not generalizable out of sample (i.e. in the test period). The 
models for non-ROR-dominant countries are more difficult to fit and are likely to overfit in 
the training period. The model attempts to find a combination of sub basins to explain the 
few run-of-river hydro generators in the training sample with a low level of accuracy. 

 
Note: The first row shows the training, test and future prediction using the XGBoost model and the second row - for the ANN 
model. The third row shows the CDF of the residuals. The last plot in the third row shows the map of Austria, and locations of 
ROR generators in blue dots (hue intensity is scaled by the installed ROR generation capacity) and the most relevant sub 
basins in red (hue intensity is scaled by the importance feature in the ML model) identified by the XGBoost model. A table of 
relevant metrics for training and test data is shown in the fourth row. 

Figure 3-18 Daily simulation of ROR generation for Czech Republic. 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

79 

 

Focus on future climate - RCP2.6, RCP4.5 and RCP8.5 

The future projections of ROR generation patterns are available for the period from 2025 to 
2100 for RCP2.6, RCP4.5 and RCP8.5. The results were simulated for the 9 EURO-CORDEX 
model ensembles. Below, Figure 3-19 and Figure 3-20 show the future projections of ROR 
generation patterns for Austria and Spain. 

  

  

  

Note: Black line shows the median ROR generation projected by ML method, based on the ensemble of 9 EURO-CORDEX 
models’ simulation of river discharge. Light blue area represents the 5th to 95th percentile range, and the 25th to 75th 
percentile is represented by the dark blue shaded region. 

Figure 3-19 Normalized ROR generation patterns for 2030 and 2050 years for Austria under RCP2.6, RCP4.5 and RCP8.5. 

The uncertainty in the ROR generation patterns can be described by analyzing the EURO-
CORDEX model ensembles for each of the three RCPs. For Austria (Figure 3-19), model’s 
ensembles indicate rather high agreement, with narrow ranges for the 5th to the 95th 
percentile range, and the 25th to the 75th percentile range respectively. Whereas for Spain 
(Figure 3-20), especially in the RCP2.6 and RCP4.5 for 2030, changes in the ROR generation 
patterns indicate lower agreement between the models and higher uncertainty in realization 
of the climate impacts on hydro power. 
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Note: Black line shows the median ROR generation projected by ML method, based on the ensemble of 9 EURO-CORDEX 
models’ simulation of river discharge. Light blue area represents the 5th to 95th percentile range, and the 25th to 75th 
percentile is represented by the dark blue shaded region. 

Figure 3-20 Normalized ROR generation patterns for 2030 and 2050 years for Spain under RCP2.6, RCP4.5 and RCP8.5. 

In the next steps, the ML-enhanced dataset for each country's ROR generation profiles will be 
used in the PRIMES-IEM model. The prepared energy scenarios include different RCP 
scenarios: RCP2.6, RCP4.5 and RCP8.5. Additionally, to explore the uncertainty and realization 
of extreme ROR generation patterns, it is essential to include scenarios with the uncertainty 
ranges of the models’ ensemble: for the 5th to the 95th percentile range. To maintain 
consistency of the ROR generation patterns within a year, on a daily basis, the selected 
extreme scenarios are based on the river discharge future projections of the models in the 
ensemble (Figure 3-21). 
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Note: Shades of black color indicate the value for each daily normalized ROR generation, with white color equal to lower end 
of the scale (0) and black to higher end of the scale (1). 

Figure 3-21 Median daily ROR generation in Spain for 2030, for the EURO-CORDEX model ensemble, for RCP2.6. 

Conclusions and further work 

Further improvements can be done to validate the findings and increase the robustness and 
confidence in the ML model trained. Understanding the biases of the model can provide more 
insight into its performance. The use of black box models like ANN also suffers from 
interpretability. More research into the interpretation of AI methods can provide further 
insight into the decisions made by the ANN model. This is important when relying on 
complicated models for policy making. 

Further work can also be done to optimize the parameterization of the model for each 
country. This is done using the Adam optimizer for Neural Networks, but the XGBoost method 
relies on the default parameters. It is possible that the XGBoost fit could be improved by 
undertaking a grid search for each country and using the country-specific optimized 
hyperparameters. Moreover, more lagging features will be explored as it is expected that they 
can increase model accuracy. 

More exploration into cross-border effects, especially for countries that share river basins 
with other neighboring countries, may provide additional insights. For example, including sub 
basins in countries near the border of a country could be explored to see if those sub basins 
have additional predictive power. This further work can contribute to assessment of the 
spatial coordination of the hydro power production (Wörman et al., 2020). 

The following work steps within the CLINT project include the elaboration of the PRIMES-IEM 
scenarios that consider climate-driven changes in hydro power generation and show the role 
of hydro power in the decarbonized energy sector. 
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4 INVESTIGATION ON AI-ENHANCED CLIMATE SERVICES FOR 
EXTREME IMPACTS - FOOD SECTOR 

4.1 AI-BASED CROP GROWTH EFFORT - BACKGROUND AND OBJECTIVES 

The main idea behind the crop model emulator development is to enhance the skill of crop 
yield prediction when it comes to integration of seasonal climate forecasts. In contrast to the 
mechanistic crop model, which generally relies on six input meteorological variables (daily 
minimum and maximum temperature, precipitation, wind speed, global solar radiation and 
relative humidity), the crop model emulator will rely on three input variables: daily minimum 
and maximum temperatures and daily total precipitation. Minimum and maximum 
temperatures are chosen here due to their relevance for crop growth, as they better capture 
the impact of cold and heat stress, respectively, than daily mean temperature. With a lower 
number of input variables, we aim to reduce the forecast uncertainty arising from integration 
of seasonal forecasts of multiple meteorological variables, originally required for the 
mechanistic model. Furthermore, running the crop growth model is computationally 
expensive, making the model infeasible for producing large ensembles for which the emulator 
can be used as well. 

In this stage, we are aiming in training and calibrating a crop growth emulator using the ERA5 
reanalysis dataset from ECMWF. ERA5 serves as the observational dataset that is utilized in 
terms of predictor variables in order to train and test the AI surrogate model. 

The initial step of the overall process is the actual crop growth simulation for the target years 
for the chosen crop, grain maize. The input data for the ECroPS model are derived from the 
Joint Research Center of the European Commission (EC-JRC). 

In order to perform the simulations, we feed the ECroPS model with the following gridded 
input data:  

Weather The daily ERA5 variables used for the simulations are maximum temperature, 
minimum temperature, shortwave downwelling radiation at the surface, precipitation, 
relative humidity, and wind calculated by its vector components. ECroPS requires three types 
of water balance variables: potential evaporation from a free water surface, potential 
evaporation from a moist bare soil surface, both of which are calculated with the modified 
Penman approach, and the canopy evapotranspiration which is calculated with Penman-
Monteith approach. 

Soil The input data are gridded static data derived from the databases of JRC. According to 
the database details, the European soil is divided into soil mapping units (SMU) representing 
differentiated zones that reflect the soil types’ homogeneity. The original soil database SMUs 
consist of one or more soil types, represented with soil typological units (STUs), with STUs 
occupying measured percentages per SMU. Overall, the provided soil map used for crop 
growth determine aspects such as the rooting depth, the available water capacity (AWC) and 
the infiltration capacity, variables that are associated to the STU and are therein introduced 
as soil moisture characteristics. Without losing the generalizability of our methodology, we 
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avoid introducing the complexity of accounting for the possibly multiple STUs associated to 
every grid cell of the European domain, and thus requiring as many simulations as the STUs 
per grid cell. Instead, we perform the simulations once per grid cell regarding the soil type, 
and assume the most dominant one as the one to be associated with each corresponding cell. 

Crop-specific data and agro-management traits per cell Sowing date and number of degree-
days for the emergence-anthesis period and the number of degree-days for the anthesis-
maturity period, vernalization parameters, dry matter partitioning parameters and many 
others, required for the simulation runs for grain maize. 

We consider the crop and soil parameters static while ERA5 variables are the time-varying 
components that force the ECroPS model for 31 years, from 1993 to 2023. Each cell output is 
an independent simulation, forced from sowing date to the end of each year, producing 
output variables such as the Total Weight of Storage Organs (TWSO) on a daily basis as the 
crop grows. We focus our interest on the crop growth development stages between flowering 
and maturity (Development Stage 1 (DVS1) to Development stage 2 (DVS2), in terms of the 
ECroPS characterization of crop development stages). 

The objective of the reported advances is the surrogate modeling using an AI-based model of 
the crop growth between the development stages DVS1 and DVS2. 

In this sense, the goal is to reproduce the underlying processes that dictate crop growth in 
terms of weather inputs. The model is forced with ERA5, which also determines the spatial 
resolution of the simulation, which is accordingly, the climate model’s native resolution of 
0.25 degrees. 

4.2. METHODOLOGY – AI PIPELINE   

4.2.1. Preprocessing of the data 

The database consists of the sample points deriving from each independent run of the ECroPS 
model for each grid cell and each year, for the defined European domain, accounting for the 
cells for which we have crop parameters, more specifically an actual sowing date. 

The database contains N samples/ECroPS simulations structured as a datacube of crop growth 
timelines (K days) for the three chosen climate variables: minimum and maximum 
temperature and total precipitation. 

4.2.2. Benchmarking and next steps 

We performed benchmarking model runs with the full database, unfolded and flattened in 
space and time into a big tabular dataset. As a result, the database used for the benchmarking 
process is of the shape (N, K*3). This means that the feature space now consists of a few 
hundred features which are structured as {Day0Tmax, Day0Tmin, Day0Pr, …, DayKTmax, 
DayKTmin, DayKPr}. 

The tests are performed using ensembles of Random Forests and ensembles (15 members) of 
XGBoost runs, utilizing in the first run greedy grid searches for the hyperparameters, choosing 
the best performing ones in order to optimize the output predictions. 
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Figure 4-1 Random Forests (left) and XGBoost (right) performance. Target values VS the average of the ensemble outputs. 

Since the feature space is high dimensional, thus imposing problems in terms of noise and 
redundancy, we perform a series of feature selection steps to 1) minimize noise, 2) condense 
the feature space, 3) provide quicker and more robust convergence for the AI pipeline and 4) 
provide a more explainable side to the problem and the solution. 

Our initial trials utilized the Recursive Feature Elimination with Cross-Validation (RFECV) 
algorithm (Guyon et al., 2002). 

We tested the RFECV with Extreme Learning Machines (ELMs) (Huang et al., 2006), using 5-
fold cross-validation, a step of one feature removal per iteration and negative MSE as the 
metric of the model performance. RFECV is an iterative feature selection technique that 
recursively removes features from the dataset while evaluating the model's performance 
using cross-validation (CV). It starts by training the model on the full feature set for computing 
a performance metric (e.g., accuracy, mean squared error) using CV. Then, it ranks the 
features based on their importance (e.g., coefficients in linear models, feature importances 
in tree-based models) and eliminates the least important feature. This process is repeated 
iteratively until the desired number of features is reached or until the performance metric 
stops improving. In our case, RFECV did not converge to a solution most probably due to some 
common pitfalls of the algorithm:  

1) very high dimensionality: In datasets with a high number of features, RFECV may 
encounter difficulties in finding an optimal subset of features due to the large search 
space.  

2) noisy data: If the dataset contains noisy or irrelevant features that do not contribute 
useful information to the model, RFECV may struggle to converge to an optimal subset 
of features. Noise in the data can obscure the true signal and make it challenging for 
RFECV to distinguish between informative and non-informative features.  

3) lacks diversity in its search: RFECV may become trapped in a local minimum or fail 
to find a globally optimal solution because it doesn't adequately explore all possible 
solutions. Instead, it may focus too much on a limited subset of the search space, 
potentially missing better solutions that exist in other regions. 
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In continuation, we tried an optimization pipeline for feature selection and tried to optimize 
an objective function using the minimize functions from scikit-optimize8. In the context of 
feature selection, this function typically evaluates the performance of a model using a specific 
subset of features. The minimize function searches for the subset of features that minimizes 
(or maximizes) the performance metric (here, negative MSE) defined by the objective 
function. The result provides information about the optimized subset of features and the 
corresponding performance metric. We tested the ‘minimize’ optimization approach with 
ELMs using a 5-fold cross-validation scheme, a maximum evaluation value of 10000, and two 
methods, namely the Nelder-Mead and the Powell ones. Since for both derivative-free 
methods the algorithms did not converge to a solution that satisfies the convergence criteria 
and did not find a minimum (or maximum) within the given iterations, we moved to more 
complex feature selection operations. 

The final feature selection actions are performed using the Coral Reef Optimization with 
Substrate Layers (CRO-SL) algorithm (Pérez-Aracil et al., 2023). The CRO-SL algorithm is a 
nature-inspired optimization algorithm developed based on the ecological principles of coral 
reefs and their substrate layers. Coral reefs are complex and diverse ecosystems with various 
layers, each supporting different species and playing a crucial role in the overall health of the 
reef. Inspired by this natural system, the CRO-SL algorithm aims to efficiently solve 
optimization problems by mimicking the dynamics of coral reefs and substrate layers. The 
CRO-SL algorithm initializes a population of potential solutions (corals) within the search 
space. Each coral represents a candidate solution to the optimization problem. The Coral Reef 
is formed by the interaction between the corals and their environment, mimicking the 
competition and cooperation observed in coral reef ecosystems. In such coral reef 
ecosystems, substrate layers provide a habitat for various organisms and contribute to the 
overall ecosystem's stability. Similarly, in the CRO-SL algorithm, substrate layers are created 
to represent different levels of solution quality. These layers are dynamically adjusted based 
on the performance of the corals. Through their reproduction and mutation operations, corals 
undergo genetic variations to explore new areas of the search space. This process helps in 
maintaining diversity within the population and prevents premature convergence to 
suboptimal solutions. Through evaluation and selection, the fitness of each coral is assessed 
based on the objective function of the optimization problem. Corals with higher fitness values 
are more likely to survive and reproduce, influencing the composition of the population in 
subsequent generations. Finally, environmental pressure and adaptation are performed 
within the selection to encourage adaptation, driving the search towards better solutions. 
The algorithm terminates when a termination criterion is met, such as reaching a maximum 
number of evaluations or achieving a satisfactory solution after effectively exploring complex 
solution spaces and finding high-quality solutions to optimization problems. 

The optimization problem we tested is based on the backbone of ELMs runs, evaluated 10000 
times using a 5-fold CV scheme, reaching on average 120 generations. This process is run 5 
times and the final features selected are the ones that are chosen at least 4 times from all 5 
runs, thus providing a more statistically robust feature subset. 

 
8 https://github.com/scikit-optimize/scikit-optimize/tree/master 
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The selected feature space is further reduced using Principal Components Analysis (PCA) in 
order to explore deeper the noise components in the dataset and evaluate the usefulness of 
tailored AI pipelines. The higher the noise, the more suitable a neural network-based solution 
may be and the higher the value of probabilistic approaches. 

The PCA is conducted on the CRO-SL reduced feature space. From the principal components 
(PCs) we select the top-ranking ones that are responsible for explaining the 90% of the 
variability. Finally, from each of those selected PCs, we single out for our further experiments 
the top 5 features contributing to that PC, thus resulting with a minimal subset of unique 
features from the original feature space (Figure 4-2). 
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Figure 4-2 Frequency of the contributing features from all the PCs that are responsible for the 90% of the explained variance 
of the features subset from the CRO-SL process. 

Since all the intuitive tests and data characteristics point to the need for irregular 
representations that cannot be learnt with ML algorithms, we naturally turn our focus to 
Neural Networks (NNs). After being introduced in the 1980s, NNs have become today one of 
the widest used AI toolsets due to their ability to learn highly non-linear and complex 
relationships from extensive datasets. The successful application of NNs was shown in a wide 
variety of different scientific fields with important achievements also in climate science (e.g. 
Schultz et al., 2021; Camps-Valls et al., 2021). 

Finally, the new skeleton database is the input to a feedforward neural network (FNN) with 5 
hidden layers, dropout regularization and batch normalization. The predictions of the FNN do 
not differ greatly in comparison to the RF and XGB ones (Figure 4-3), implying that a more 
complex and different network architecture is required to capture the processes. 

 

Figure 4-3 FNN scatter plot of test dataset inputs VS predicted outputs. 

However, since we are still exploring the feature space in terms of tabular, flattened data, 
thus eliminating the contribution and the underlying processes that are related to the time 
domain and its value in crop growth emulation, it is of high interest to determine other AI 
pipelines that rely on recurrent neural network (RNN) architectures consisting of Long-Short-
Term-Memory (LSTM) components as learning layers. 

Our initial tests with RNNs are based on operations that allow the network to predict full 
timelines per sample (or cell). In this sense, the most recent tests require a database of 
timeline samples that are fed altogether to various shallow RNNs. Tests with up to 4 hidden 
layers with various neuron numbers per layer have failed in convergence, exhibiting gradient 
explosions or gradient vanishing phenomena. The database is constructed by the 3 original 
features, (min  𝑇𝑚𝑖𝑛 and max 𝑇𝑚𝑎𝑥 temperature, precipitation 𝑃𝑟) along with a feature 
engineering process that adds temporally lagging features for 5 days, thus effectively adding 
15 new features to the feature space. These converging failures of these RNNs have pointed 
towards our future work involving RNNs. The designed pipeline evolves around a different 
strategy regarding the database construction and the RNN prediction process. The single-
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temporal prediction RNNs currently designed are going to predict single timesteps, instead of 
full timelines. 

Concurrently, we are tailoring our efforts towards a very promising direction for constructing 
the crop growth emulator that may not only provide more consistent AI modeling but also 
quantify inherent uncertainties. While a NN can theoretically learn any nonlinear function and 
hence be considered a universal approximator (Efron & Hastie, 2016), in practice, prediction 
accuracy will always be dependent on the data set at hand, resulting in uncertainty. This is 
especially important for NNs as they are by their nature prone to overfitting thus questioning 
their generalization capabilities (Szegedy et al., 2013), which can result in overconfident 
forecasts making them potentially unsuitable for high-risk domains (Goan et al., 2020). 
Because of their high complexity, these models have been dubbed "black boxes" (McGovern 
et al., 2019), which have been found to learn spurious associations (Lazer et al., 2019) that do 
not necessarily reflect the physical relationships of the Earth system (Kashinath et al., 2021). 
As a result, determining the uncertainty of the predictions is critical for evaluating NNs. In 
statistics, this problem is frequently solved by including a stochastic noise component in the 
system to reflect the uncertainty. This approach has also been carried over to NNs either by 
using a stochastic activation function or by stochastic weights (Jospin et al., 2007), which 
motivated the class of Stochastic Neural Networks (SNNs). 

A class of particularly popular SNNs has been introduced with Bayesian Neural Networks 
(BNNs), which is a stochastic neural network trained using Bayesian inference (Jospin et al. 
2020). The Bayesian theory treats model parameters as sources of uncertainty (i.e., as random 
variables) and determines their distribution by specifying prior distributions based on experts' 
knowledge, which are then updated with the information in the observed data using Bayes 
theorem (van de Schoot et al., 2021). In BNNs, the Bayesian perspective is used to address 
some potential shortcomings of NNs by merging techniques of the NNs and Bayesian theory: 
this is essentially being accomplished by imposing a distribution across the network 
parameters, which is determined using methods from Bayesian theory. The BNN is then able 
to produce probabilistic predictions, which allows one to deduce the nature and distribution 
of these parameters (Mullachery et al. 2018), therefore giving insights into the network 
structure. Furthermore, the learned distribution of these parameters can be used to create 
an ensemble of multiple neural networks or potentially high-performing models and taking 
the average of these models (i.e. the ensemble average) can yield significantly improved 
accuracy in comparison to other modern deep learning models (see for more details, Wilson 
& Izmailov, 2020). These methods have also been successfully used in climate science to 
study, for instance, the hydrological impact of climate change (Khan & Coulibaly, 2010), to 
assist calibration of global climate models (Hauser et al., 2012), to fuse output from climate 
ensembles with observations (Amos et al., 2021) and for ensemble techniques of geophysical 
models (Sengupta et al., 2020). 

Our initial tests with BNNs are limited to shallow architectures with dense variational layers, 
assuming multivariate gaussian prior distributions for the model parameters and gaussian 
posterior distributions for the learnt means, variances and covariances. However, we are still 
on a very first phase of experiments and have not yet managed to successfully train and 
predict with our naïve networks. 
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4.2.3. Conclusion and further work  

In terms of initial surrogate modeling efforts, we can claim that RNNs show the most 
structurally consistent characteristics in terms of crop growth emulation due to their time-
dependent nature. The current effort centers around testing simple RNN architectures with a 
different sample database preprocessing and shaping strategy. BNNs are also within the 
scope of our tests, and while the initial tests do not show promising results, we will pursue 
that direction as well. 

5 SUMMARY AND MOVING FORWARD 

In the rapidly evolving landscape of climate research, the integration of AI/ML in climate 
services is redefining how we comprehend and respond to climatic changes across various 
sectors. These services crucially depend on the availability and quality of data as used in the 
case studies and methods application in the current deliverable that is based on a wide 
spectrum of environmental parameters such as temperatures, river discharge and 
precipitation. There is a pressing need for access to robust national and international 
databases that not only provide historical averages and detailed risk assessments but also 
offer long-term projections and scenarios (Buontempo et al. 2018). This foundational data is 
essential for developing accurate and actionable climate services that can effectively inform 
policy and decision-making processes. 

Furthermore, the interpretation of the highly heterogeneous data provided by AI/ML CS plays 
a critical role in climate-informed decision-making and the development of climate-smart 
policies and planning. AI/ML CS not only deliver detailed impact indicators and summary 
reports on climate change impacts but also enhance these insights with spatial context 
illustrations and robustness projections for each indicator. Additionally, AI/ML CS come 
equipped with user guidance materials designed to make complex climate information 
accessible to decision-makers who may not have specialized knowledge in climate science.  

The methods and applications outlined in the deliverable represent preliminary findings that 
move us toward a deeper comprehension of the specific needs for CS and the extent of data 
required across the water, energy, and food sectors. Each sector has endeavored to identify 
the most relevant climate parameters necessary for effectively integrating climate data into 
their respective impact models. Additionally, these sectors have focused on selecting 
appropriate AI/ML methods to manage the complexity of the available data and its 
integration to the modeling framework. Below, for each sector we summarize the work 
performed and outline next steps. 

6.1. AI-ENHANCEMENT OF CLIMATE SERVICES FOR THE WATER SECTOR 

6.1.1. Conclusions from the preliminary results 

In this deliverable, we investigated AI-enhancement of climate services for the water sector 
in two aspects: (1) hybrid hydrological modeling to enhance performance at local scale, and 
(2) attribution of runoff changes to climatic drivers in present and future conditions. 
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Regarding the hybrid hydrological modeling, we applied four post-processing methods to 
runoff simulations generated by the E-HYPE model and evaluated their performance using 
three different metrics while also analyzing the spatial distribution of the skills. Moreover, the 
investigation extended to identifying the primary factors driving performance enhancements 
gained in each post-processing method. The key findings are: 

● The analysis reveals a notable improvement by post-processing the raw 
simulations, in terms of both total volume and high and low extremes. This is 
evidenced by a decrease in SMAE and an increase in NSE and logNSE, which 
suggests that post-processed models provide a more accurate representation 
of hydrological dynamics than the raw simulations. 

● Across the different post-processing techniques, a similar spatial pattern of 
skill improvements is observed, showing higher skills in stations located in 
central Europe. This pattern is more enhanced in the context of extreme 
events, which also indicates the added value from post processing methods on 
high and low streamflow extremes. 

● Key drivers were identified for influencing the model performance after post-
processing and these are: mean precipitation, mean temperature, basin 
hydrological regimes and elevation. Each driver ranked differently across the 
various metrics, indicating their different impacts on model performance. 
Notably, the recurrent identification of hydrological clusters as a significant 
factor for both volume and extremes emphasizes its importance in refining 
model accuracy, in terms of volume and extremes. 

Regarding attributing runoff changes to climatic drivers across Europe under present and 
future conditions, we applied the Budyko framework to provide a quantitative understanding 
of how changes in climatic factors affect alterations in runoff during the early, mid and late 
century under low, medium and high emission scenarios. The key findings include: 

● Under future conditions precipitation showed a contrasting spatial behavior 
with increasing precipitation, specifically in north-eastern Europe and 
Scandinavia and a substantial decrease in southern Europe under the high 
emission scenario. Evaporation increased under a high emission scenario for 
the whole of Europe. 

● On average, the sensitivity of runoff to precipitation changes was more 
substantial than to evaporation across Europe. Northern and central Europe 
showed a higher sensitivity to precipitation than evaporation changes, while in 
other regions, the sensitivity to both climatic factors was comparable. 

● Precipitation was the main factor of increased runoff in Scandinavia and north-
eastern Europe, especially under medium and high emission scenarios, while 
it contributed to decrease in runoff in southern Europe.  

● Evaporation changes were the main factor of runoff alterations in central 
Europe from the early to late century and with increasing the severity of the 
emission scenario.  
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6.1.2. Moving forward 

The current results from post-processing hydrological predictions, where skills show spatial 
compensation among different post-processing methods, requires a further investigation on 
ensemble techniques, e.g. probabilistic multi-model-ensemble approaches, to benefit from 
multiple model outputs. Therefore, the next step would be to explore possibilities of such 
techniques, namely copula-based Bayesian Model Averaging, to combine post-processing 
results from individual models and characterize the uncertainty induced. This would allow 
more reliable predictions by weighing and combining their individual results according to the 
bias against the observations. In addition, we plan to apply this method in a seasonal 
forecasting context and consequently generate a new AI-enhanced hydrological forecasting 
service. 

With regard to advancing the attribution of runoff extremes to climate change, the next steps 
will focus on linking the attribution to the local hydrological regime using machine learning, 
as the results from the post-processing showed potential towards this direction. This 
investigation can help understand whether the contribution of climatic factors to runoff 
extreme events is similar in catchments of similar streamflow regimes; for instance, 
catchments responding fastly or slowly to precipitation signals. The clusters applied in post-
processing will be used to identify similarities and differences in the relative contribution of 
precipitation and evaporation to runoff extremes under different periods and emission 
scenarios across Europe. 

6.2. AI-ENHANCEMENT OF CLIMATE SERVICES FOR THE ENERGY SECTOR 

6.2.1. Conclusions from the preliminary results 

In this deliverable, we give the preliminary results for the enhancement of the PRIMES-IEM 
model and linking of weather and climate data. The methods and applications focused on (1) 
adjustment of the power demand to changes in the air temperatures and (2) adjustment of 
the hydropower generation profiles to changes of the river discharge. The introduced model 
enhancements focus on improving the preprocessing climate datasets, and mainly focusing 
on river discharge and air temperature data for the preliminary analysis. The results for the 
following applications were demonstrated: 

● The analysis of the relationship between temperature and heating or cooling 
demand for electricity for the historical periods characterize the country’s 
specific power needs during seasonal temperature changes. For the future 
projections under the three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5) daily 
temperature changes provided by impact models, result in more accurate 
representation of power demand dynamics under different climatic 
conditions. 

● Changes in river discharge under climatic drivers in present and under future 
conditions (RCP2.6, RCP4.5 and RCP8.5) shows great variability in the 
availability in hydropower generation profiles at national level. Using 
supervised machine learning regression models, we are able to find the 
relationship between river basins and the ROR annual generation profiles and 
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emphasize the importance of taking spatial dimensions into account when 
analyzing and studying energy sector climatic drivers.  

Introducing enhancements to the dedicated impact model for the energy sector, enhances 
our ability to deliver information - based decision making. 

6.2.2. Moving forward 

This study demonstrates the preparation of climate-specific data for use in the European scale 
PRIMES-IEM model. In spite of specific implementations and methods for each model, the 
general processing steps and methods must be able to translate the variability of future 
climate conditions. The ML-enhanced techniques can enable a more accurate linkage of 
climate datasets with energy modeling and contribute to a better understanding of climate 
and energy dynamics. In this way, the identification of climate change risks and solutions in 
the energy sector can be greatly improved.  

Further steps may include better representation of climate induced operational risks to 
thermal power generation capacities. Ultimately, the policy scenarios with climate-aware 
input data can demonstrate the projections of the power generation and power demand 
taking into account climate variability under current and planned policies at the European 
scale. In the Deliverable 6.4 some climate-informed policy scenarios will be generated 
demonstrating the impact of extreme events in the energy sector. 

Box 1: Efficiency losses and cooling needs: heats and droughts cause decreases in efficiency 
of thermal power plants both due to high ambient temperature (Burillo et al. 2019) and due 
to cooling system failures (van Vliet et al. 2016). Heats and droughts affect the cooling of 
thermal power plants:  nuclear generation limited by regulations for border temperatures of 
water intake for cooling (van Vliet et al. 2016); thermal power plants with water cooling 
systems – natural gas and hard coal (Byers et al. 2016).  

6.3. AI-ENHANCEMENT OF CLIMATE SERVICES FOR THE FOOD SECTOR 

Summarizing, this study aims to deliver an AI-enhanced climate service for food security by: 

● developing a crop model emulator for Europe and force it using calibrated and 
downscaled seasonal climate forecasts, 

● understanding the impact of concurrent climate extremes on crop yields and 
assess predictability of crop yields when concurrent climate extremes occur, 

● assess the impact of climate change on crop yields in Europe and evaluate 
several adaptation options for optimizing crop productivity. 

6.3.1. Conclusions from the preliminary results 

The preliminary results towards the construction of the AI-based emulator show that in terms 
of a tabular database generation, there is an extensive need to assess the inherent noise. 
Finalizing the optimization-for-feature-selection pipeline with CRO-SL showed promising 
results in terms of convergence, but it is evident that in terms of AI modeling, ECroPS shows 
heavy presence of noise which makes the detection of patterns quite challenging. 

This pushes the effort towards RNNs with clearer focus due to the trials with tabular datasets, 
using an architecture that encompasses a consequent mode of operations. 
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In this regard, we are currently building a pipeline with a database that inherits not only the 
raw data but also their temporal dimension. 

Additionally, we are working towards a probabilistic AI framework, using BNNs, which is still 
in a nascent stage. 

6.3.2. Moving forward 

The workflow for development of AI-enhanced climate service is presented in Figure 5-1. 
Once the AI-enhanced crop yield emulator is developed, seasonal climate predictions will be 
used to run the emulator to estimate seasonal predictions of crop yields. Seasonal predictions 
will be applied to the crop model emulator during different times of the growing season. 
Given the seasonal forecast initialization time, the estimation of crop yield by emulator 
depends on the integration of observed and forecast precipitation and temperature data.  
Observed values are used until the time of forecast initialization, and are thereafter merged 
with seasonal forecasts to cover the entire period for each indicator. We can justify this 
merging of reanalysis and seasonal forecasts data as the latter are bias-adjusted. For example, 
if we consider winter wheat and the November initialization of seasonal forecast, the majority 
of indicators are largely based on seasonal forecast values since the timing largely coincides 
with either sowing or the initial growth phases of winter wheat across Europe. While, higher 
share of observed data is integrated into emulators’ estimation in subsequent forecast 
initializations. 

 
Figure 5-1 Workflow for development of AI-enhanced climate service integrating seasonal climate forecasts. 

Downscaled and calibrated seasonal hindcasts of daily minimum and maximum temperatures 
and precipitation from the ECMWF SEAS5 system (Johnson et al., 2019) were provided for the 
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purpose of this task by TCDF9. The reference climate data for the statistical post-processing 
of the seasonal forecast hindcast comes from ERA5 reanalysis, which is used also for running 
the ECROPS mechanistic crop model. 

The principal results of this simulation framework will provide crop yield forecasts at the end 
of growing season for three main crops grown in Europe. The simulations will be summarized 
in terms of area of concern maps exposing the regions where grain yield drop might occur 
due to evolving and/or predicted extreme climate events, focusing primarily on heat waves 
and extreme droughts. This will provide useful insights on two aspects: (i) better 
understanding of crop yield variation when concurrent extremes and compound events occur, 
and (ii) the predictability of crop yields on European scale during these events. 

Contrarily to seasonal forecasts, climate projections consider time scales until the end of the 
21st Century.  The climate projections are based on downscaled and bias adjusted CMIP6 
simulations. The ERA5 reanalysis will be used as a reference dataset to perform downscaling 
to 0.1degrees and bias adjustment. To simulate the impact of climate change on crop yields, 
the AI-based crop model emulator needs to be complemented by mechanistic crop model 
simulations, especially when it comes to assessment of adaptation options on crop 
productivity. Therefore, a twofold process is planned: (i) ECroPS model will be used to 
simulate the impact of climate change on crop yields in the future and (ii) the AI based crop 
model emulator will be used to study the impact of climate change on crop yields under 
assumption that no agricultural practices would change in the future. This will give us useful 
insights especially on the impact of concurrent extremes and compound events in the future 
on crop productivity in the case no adaptation would take place. 

  

 
9 Loukos H., Pechlivanidis, I., Xoplaki, E. Ceglar, A., Ficchi, A., Cavicchia, L., Alvarez-Castro, C. 2022. Data provision 

for EU climate services. Milestone 3 of the CLINT project 
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ANNEX 

1. MODEL FIT RESULTS PER COUNTRY FOR SECTION 4.2 

 

 
Annex Figure 1 Results from XGBoost and Neural Networks for Austria using daily data for Austria 
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Annex Figure 2 Results from XGBoost and Neural Networks for Austria using daily data for Belgium 
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Annex Figure 3 Results from XGBoost and Neural Networks for Austria using daily data for Bulgaria 
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Annex Figure 4 Results from XGBoost and Neural Networks for Austria using daily data for Croatia 
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Annex Figure 5 Results from XGBoost and Neural Networks for Austria using daily data for Check Republic 
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Annex Figure 6 Results from XGBoost and Neural Networks for Austria using daily data for Finland 
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Annex Figure 7 Results from XGBoost and Neural Networks for Austria using daily data for France 
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Annex Figure 8 Results from XGBoost and Neural Networks for Austria using daily data for Germany 
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Annex Figure 9 Results from XGBoost and Neural Networks for Austria using daily data for Hungary 
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Annex Figure 10 Results from XGBoost and Neural Networks for Austria using daily data for Ireland 
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Annex Figure 11 Results from XGBoost and Neural Networks for Austria using daily data for Italy 
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Annex Figure 12 Results from XGBoost and Neural Networks for Austria using daily data for Latvia 
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Annex Figure 13 Results from XGBoost and Neural Networks for Austria using daily data for Poland 
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Annex Figure 14 Results from XGBoost and Neural Networks for Austria using daily data for Portugal 
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Annex Figure 15 Results from XGBoost and Neural Networks for Austria using daily data for Romania 
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Annex Figure 16 Results from XGBoost and Neural Networks for Austria using daily data for Slovakia 

 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

121  

 

 

Annex Figure 17 Results from XGBoost and Neural Networks for Austria using daily data for Slovenia 
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Annex Figure 18 Results from XGBoost and Neural Networks for Austria using daily data for Spain 

 

 

 


