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EXECUTIVE SUMMARY 

This report reviews existing knowledge, data and models for physical causation analysis for 
different climate extremes, including concurrent extremes. It also includes results from the CLINT 
project regarding the analysis of climate model simulations from the CMIP6 repository targeting 
the causal links between sea-surface temperatures and some types of extreme events. We also 
include in the analysis a new simulation with a long, high-resolution regional atmospheric model 
for Europe covering the 20th and 21st centuries, which CLINT partners can use as a sort of long, 
highly resolved European reanalysis-like data set to pre-train machine learning models and analyse 
changes in extreme events.  

The review of the existing literature identifies several causal factors for European climate 
extremes. For the winter season, the state of the polar vortex, including Sudden Stratospheric 
warming events, arises as one important factor. It is related to the North Atlantic Oscillation, 
precipitation anomalies in Southern Europe and cold spells in Northern Europe. However, the 
origins of the variability of the polar vortex are more uncertain. Similarly, the impact of sea-surface 
temperatures and sea-ice anomalies on atmospheric circulation and extreme events is still 
debated. This impact can be critical because of ongoing ocean warming and rapid changes in the 
cryosphere. Soil moisture appears as an important boundary condition for summer extreme 
temperatures and heat waves, but persistent atmospheric circulation forcing is necessary, which 
makes their prediction at seasonal and longer timescales challenging.  

Concurrent extremes have recently been redefined in terms of compounded impacts, and 
therefore, they deviate from the purely physical definition of EE. In general, concurrent extremes 
are usually linked to persistent (over weeks) anomalous conditions. A paramount example is 
atmospheric blocking, which imprints temperature, causing HW (if occurring in summer), 
precipitation, and soil moisture (if occurring in the wet season). The interconnection within a 
concurrent event can occur across time and space, as catchment memory distributes the impact 
of the EE across different geographical and societal compartments at different times.  

The analysis of the CMIP6 atmospheric simulations indicates that, in general, the impact of sea-
surface temperatures is relatively weak, but it also shows that they offer some predictability for 
winter precipitation and summer temperature anomalies. A more focused analysis of the CLINT 
uses the case of the Iberian meteorological drought to show that sea-surface temperature 
anomalies in the Tropical Pacific are partly responsible for multiannual sequences of extreme dry 
winters in the Iberian Peninsula during the 20th century. El Niño-Southern Oscillation events in the 
Tropical Pacific also impact Lake Como precipitation, another CLINT use case.        
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1. INTRODUCTION 

1.1 The role of climate simulations in causality analysis 

Identifying causal relationships between Extreme Events (EE) and their physical drivers is relevant 

for supporting the results obtained from the data analysis based on machine learning (ML) 

algorithms. Since those ML algorithms are usually purely data-driven, they can reveal statistical 

links that are not necessarily physically consistent. As no controlled experiments can be conducted 

with the climate system, climate simulations play a central role in unambiguously identifying 

causes and effects. A combination of climate simulations and the results obtained from ML can 

provide a much more robust picture of the causal relationships and ensure better detection, 

prediction, and future projections of EE.  The focus of WP4 within CLINT lies in combining the two 

lines of evidence provided by climate models and ML analysis to ascertain links between EE and 

their drivers, going beyond the pure identification of their mutual correlations. In this deliverable, 

we focus on the climate modelling part, with some indications about the implications for the ML 

causality analysis in CLINT. This AI-enhanced causality analysis will be summarised in Deliverable 

4.2 later in the project. 

This CLINT climate-model-based causality analysis includes data from free-running, fully coupled 

atmosphere-ocean-vegetation simulations. These simulations statistically mimic the behaviour of 

the climate system. The causal relationships between simulated EE and their drivers can be 

analysed by applying the same causality algorithms to observational data sets. The advantage is 

that the sample size can be expanded with the only limitation of computing power (e.g. climate 

simulations of several millennia are not unusual). In addition, to mimic laboratory experiments, we 

can carry out simulations with only part of the climate system allowed to vary freely (e.g., the 

atmosphere), and other parts of the system prescribed (e.g. sea-surface temperatures). It also 

allows us to distinguish between driver factors (the prescribed boundary conditions) and the 

driven variables (the model response to the drivers). Hence, the causality analysis is more 

straightforward than a fully coupled system.  A disadvantage of these experiments is that, although 

climate models have attained high realism, they differ from the real world. Therefore, the 

conclusions derived from these numerical experiments must be considered carefully. This 

distinction makes using different climate models necessary to exclude possible artefacts arising in 

a single climate model. It also warns of the over-interpretation of causal relationships derived from 

the data obtained in a single simulation with a single climate model. 

In the climatological context, causal relationships between EE and their drivers depend on the 

timescale and can broadly be classified as immediate and background causality. For instance, 

predicting heat waves (HWs) at seasonal time scales may be related to specific circulation patterns 

favouring warm air masses' advection to a particular region (immediate causality). However, due 

to anthropogenic climate change, Europe has witnessed a significant increase in average 

temperatures over the last century. HWs are becoming more frequent and intense due to the 
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mean temperature increase, and not necessarily due to changes in atmospheric circulation 

patterns that are the immediate cause of HWs (background causality). A combined situation in 

which the base temperature levels and the frequency or intensity of circulation patterns change 

with climate change is possible. The term causality, therefore, may bear a different meaning, 

depending on the context. When a HW is favoured by generally higher mean temperatures or a 

generally increased probability of a particular synoptic circulation pattern (background causality), 

causality is denoted attribution (to anthropogenic climate change), which is the focus of WP5 

within CLINT. 

1.2 Causality of compound events and concurrent EEs 

The current definition of compound events (CE) involves their physical and societal impacts, i.e. it 

goes beyond the pure realm of climate dynamics. Under this definition, the analysis based on 

climate simulations is curtailed, as climate models often do not include all physical impacts 

(flooding) and certainly no societal impacts. However, climate simulations can provide valuable 

insights into the physical mechanisms and links between EE that may simultaneously occur and be 

physically connected. For instance, two EE, or two aspects of one EE taken in isolation, would not 

be considered exceptional and can, in conjunction, genuinely become a threatening EE regarding 

its impacts. The most apparent example is the connection between HW and droughts. 

While many types of single extreme events have been associated with strong impacts on socio-

economic sectors (e.g. Zampieri et al., 2017; Zscheischler and Fischer, 2020; Hao et al., 2022), the 

combination(s) of such events can further amplify these impacts in a non-linear manner as many 

systems have a degree of resilience to single extreme events but are unable to cope with multiple 

stressors (Leonard et al., 2014; Hao et al., 2018; Zscheischler et al., 2018; Zscheischler and Fischer, 

2020; Zhang et al., 2021; Hao et al., 2022; Xoplaki et al., 2023). Ecosystems may not be directly 

adapted to the co-variability of temperature and precipitation, so bivariate anomalies can have 

significant impacts without temperature or precipitation being extreme in the univariate sense 

(Mahony and Cannon, 2018). An example from the food sector is the so-called false spring events. 

They occur when wet and warm conditions prevail in winter, triggering unusually early plant 

growth, which is then damaged by a frost event or severe drought the following spring, resulting 

in yield losses (Allstadt et al., 2015; Chamberlain et al., 2019). Wet and warm conditions in hot 

regions can also be particularly critical for human health, as the ability to release heat through 

evaporative cooling is impeded, disrupting the human body's thermoregulatory system (Davis et 

al., 2016; Russo et al., 2017). Both types of events are expected to occur even more frequently in 

the future due to climate change (Ault et al., 2013; IPCC, 2021). 

The observation that high impacts may be caused by a combination of potentially non-extreme 

climate events fostered studying compound events (CEs). The Intergovernmental Panel on Climate 

Change (IPCC; Seneviratne et al., 2012) defines CEs as (1) two or more extreme EE occurring 

simultaneously or successively, (2) a combination of EE with underlying conditions that amplify the 
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impact of the events, or (3) a combination of EE that are not themselves extremes but lead to an 

EE or extreme impact when combined. Zscheischler et al. (2018) further defined CEs as 

combinations of multiple drivers,  hazards and/or events that are individually not necessarily EE 

but that, in combination, often lead to disproportionate impacts on people and ecosystems 

(Seneviratne et al., 2012; Leonard et al., 2014; Caldeira et al., 2015). Considering that many socio-

economic sectors are affected by weather and climate conditions, an appropriate risk assessment 

should be based on the multivariate nature of these types of events (Raymond et al., 2020), as the 

risk and associated return periods can be significantly underestimated if only a single event is 

studied (Wahl et al., 2015; Zscheischler and Seneviratne, 2017). As many compound events are 

closely linked to anthropogenic forcing (IPCC, 2021), studying and understanding them is becoming 

increasingly important. 

1.3 Causality, Artificial Intelligence, and Climate Simulations  

Artificial intelligence has recently gained popularity in climate science (e.g. Reichstein et al., 2019) 

due to the ability of algorithms to learn from data with highly complex, nonlinear relationships 

that can also be useful for detecting and predicting extreme events. Deep learning methods, in 

particular, have recently been employed to learn theoretically arbitrary nonlinear functions or 

relationships (Efron and Hastie, 2016; Goodfellow et al., 2016). However, many of these methods 

have been criticised as black boxes, particularly in climate, as they do not necessarily reflect the 

physical relationships (McGovern et al., 2019; Kashinath et al., 2021; Schultz et al., 2021), and the 

learned relationships may appear correct for the wrong reasons (Lazer et al., 2014; Lapushkin et 

al., 2019).  

Causal methods enable the study of the interconnectivity of high-dimensional systems, such as 

climate, and provide an adequate way to identify causal relationships between climate variables 

that can be more robust than correlation- or regression-based techniques (Runge et al., 2019).  

One limitation in the causality and attribution of EE is the limited sample size in the observational 

record, as, by definition, EE are those that deviate from the ‘norm’ and are viewed as exceptional. 

Climate simulations may help provide a much larger sample size of ‘modelled extremes’. Although 

climate models have biases, climate simulations can help identify which causal links are more likely 

in the real world. They also provide a test bed to assess the reliability of ML algorithms in controlled 

conditions.  Deliverable 4.2 will go into deeper detail on ML-enhanced causality analyses and the 

interaction between simulations and ML.          
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2. DRIVERS OF EXTREMES AND COMPOUND EVENTS FROM THE 
PERSPECTIVE OF CLIMATE MODELLING 

Table 1 includes potential candidates with a causal link to EE compiled from the published 
literature, and our research carried out in CLINT (e.g. Deliverable 3.1 EE detection). Note that here 
and elsewhere in this report, drought is constrained to denote only meteorological drought unless 
otherwise specified. The mechanisms that link these large-scale drivers to particular extremes are 
detailed below. 
 
Table 1 - Potential causal predictors for CLINT EE and their mechanisms.   

Potential Causal Predictor Target Mechanism 

Extratropical sea-surface-
temperature 

Heatwaves 
Advection of warm air 
masses 

(West) Mediterranean sea-
surface temperatures 

Southern European heatwaves, 
summer drought 

Advection of warm air 
masses 

Tropical Atlantic sea-surface 
temperatures 

Winter meteorological droughts 
Impact on the winter 
North Atlantic Oscillation 

Stratospheric Polar vortex 
Winter meteorological  droughts 
 

Impact on the winter 
North Atlantic Oscillation 

Arctic sea-ice cover Winter Cold spells 
Weakening of polar 
vortex 

Planetary wave activity Winter meteorological droughts 
Impact on winter North 
Atlantic Oscillation 

Atlantic Meridional 
Overturning Circulation 

Tropical cyclones 

Modification of the 
tropical meridional sea 
surface temperature 
gradient 

North Atlantic Subpolar Gyre 
Multiannual Central European 
meteorological droughts 

Atmospheric blocking in 
response to cold North 
Atlantic surface 

Spring soil moisture Summer heatwaves 
Modification of 
evaporative surface 
cooling 

 

2.1 Oceanic predictors 

The temperature of the ocean can have an impact on large-scale atmospheric circulation and 

evaporation from the ocean. This latter effect is well established, and higher SSTs should, in 
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principle, enhance moisture advection, particularly in coastal areas, leading to fewer droughts and 

localised flooding. The impact on the extratropical atmospheric circulation is more controversial 

since its internal variability is large, even with constant boundary conditions. Identifying a strong 

signal in the mean circulation in observations and simulations has been difficult. Nevertheless, any 

possible impact on EE would increase with the magnitude of SSTs. For example, it has been 

suggested that the 2003 European HW may have been associated with anomalously warm SSTs in 

the Indian Ocean and Mediterranean, influencing geopotential height and precipitation anomalies 

across Europe (Black and Sutton, 2006). 

In long climate simulations, North Atlantic SSTs at mid-latitudes have been linked to HW  (Duchez 

et al., 2016) and multi-decadal droughts over Europe (Ionita et al., 2021b). At these long-time 

scales, North Atlantic SSts are modulated by the Atlantic Meridional Overturning Circulation 

(AMOC), which transports warmer water masses from the tropics towards the polar latitudes. A 

more intense AMOC reduces the meridional temperature gradient in the North Atlantic basin. The 

AMOC index, usually defined as the maximum of the zonally averaged meridional stream function, 

is a potential causal predictor not only of European meteorological droughts in the continent and 

the frequency and intensity of hurricanes in the Atlantic basin, some of which may transition into 

extratropical storms. Whether or not the AMOC influences the number of storms or their intensity 

is still an open question. Although the observations do not suggest a clear statistical connection, 

ML algorithms could be more capable of identifying this link. A significant drawback is the short 

length of the observational record of the AMOC, which just covers a few decades. However, this 

limitation can be overcome when analysing climate model simulations. 

Tropical Atlantic SSTs have also been shown to impact the North Atlantic Oscillation (NAO) state 

at seasonal time scales (Scaife et al., 2016). This result was obtained with one climate model but 

has yet to be confirmed using other models. Since tropical SSTs in the Pacific basin impact droughts 

and pluvials in the Western US, a similar link may also occur in the Atlantic basin. However, the 

Pacific basin is dominated by El Niño Southern Oscillation (ENSO), a powerful coupled mode of 

internal variability with global implications, whereas 'Atlantic ENSO' has a much more constrained 

spatial impact (Lübbecke et al., 2018). Tropical Atlantic SSTs should be considered a potential 

predictor of droughts and HWs due to their possible impact on the NAO. 

The North Atlantic Subpolar Gyre (NASG) modulates the strength of the oceanic circulation in the 

subpolar region of the North Atlantic, which influences SSTs. A warmer NASG has been linked to 

colder and wetter summer temperatures in northern Europe and higher temperatures in the 

Mediterranean region (Hermanson et al., 2014). At longer timescales, climate change may also 

cause a weakening of the NASG and the AMOC (the so-called warming hole, Ghosh et al., 2023). 

The NASG should be included as a potential causal predictor of the intensity of HWs in Northern 

Europe.  
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The preliminary analysis conducted within CLINT has been based on the AMIP-type simulations of 

the CMIP6 project (MPI-ESM-2 with two different resolutions, CESM2 and EC-Eartth3). Observed 

SSTs drive these atmosphere-only simulations and cover, in general, the last decades of the 20th 

century - some models cover the period starting in 1950, others as late as 1979. Almost all models 

participating in CMIP6 provide an ensemble of AMIP simulations, where each simulation has been 

started with different initial atmospheric conditions. A strong impact of the SSTs on EE should be 

reflected in a simultaneous occurrence of those EE across all, or almost all, members of the same 

model ensemble. 

2.2 Arctic sea-ice cover 

Sea-ice cover strongly modulates the heat fluxes between the atmosphere and the ocean. An 

anomalous reduction of sea-ice cover in the autumn season in the Nordic Seas increases this 

upward heat flux and can potentially impact the atmospheric circulation. There has been a lively 

debate about the relevance of this mechanism for some cold spells (Barnes and Screen, 2015). 

There is a lively debate as to whether anthropogenically induced retreat of Arctic sea ice cover 

favours a wavier meridional flow in winter and, hence, a higher frequency of cold spells in some 

regions of the Northern Hemisphere, such as the Euro-Asian sector.  Whereas some authors point 

to a clear physical link between autumn sea-ice cover and the breakdown of the boreal polar vortex 

in winter (Francis et al., 2012), modelling studies prescribing reduced sea-ice cover reflect minor 

responses in the atmospheric circulation, which would not be able to significantly impact air 

temperatures over the continent (Cohen et al., 2020). The question is still debated, but sea-ice 

cover should be regarded as a potential predictor of EE. Current consensus indicates that the 

influence of Arctic sea-ice cover changes on atmospheric circulation and EE is physically plausible 

but undetectable in the observational record, suggesting that the forcing is still weak compared to 

the internal variability or that other drivers mask the signal. 

Note that cold spells are not the focus of CLINT and will not be explicitly considered in this 

deliverable. However, winter atmospheric circulation is related to meteorological episodes in 

Southern Europe (see next section). Hence, the impact of Arctic sea-ice cover anomalies on the 

recent drought periods experienced in this region cannot be ruled out. 

2.3 Atmospheric circulation 

Many types of EE are intrinsically triggered or at least modulated by the atmospheric circulation. 

For instance, persistent blocking highs, subtropical highs and atmospheric stagnation events are 

typically atmospheric patterns associated with warm and dry conditions (Zhang et al., 2021). High-

pressure systems increase shortwave radiation and reduce moist air inflow underneath, thus 

favouring HW and meteorological drought conditions (Dong et al., 2018; Schumacher et al., 2019), 

while stagnation events prevent ventilation (movement of air masses) and deposition of 

atmospheric pollutants (Horton et al., 2014; Zou et al., 2020; Garrido-Pérez et al., 2018). For 

example, blocking can lead to a shift in storm tracks and meteorological drought conditions in 
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winter and high-pressure systems and HW episodes in summer (Kautz et al., 2022). In the Northern 

Hemisphere summer, warm and dry conditions can also be associated with amplified quasi-

stationary Rossby wave patterns (e.g. Kornhuber et al., 2020), allowing CE to occur through the 

hemisphere, potentially yielding global impacts. In Europe, such conditions are associated with  

Rossby wave trains propagating from the United States (Ionita et al., 2021a) and to preferred 

stationary jet stream positions  (Duchez et al., 2016)  and double jets (e.g. Rousi et al., 2022). 

Focusing on Europe, changes in the atmospheric circulation over the North Atlantic can impact the 

distribution of precipitation. For example, it is very well known that positive phases of the NAO 

favour drier conditions in southern Europe and the Mediterranean and wetter conditions in 

northern Europe, which is also reflected in drought indicators (Hao et al. 2019b; Vicente-Serrano 

et al., 2011). One of Southern Europe's most intense drought episodes occurred in 1991-1992. This 

multi-year drought was linked to a period of intensifying NAO that culminated in an unusually 

strong and persistent positive NAO phase. The origins of the multi-annual variability of the NAO 

remain obscure. Still, its understanding will undoubtedly be one of Europe's most valuable results 

for long-term drought prediction. Droughts and HW in Europe have also been shown to be 

connected to these types of phenomena in Australia (Toreti et al., 2019), with a large-scale 

mechanism being the Arctic Oscillation potentially modulating connections between the North 

Pacific Oscillation and the ENSO (Chen et al., 2013). 

The NAO displays large internal variability at sub-seasonal and seasonal time scales, but some 

potentially skilful predictors have been identified. During the so-called Stratospheric Sudden 

Warming events (SSW) the state of the stratospheric polar vortex (e.g. Scaife et al., 2015, usually 

characterised by strong westerly winds in the lower and upper troposphere, breaks down. This 

signal propagates downward to tropospheric levels and can persist for a few weeks, giving rise to 

cold weather outbreaks in northern Europe and wet winters in Southern Europe - a typical negative 

NAO pattern. A quantitative prediction of this chain of events is possible with current numerical 

weather prediction models. SSWs represent one of the primary sources of subseasonal-to-

seasonal predictability in the northern winter extratropics (e.g. Domeisen et al., 2022), but the 

uncertainty at these rather long lead times remains large. Moreover, the skill is realised only when 

SSWs are already included in the initial conditions of the S2S forecast system (Merryfield et al., 

2020;). Current challenges are thus to anticipate the SSW and its associated impacts ML methods 

could contribute to reducing those uncertainties in the otherwise well-established causal chain of 

events. 

In this sense, a key driver of the stratospheric polar vortex in general, and SSW in particular, is the 

activity of vertically propagating planetary waves (PW) of wavenumber 1, 2 and 3. These 

tropospheric waves originate near the surface and propagate vertically up to the stratosphere, 

where they break, weakening the polar vortex (e.g. Matsuno 1971).  Strong enough PW can reverse 

the stratospheric westerlies, giving rise to SSW events (Domeisen et al., 2020), although SSW can 

also occur without tropospheric forcing (de la Cámara et al., 2019) Therefore, the PW activity in 
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the late autumn or early winter represents an additional predictor of the subsequent state of the 

NAO due to its influence on the polar vortex and SSW. 

Another large-scale driver of HW and droughts is the Scandinavian teleconnection pattern, which 

can result in reduced precipitation over northeastern Europe during its positive phase (Bueh and 

Nakamura 2007). Another important mode of variability linked to European EE is the Eastern 

Mediterranean Pattern (EMP): This mode of variability over the eastern Mediterranean Sea has 

been linked to variations in temperature, precipitation, and cyclone activity over southern and 

eastern Europe regions. Positive phases of the EMP are associated with warmer and drier 

conditions, while negative phases are associated with cooler and wetter conditions. This link is 

primarily simultaneous at monthly time scales, and as such, the index does not provide direct 

predictability of droughts or HWs. However, the induced precipitation anomalies impact soil 

moisture, which can be a relevant causal predictor of a HW (see next section). The EMP is only 

partly related to the NAO due to its spatial fingerprint, which partially overlaps with the NAO dipole 

(Hatzaki et al., 2007). 

The East Atlantic or East Atlantic/Western Russia (EA/WR) pattern has also been linked to 

variations in temperature and precipitation in Europe. In principle, it has a different circulation 

pattern from the NAO, and as for the EMP, its role in modulating soil moisture in the subsequent 

seasons needs to be considered.  

Atmospheric circulation anomalies in remote regions can also influence European EE (see also 

Section 2.5). For example, in addition to ENSO, the enhanced predictability of the 2015-2016 

winter by the Met Office extended prediction system was attributed to the state of the polar night 

vortex and the Quasi-Biennial Oscillation (QBO), which is a natural quasi-oscillation in the direction 

of tropical lower stratospheric winds. Therefore, these three predictors (ENSO, polar night index, 

and QBO) should also be considered by the ML prediction algorithms targeting winter droughts in 

Southern Europe.  

An important class of CE is combinations of wet and warm conditions, which can induce false spring 

events relevant to agriculture and health through humid HW (see section 1.2). Wet and warm 

conditions can occur due to irrigated agricultural land in warm and humid regions, where the 

moistening effect of irrigation dominates, leading to increased wet bulb temperatures (Xue and 

Eltahir, 2015; Raymond et al., 2021). Other studies have linked such conditions to moist advection 

of warm air that may originate from tropical areas (Katsafados et al., 2014; Freychet et al., 2017; 

Russo et al., 2017). However, recent reviews (Raymond et al., 2021; Zhang et al., 2021) conclude 

that the drivers still need to be better understood. 

2.4 Soil moisture 

As mentioned in the previous section, atmospheric circulation patterns may not be predictable on 

subseasonal-to-seasonal time scales. However, if they display a strong anomaly in one season, 
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mostly spring, they can influence the soil's state and evolution in the following seasons, promoting 

summer soil moisture deficits and land-atmosphere feedback (Miralles et al., 2019). The state of 

the land surface, including soil moisture, vegetation cover, and surface albedo, can impact the 

energy and water balance in the atmosphere.  

Soil moisture deficits reduce evapotranspiration, resulting in sensible local heat (Barriopedro et 

al., 2023; Domeisen et al., 2023). Furthermore, decreased evapotranspiration leads to drier air, 

reducing cloud cover and increasing shortwave radiation (Seneviratne et al., 2010). In transitional 

regions, soil moisture plays a role in the self-reinforcement of droughts. It can affect the 

atmospheric evaporative demand (AED), defined as the maximum amount of evapotranspiration 

from land surfaces if not limited by water (IPCC, 2021). During droughts, the low relative humidity, 

high air temperature and reduced cloudiness result in increased AED, which triggers soil 

evaporation and plant water consumption through transpiration (Miralles et al., 2019). 

Furthermore, plants tend to close stomata under increased water vapour deficit to avoid water 

loss, further reducing evapotranspiration and contributing to dry conditions (Massmann et al., 

2019). When combined with strong winds, these dry conditions can set the stage for flash droughts 

(Otkin et al., 2018; Zscheichler et al., 2020; Pendergrass et al., 2020). Increased AED can intensify 

agricultural and environmental droughts by further stressing crops (Willems et al., 2013; Allen et 

al., 2015; Stocker et al., 2018; Liu et al., 2020) and increasing crop water use in irrigated areas 

(García-Garizábal et al., 2014), thus also contributing to hydrological droughts (Vicente-Serrano et 

al., 2017).  In turn, AED is strongly influenced by air temperature. In particular, HWs cause AED 

increases in summer, which can thus aggravate droughts, as reported for the 2021-2022 European 

drought (Garrido-Pérez et al., 2024). Therefore,  meteorological droughts and HW tend to intensify 

each other, accelerating the resulting impacts on socio-economic sectors such as agriculture (Lesk 

et al., 2016; Zampieri et al., 2017; Toreti et al., 2019b), As a consequence, soil moisture is 

considered an important modulator of many of the considered EE within CLINT. 

This reinforcing cycle can also be present on longer timescales: For example, suppose a region 

experiences a persistent high-pressure pattern and dry weather conditions during spring. This can 

reduce soil moisture and increase the likelihood of HW the following summer. A prominent 

example was the HW in Western Europe in the summers of 2003 and 2010 (Seneviratne et al., 

2010; Fischer et al.,2007; García-Herrera et al., 2019; Barriopedro et al., 2011; van Garderen et al., 

2021). A dry spring left the soils in a water deficit, curtailing their evaporative cooling in summer. 

A very stable high-pressure situation during summer led to two of the strongest European HW in 

recent decades (Barriopedro et al., 2011). This mechanism has been used to retrospectively predict 

European HWs with some success (Domeisen et al., 2023). 

Soil moisture may also feed back onto the atmospheric circulation if these soil moisture anomalies 

reinforce the circulation pattern anomalies that gave rise to soil moisture anomalies in the first 

place. One example is the state of soil moisture during the autumn months. Dry soil conditions in 
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the autumn can reduce the moisture available for vegetation and groundwater recharge during 

winter, increasing the likelihood of winter drought (Vicente-Serrano et al., 2011). 

While the discussion above demonstrates that the climate can affect soil moisture, human 

intervention may also influence it. For instance, land cover changes (e.g. deforestation; Lejeune et 

al., 2018) and agricultural management (e.g. irrigation Thiery et al., 2020) can affect the 

characteristics of HW. For example, irrigation enhances evapotranspiration, which can cool the 

surface in the short term (Teuling et al., 2010; Lejeune et al., 2018). Long-term cooling can also be 

induced by certain forest types or trees, such as deciduous trees, due to their higher albedo and 

stomatal conductance (Schwaab et al., 2020). 

2.5 Atmosphere-ocean coupled modes of natural variability 

Internal climate variability can impact the likelihood and intensity of many EE. Much of these 

internal variations can be explained by atmosphere-ocean coupled modes of variability. For 

instance, hot and dry conditions are favoured during the positive phase of  ENSO, as shown, for 

example, in South Africa (Hao et al., 2019a), South America (Cai et al., 2020) and the USA (Hoerling 

et al., 2013). ENSO and the Indian Ocean Dipole (IOD) have also been shown to influence such 

events in Australia (Reddy et al., 2022). The positive phase of the IOD could also promote warm 

and dry conditions in Europe (Saji and Yamagat 2003). Still, the discussion of the physical links 

remains open (Steptoe et al., 2018). In addition, the major modes of variability in European climate 

(e.g. NAO) favour extreme winter precipitation in central and northern Europe and but hinder 

extreme precipitation in southern Europe (Hao et al., 2019b). However, these connections can be 

strongly influenced by multidecadal variability and the state of other large-scale climate drivers 

(Willems, 2013).   

Often, the associations of these teleconnections with droughts and HW have been studied 

individually, but they may be strengthened if the modes of variability are in phase. For example, it 

has been shown that when the Pacific Decadal Oscillation (PDO) and ENSO are in phase,  drought 

events appear to be enhanced in many regions of the world (Ngyuen et al., 2021 and that positive 

phases of IOD and ENSO favour large-scale severe droughts across the Australian continent 

(Steptoe et al., 2018). Furthermore, some authors suggest that the effect of ENSO may be more 

visible in Europe when the NAO is weak and the PDO is in a positive phase (Zanchettin et al., 2008).  

Some studies indicated that the relationships between the climate modes of variability and the EE 

can be non-stationary, meaning their dependence can vary over time (Steptoe et al., 2018). For 

example, Lopez-Parages et al. (2015) discuss that the links between ENSO and precipitation 

anomalies in the Euro-Mediterranean area are non-stationary as they depend on changes in the 

zonal mean upper-level flow, which then affects the propagation of air from the tropics to the 

extratropics. Furthermore, besides long-term trends, the global warming signal also affects the 

variability of many climate modes contributing to EE (Horton et al., 2015). It could explain some of 

these observed non-stationarities. 
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Focussing on the winter ENSO signal in Europe, the primary causal mechanism is the generation of 

Rossby waves by ENSO-induced precipitation precipitation anomalies in the Tropical Pacific, which 

propagate over the Northern Hemisphere, disturbing the usual circulation patterns (López-Parages 

and Rodriguez-Fonseca, 2012). The impact of ENSO was partly responsible for a successful hindcast 

(post-hoc) prediction of the European winter in 2015-2016 by the Met Office extended prediction 

system. 

2.6 Anthropogenic forcings 

As global temperatures rise, many types of EE are expected to increase in frequency and severity, 

so human forcing can be considered a single driver (IPCC, 2021). For warm and dry events, their 

frequency is expected to increase (Zscheischler and Seneviratne, 2017; Alizadeh et al., 2020; Vogel 

et al., 2020; Meng et al., 2022). The main driver of this phenomenon is the enhancement of HW 

due to rising global temperatures, which implies that hot and dry conditions will become more 

frequent in the future (IPCC, 2021). For example, record-breaking summers such as the summer of 

2018 in central Europe could become the norm by the mid-21st century (Toreti et al., 2019a) and 

could not have occurred without human influence (Vogel et al., 2019). 

Humid HW are also projected to become more frequent (Russo et al., 2017; Meng et al., 2022; 

Barriopedro et al., 2023), which can be critical for human health in some regions. Indeed, it is 

discussed that by 2100, the 6-hour wet bulb temperature in tropical and subtropical areas may 

rise above 30 °C and possibly even exceed 35 °C, which is considered a critical threshold for human 

survival (Pal and Eltahir, 2016). 

For tropical cyclones, identifying trends remains a challenge due to the temporal length and quality 

of the data, and the IPCC (2021) concluded that confidence in long-term trends is generally low 

due to these issues. 
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3. IMPACT OF SEA-SURFACE TEMPERATURES ON MEAN SEASONAL 
CLIMATE USING SIMULATIONS FROM THE ATMOSPHERIC MODEL 
INTERCOMPARISON PROJECT 

As reviewed in section 2.1, SSTs are considered one of the most obvious external drivers of 

atmospheric circulation and, therefore, possibly also of EE caused by anomalous weather patterns. 

Before embarking on a series of sensitivity experiments with coupled and regional climate models, 

WP4 of CLINT analysed the simulations with atmosphere-only global models available in the 

Climate Model Intercomparison Project version 6 (CMIP6, Eyring et al., 2016). These are the so-

called AMIP-type simulations (Atmospheric Model Intercomparison Project). Almost all models 

participating in CMIP6 provide an ensemble of AMIP simulations, where each simulation has been 

started with different initial atmospheric conditions. These atmospheric simulations share the 

observed SST and sea-ice cover as common boundary conditions. The AMIP simulations considered 

here also share external forcings, including the concentration of greenhouse gases and volcanic 

eruptions. The greenhouse gas concentrations are responsible for most observed and simulated 

temperature trends but cannot drive interannual or decadal variability of the atmospheric 

circulation. If we do not consider volcanic eruptions, any correlation of interannual climate 

variability (or any other measure of synchronous behaviour) present in the set of simulations can 

be attributed to the effect of the commonly prescribed SST. 

Similarly, a robust (physically based) impact of SST on EE should be reflected in a simultaneous 

occurrence of EE across all, or almost all, members of the same model ensemble. Therefore, 

identifying commonalities in the time evolution of the simulated atmospheric circulation and the 

occurrence of EE across all or most simulations can provide hints about the causal role of observed 

SSTs. Should atmospheric anomalies or EE occur simultaneously across simulations, they could be 

used as predictors for those types of EE.  These results can guide the more complex sensitivity 

simulations and ML analysis with coupled climate models foreseen later in the project.  

An advantage of this analysis is that it automatically includes any temporal lag between SSTs and 

the target variable, as the temporal lag should also be the same for all ensemble members.  

However, a drawback is that more than this analysis is needed to identify the optimal regions, 

areas, or temporal lags that should be used later in an ML-enhanced prediction scheme. This 

analysis should thus be considered as a first-step screening of the impacts of SSTs from the climate 

model perspective. 

Following this idea, we selected four climate models from the CMIP6 repository: MPI-ESM-2-LR, 

MPI-ESM-2-HR, CESM and EC-Earth (Table 2). A full analysis will include all climate simulations in 

the AMIP category. Here, the analysis is restricted, as a first step, to models with a high spatial 

resolution among the CMIP6 models (needed to represent EE as realistically as possible), and the 

availability of several simulations with the same model (i.e. an ensemble with members-only 
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differing in their initial conditions). The relatively high spatial resolution is about 1 geographical 

degree, corresponding to about 70 km at mid-latitudes. This is still a coarse resolution to represent 

some of the EE in the focus of CLINT, which should be kept in mind. 

Nevertheless, the climate models produce their own EE- generally tamer than the observed ones 

- but still realistic enough to explore the impact of large-scale drivers. To address issues derived 

from the limited spatial resolution, we have also completed one regional simulation for 1900-2010 

with the regional atmospheric model Consortium for small-scale modelling-CLimate Model (CCLM, 

Steger et al., 2020) over the Euro-Cordex domain (Vautard et al., 2021)), driven at the boundaries 

by the ERA20C reanalysis (Poli et al.,2016). This simulation will be the focus of Section 6. 

The second criterion for selecting these four CMIP6 models is the availability of an ensemble of 

simulations started with different initial conditions. Analysing those ensembles will allow us to 

filter internal variability. At the same time, using a multi-model ensemble allows us to detect 

robust signals, addressing the structural differences between different models that could, in 

theory, blur the identification of the impacts of SSTs. The ensemble size varies among the four 

climate models, ranging between 3 for both MPI-ESM model versions and 10 for CESM2.  The 

period covered by the simulations also varies across models, with CESM2 providing the longest 

simulations (Table 2). All simulations cover the last decades of the 20th century (since 1979), but 

some models start in 1950. 

 
Table 2. Some technical characteristics of the AMIP simulation ensembles used in the analysis of SST 
causality of EE. 

Model 
Average Spatial resolution 

 latitude x  longitude, degrees 
Number of 
ensembles 

Period 

MPI-ESM-2-LR 1.875   x  1.875 3 1979-2014 

MPI-ESM-2-HR 1.875   x  1.875 3 1979-2014 

EC-Earth-3 0.70     x   0.70 6 
1979-2017 

(here truncated at 2014) 

CESM2 0.937   x   1.25 10 1950-2014 

 
The analysis was focused first on the seasonal mean atmospheric circulation of the Northern 

Hemisphere, including the winter (December to February) sea-level pressure, winter and summer 

(June to August) precipitation, and summer temperature as target variables. This choice of 

variables was dictated by the interest in the Mediterranean and Central European droughts, which 

usually occur during winter and summer, respectively. Anomalies in atmospheric circulation 

partially drive both phenomena and HW (Barriopedro et al., 2023).  
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An SST strong impact on EE drivers should be reflected in simultaneous variations of those driving 

variables (atmospheric circulation, precipitation and air temperature) across the same model 

ensemble members as a measure of synchronous evolution. The commonality metric across 

simulations for any given variable was defined as the linear correlation at the grid-cell level 

between all possible pairs of simulations. For instance, focusing on the climate model MPI-ESM-2-

LR, which provides three simulations, the following maps display the mean of the grid-cell 

correlation between simulations 1 and 2, 2 and 3 and 1 and 3, similarly for all other three models.  

The results obtained in 2023 indicate that SSTs modulate the atmospheric circulation in tropical 

regions. However, their imprint on mid-latitudes is rather small and restricted to some coastal 

areas, as illustrated in Figures 3.1-3.3, in the following subsections. 

3.1 Sea-level pressure  

All four models display a very similar spatial pattern of commonality for boreal winter sea-level 

pressure (Figure 3.1), with large values in the Tropical Atlantic (the simulations are global, but here, 

only the Atlantic-European-African sector is displayed). It should be noted that this analysis 

captures any SST impact independently of any lagged response of the atmospheric circulation to 

SST, as this potential lag should be the same across all simulations of an ensemble. This confirms 

the impact of tropical SST on the tropical atmospheric circulation but sheds clear doubts on the 

impact of SST on the seasonal mean of the atmospheric circulation over Europe.  
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Figure 3.1: The commonality of winter sea-level-pressure interannual variations simulated at each model grid cell in 
an ensemble of AMIP (atmosphere-only) simulations conducted with one climate model. The boundary conditions 
are, for all simulations, the observed sea-surface temperatures in the period 1979-2017. A number of 1 indicates 
perfect synchrony, -1 is perfect anti-synchrony.    

3.2 Precipitation 

Concerning precipitation (Figure 3.2), the four models generally display a stronger temporal 

coherence among the ensemble members in winter than in summer and over the oceans than over 

land areas.  Still, there is little synchronisation between SST and winter precipitation over Europe.  

There is some divergence among the four models, with the MPI-ESM-2-LR model displaying the 

strongest commonality. For precipitation, in which the issue of model resolution becomes more 

important than SLP, the two models with higher spatial resolution (MPI-ESM-2-HR and CESM2) 

show generally weaker commonality. Therefore, although there is some impact of SST on 

precipitation that could be exploited for prediction, especially in the coastal areas, this impact is 

small in general. 

 

 
Figure 3.2 Measure of the commonality of the summer and winter precipitation interannual variations simulated at 
each model grid-cell in an ensemble of AMIP simulations,  each conducted with one climate model. The boundary 
conditions are, for all simulations, the observed SST. A number of 1 indicates perfect synchrony, -1 is perfect anti-
synchrony.  
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3.3 Air temperature 

Figure 3.3 shows the commonality of summer temperatures. As expected, the commonality is very 
high over the ocean since the ocean surface temperatures are the same in all simulations. Air 
temperature over the oceans can deviate very little from those prescribed values, which are the 
same in all simulations.  Consequently, all ensemble members produce a similar evolution of near-
surface air temperature over oceanic areas.  The analysis, however, also provides interesting 
insights since the temperature commonality is generally small over the land areas. Again, the 
model MPI-ESM-2-LR indicates a stronger impact of SSTs on air temperature in the other models, 
except in Central Europe.  
 

 
 
Figure 3.3 Measure of the commonality of the summer temperature interannual variations simulated at each model 
grid-cell in an ensemble of AMIP simulations conducted with one climate model. The boundary conditions are, for all 
simulations, the observed SST A number of 1 indicates perfect synchrony, -1 is perfect anti-synchrony.  

 
In summary, the signal of SST on the variations of mean seasonal values of SLP and precipitation 
in Europe is, from the models’ perspective, weak and mainly restricted to the tropical regions 
(SLP) or the ocean regions (precipitation). The impact on seasonal air mean temperature is very 
strong over the oceans and, in most models, is also restricted to the coastal continental areas. 
  



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 

D4.1 - Preliminary Exploitation Strategy 24 

 

4. IMPACT OF SEA-SURFACE TEMPERATURES ON EXTREME SEASONS 

The previous analysis was based on simulated monthly means (whilst a similar analysis of the 

seasonal means delivers similar results). However, the focus of CLINT lies on EE's predictability and 

causality. In this section, we modify the analysis of commonality among members of the 

simulations to focus on extreme seasons rather than the mean seasonal climate. For this purpose, 

we restrict the calculations to trimmed correlations. Essentially, only values outside a predefined 

percentile of the deviations from the seasonal mean are considered for the calculations of trimmed 

correlations. However, trimming the sample size to focus on extremes can considerably reduce the 

sample size. If the predefined quantile thresholds are, for instance, 10% and 90%, only values 

below the 10% quantile or above the 90% quantile are considered to calculate the correlation. The 

remaining 80% of the data in each series are disregarded.  

Since the extreme values in each series will not co-occur, the adequate sample size is (much) 

smaller. In the severe case where no values outside the quantile threshold co-occur any pair of 

simulations, this sample size will be zero. This would also indicate no synchrony of extremes in the 

ensemble. This situation does not occur in the present analysis, but a more sophisticated measure 

of synchroneity of extremes will be developed later in the CLINT project. 

Therefore, a compromise had to be struck between the chosen quantile thresholds and the 

available sample size. For the available AMIP-type simulations, which may typically cover 50 years 

(for some models, this period is shorter) and focusing only on a three-month season, 20% of the 

sample size amounts to 30 instances to calculate correlations. Focusing only on the quantile range 

<5%,>95% would imply a sample size of just 15 cases. Therefore, this type of analysis cannot focus 

on the very extreme seasons, say below the 1% or above the 99% quantiles. 

Another limitation is that the analysis cannot target sub-seasonal EE, like short HW, which would 

not strongly modify the seasonal mean. However, as SSTs vary slowly, their impact on sub-seasonal 

EE is likely probabilistic and not deterministic by, for instance, increasing the chances of HW 

occurrence rather than causing an EE at a specific date.   

In the previous section's figures, we include the trimmed commonality maps for the same target 

variables and discuss the differences in the seasonal mean commonality.  Here, we consider the 

quantile ranges (0-15%) for the lows and (85%-100%) for the highs extremes to retain a meaningful 

sample size. 

4.1 Air temperature 

We start with summer temperatures in Europe. Figure 4-1 shows the commonality of extremely 
low and high temperatures in the four model ensembles as before: MPI-ESM-2-LR, MPI-ESM-2-HR, 
EC-Earth-3, and CESM2.  
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Figure 4.1: Commonality of extreme (smaller than 15% or higher than 85% quantiles) summer (June-August) monthly 
mean air temperatures across each model ensemble, calculated as trimmed correlations among all pairs in an 
ensemble.  

 
Figure 4.1 indicates that the commonality varies across models but is generally similar to that 

obtained for the whole range of monthly temperatures. There is a slight tendency for this 

commonality to be larger than in the entire sample, for instance, for the model with the highest 

spatial resolution CESM2, for which the synchronous variation covers large areas of Central 

Europe. The results suggest that SST may be used as a predictor of HW in a statistical or ML model, 

although the temporal lag would need to be investigated by other methods. In general, however, 

the strongest commonalities are found closer to coastal areas, reflecting again the influence of the 

prescribed SSTs driving the simulations. 

4.2 Precipitation 

The commonality of extremely low or high winter precipitation - the other type of seasonal scale 
EE considered in CLINT is shown in Figure 4-2. 
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Figure 4.2: Commonality of extreme (smaller than 15% or higher than 85% quantiles) winter precipitation across each 
model ensemble, calculated as trimmed correlations among all pairs in an ensemble.  

 
The ensembles indicate some degree of commonality for hydrological extreme winters. Again, 

there are agreements and disagreements among the models, with the high-resolution MPI-ESM-

2-LR model diverging more strongly from the other three. The level of agreement is generally 

higher close to coastal areas and tends to diminish in continental inland regions. 

In summary, the results for hydrological and thermodynamical extremes are consistent with those 

obtained using the whole range of the target variables. From the models’ perspective, a different 

impact of SSTs during extreme seasons is distinguishable from the non-extreme seasons. For both, 

the signal of the SSTs on extreme summer temperature and winter precipitation is moderate, 

although certainly present, as the correlations across members of the simulation ensembles tend 

to be almost always positive.  

Although the method used here is based on simple linear correlations, it does not imply that the 

link between SSTs and the target variables needs to be linear. It only assumes that the impact of 

SST is similar in all ensemble members, which is a very reasonable assumption, taking into account 

that the only difference between the ensemble members is the initial conditions. 
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5. METEOROLOGICAL DROUGHT OVER THE IBERIAN PENINSULA 

The previous section concluded that the impact of SST on European seasonal extremes is weak. 
However, the possibility remains that SSTs influence specific strong events, i.e. those that have 
occurred once or only a few times in a relatively short period of analysis and, therefore, would 
have little impact on the commonality measure used in the previous section.  This section aims to 
identify the impact of SST on specific but rare drought events in the Iberian Peninsula. This analysis 
aims to provide one of the CLINT use cases (the Duero basin precipitation). 

5.1 A persistent period of dry Iberian winters 

The time series of the winter mean precipitation in the Iberian Peninsula simulated by the four 
model ensembles are displayed in Figure 5.1. All ensemble members of the two models, MPI-ESM-
2-HR and CESM2, show negative precipitation anomalies in the winters 2000-2003, also observed 
in the 20CR reanalysis (Compo et al., 2011). Other reanalysis products analysed also show a similar 
decrease in precipitation (not shown). 
  

 
Figure 5.1 Time series of winter (December-February) precipitation averaged over the Iberian Peninsula as simulated 
by four global atmospheric models 8coloured lines), in standardized units. Two models (MPI-ESM2-HR and CESM2) 
display a series of dry winters of 2000-2003 that is matched by the 20CR reanalysis (black). 
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Similarly, the 2000-2003 winters represented one of the driest periods since the middle of the 20th 

century in both the 20CR reanalysis and the two model simulations Other simulated winters are 

even drier in the simulations but do not consistently appear across all ensemble members. Here, 

we characterise the large-scale patterns that are common in the two ensembles. A more detailed 

analysis will still be carried out with very long (1000 years) preindustrial control simulations (PI-

Control) from the CMIP6. A preliminary analysis indicates that about 20 such events appear in MPI-

ESM2-HR PI-Control simulation, which will be a suitable dataset for establishing causality with ML 

algorithms. 

A more detailed version of the two models for the period 1990-2005 is displayed in Figure 5.2. The 

multiannual sequence of dry winters in the Iberian Peninsula is simulated by each ensemble 

member, suggesting that the prescribed SSTs may be partly responsible for this drought. 

 

 
Figure 5.2: The same as Figure 5.1, but for the shorter period 1990-2005. 
 

5.2 Large-scale climate patterns simultaneous with the 2000-2003 Iberian drought 

Figures 5.3 and 5.4 show the Euro-Atlantic SLP anomalies and the global SSTs for the winters of 
2000-2003, respectively. The SLP patterns simulated by the two models, MPI-ESM-2-HR and 
CESM2, display similar characteristics, although they are not identical. Both models show a cell of 
higher pressures over western Europe and the eastern Atlantic. The atmospheric circulation 
patterns resemble those associated with severe droughts over the Iberian Peninsula (e.g. García-
Herrera et al., 2019). They are thus physically consistent with the simulated drying in those winters. 
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Figure 5.3: Patterns of SLP anomalies averaged for the winters 2000-2003 in the CMIP6 AMIP simulations in the MPI-
ESM-2-HR and CESM2 ensembles. 

 
It is also relevant to investigate which pattern of global SST anomalies also appeared during those 

winters. The SST anomalies averaged over 2000-2003 for the winter and autumn (September-

November) seasons preceding the drought in Iberia are shown in Figure 5.4. The rationale for 

investigating the autumn SSTs is to explore possible predictability or persistence that may help 

identify the physical processes behind the SLP pattern. Note that the SSTs are prescribed in both 

ensembles; therefore, the SST patterns are identical. 

 

 
Figure 5.4: The observed global SST anomaly pattern averaged over the winters and autumns of 2000-2003. 
 

The global SST pattern during the dry Iberian winters is reminiscent of an El Niño event, with the 
tropical Pacific being warmer than average. However, other areas in the North Atlantic also display 
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warm anomalies that could be conducive to higher SLP over Southwestern Europe. To elucidate 
which regions is causally related to the high SLP, dedicated experiments with prescribed SSTs are 
necessary (they will be carried out within CLINT). In parallel, similar events in the coupled PI-
Control simulations will also be analysed with causal ML algorithms, as exemplified in Figure 5.5, 
by a simple composite analysis. 
 

 
Figure 5.5: Composite analysis of global SSTs for persistent dry and wet winters in the Iberian Peninsula, simulated in 
a 1000-year-long PI-Control simulation with the CESM2 global coupled model.  
 

Figure 5.5 displays the global SST patterns associated with multiannual sequences of extremely dry 

and wet winters in the Iberian Peninsula as simulated in the PI-Control simulation with the CESM2 

model.  There are about 20 dry events in the 1000-year-long simulation. These dry, persistent 

winter periods are accompanied by a warmer Tropical Pacific and warmer North Atlantic at mid-

latitudes, roughly in agreement with the pattern observed during the 2000-2003 winters. There 

are some discrepancies, though. For instance, the pool of warmer waters in the North Atlantic 

appears displaced in the coupled simulations with respect to observations. Comparing the SST 

patterns for dry and persistent wet winters now, it can be seen that only these two areas - the 

tropical Pacific and the North and Tropical Atlantic - mirror each other, suggesting a causal 

relationship with persistent Iberian hydroclimate anomalies.  The influence of the North Atlantic 

is more difficult to disentangle, as its SST anomalies could have been the result, not the cause, of 

the high SLP via temperature advection. This could be elucidated using Granger causality to the 

simulated SLP and SST time series.  In summary, long preindustrial control simulations also point 

to warm Tropical Pacific SST as a causal predictor of recurrent dry winters in the Iberian Peninsula. 

Besides the 2000-2003 drought, the Iberian Peninsula has experienced reduced precipitation in 

other periods in the 20th century that are not covered by the CMIP6-AMIP simulation. Within 

CLINT, we have completed a regional atmospheric simulation at a very high spatial resolution over 

the Euro-Cordex domain, driven by the ERA20C reanalysis (Poli et al., 2016). This simulation helps 

further investigate the link between SST and Iberian precipitation and the structure of those 
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persistent drought events. These data can also serve as a long pre-training data set, akin to 

observations, for ML algorithms. Results from this simulation are presented in the next section. 

In summary, the winter precipitation record in the Iberian Peninsula displays a series of persistent 

dry winters around 2000 that is synchronous with two of the AMIP atmospheric simulation 

ensembles analysed here (CESM2 and MPI-ESM-2-HR). The other two model ensembles do not 

reproduce this event. The simulated patterns of atmospheric circulation anomalies are consistent 

in the two ensembles with winter droughts in this region, and the patterns of SST anomalies hint 

at the role of the warm Tropical Pacific and warmer North Atlantic. Long preindustrial control 

simulations with the coupled models CESM2 and MPI-ESM-2-HR include several similar events of 

persistent dry winters in the Iberian Peninsula and simulate warm SSTs in the Tropical Pacific. 
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6. A LONG HIGH-RESOLUTION REGIONAL ATMOSPHERIC SIMULATION 
OVER EUROPE: APPLICATION TO TWO CLINT USE CASES 

The available observational records are usually short (observations) or may have very high spatial 

resolution (reanalysis), which may hamper the assessment of variability and change of  EE and their 

driving factors. It also poses a limitation to train ML algorithms.  For these reasons, we have 

conducted a relatively long (1900-2010) simulation in CLINT with the regional atmospheric model 

CCLM (Steger et al., 2020) with a high spatial resolution (10 km) over the Euro-Cordex domain 

(Vautard et al., 2021). The German Weather Service also uses this model for their operational 

weather predictions. This simulation (Table 3) has been driven at its boundaries by the ERA20C 

reanalysis (Poli et al., 2016). Therefore, the simulated temporal sequence is synchronised with the 

observed climate trajectory and can be considered a high-resolution reanalysis for Europe. The 

time resolution of the available data is hourly, so short-lived EE, such as flash flooding, can be 

analysed. Selected variables are available on the CLINT data-sharing facility at the DKRZ in 

Hamburg. 

Table 3. Some technical characteristics of the regional high-resolution atmospheric simulation. 

Model 
Average Spatial 

resolution 
  

Number of 
simulations 

Period 
Boundary 
conditions 

Domain 

Community 
Climate Limited 
Area Model (CCLM) 

 ~10x10 km 
Curvilinear coordinates 

1 1900-2010 

ERA20C 
and 

observed 
SST and 

ice-cover 

Euro-Cordex 

6.1 Past persistent drought in the Iberian Peninsula 

To illustrate the type of analysis this simulation allows, we consider the case of persistent droughts 
in the Iberian Peninsula, which was the focus of the previous section. Figure 6-1 shows the winter 
(December-February) series of precipitation anomalies over the Iberian Peninsula simulated by the 
CCLM run compared with the extended 20CR reanalysis (version 2c). The interannual variability 
simulated by the model is about half that of the reanalysis, likely due to the different sub-grid 
schemes used in CCLM and the 20CR models. This difference needs to be analysed further and 
compared to other data sets, but it is not relevant in this section. The temporal coherence between 
both time series is high, with a correlation coefficient of 0.76. The simulated precipitation series 
displays two multiannual periods with extremely low precipitation, one starting in 1904 and one 
beginning in 1919. Together with the period around 2000 analysed in section 5, they make the two 
driest series of winters in this region. 
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Figure 6.1:. Time series of winter (December-February) precipitation anomalies  in the Iberian Peninsula from the 20CR 
reanalysis and  simulated by the CCLM regional simulation driven by ERA20C. 
 

 
Figure 6.2 shows the observed mean SSTs (from the HadISST data set, Reiner et al., 2003) averaged 

over the winters in each period. We can see in this figure that, in partial agreement with the results 

presented in the previous section, the global SST anomaly pattern is characterised by a warm 

Tropical Pacific, whereas SSTs remain colder than normal elsewhere. The latter may reflect the 

long-term warming effect through the 20th and 21st centuries since the SST anomalies are 

expressed relative to the long-term mean of the period covered by the CCLM simulation). 

The Tropical Pacific patterns, however, support the idea that ENSO may be an important driver for 

persistent winter droughts in the Iberian Peninsula and that the warm SSTs in the North Atlantic 

shown in Figure 5.4 for the 2000 event may not be a robust predictor.  
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Figure 6.2:  Patterns of observed winter SST (December-February) anomalies from the HadISST data set averaged in 
1904-1906 and 1919-1921t. The anomalies are calculated using the period 1900-2010 as reference.   
 

The atmospheric circulation patterns during those winter periods were also physically consistent 
with dry winters over the Iberian Peninsula (Figure 6.3), characterised by higher surface pressure 
over the mid-latitude North Atlantic. The relative strength of the SLP patterns in these two periods 
even agrees with that of the SST patterns, again suggesting that the Tropical Pacific is driving the 
atmospheric circulation towards more intense NAO states and, therefore, dry winters in the 
Iberian Peninsula.  
 

 
 
Figure 6.3: As Figure 6.2, but for the winter  SLP anomaly pattern derived from the 20CR(v2c) reanalysis. 

 
The high spatial resolution of the simulated data allows a closer inspection of the patterns of 
reduced precipitation in the Iberian Peninsula during these two events (Figure 6.4). Consistent with 
Figures 6.2 and 6.3, the simulated precipitation deficits are stronger during the first event of 1906 
than during the second event in 1919. Both precipitation patterns have a similar spatial shape, 
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with stronger reductions in Western Iberia, including the Duero basin. Locally, the severe 
precipitation reductions are below or below 50% of the climatological mean. There are spatial 
differences between the two events, both within and outside the Iberian Peninsula. Along the 
northern fringe of the Peninsula and over Northern Africa, the precipitation anomalies are 
opposite, highlighting the large case-to-case variability and the need for a high-resolution dataset. 
 

 
Figure 6.4. Precipitation anomalies (relative to the long-term mean of the whole simulation period 1900-2010)  in 
Southwestern Europe for two winter periods of extremely low precipitation in the Iberian Peninsula (see Figure 6-1)  

simulated with the regional atmospheric model CCLM driven by the ERA20C reanalysis.  

6.2 Impact of ENSO on Lake Como precipitation 

The causal link between ENSO and precipitation in Southern Europe has been hinted at several 

times in the literature by CLINT project partners. Giuliani et al. (2019) identified an asymmetric 

connection between the state of ENSO in autumn and winter precipitation anomalies in Lake 

Como, with positive phases of ENSO driving lower precipitation in this region.  Generally, previous 

studies on the ENSO impact on precipitation in Europe have found contradictory results, with some 

studies suggesting higher precipitation during positive ENSO phases but others finding the 

opposite (Brönnimann, 2007). Other studies found a time-scale dependency and period sensitivity 

to the connection between ENSO and precipitation in Western Europe (Brönnimann et al., 2007).  

Yet others find the opposite response between mild and extreme ENSO events (King et al., 2021). 

Here, we further explore this connection in the high-resolution CCLM simulation. Aligning with the 

study of Gulliani et al. (2109), Figure 6.5 shows the late winter precipitation (January-March) 

averaged over the five strongest El Niño and La Niña events between 1950 and 2010, measured by 

the value of the autumn (October-December) Multivariate ENSO Index (MEI; Wolter and Timling, 

1998). Therefore, this picture also conveys the possible predictive skill of the MEI on Southern 

European precipitation. 
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The precipitation composite patterns confirm the asymmetric character of the link between ENSO 

and European precipitation. The strongest El-Niño events in autumn are accompanied by drier 

winters in the Western Iberian Peninsula, as was found in the previous section 6.1. Also, they are 

linked to drier winters along the Alps. The five strongest La-Niña autumns also display drier winters 

in the Alps but wetter winters in Transalpine Italy (actually, this is the only region in Southern 

Europe land areas with a wet signal).   

 

 
Figure 6.5: Average precipitation in the winters (January-March) with the five highest (El Niño, left panel) and the five 
lowest (La Niña, right panel) values of the Multivariate ENSO Index in the previous autumn (October-December). Period 
1950-2010. Precipitation is simulated by the high-resolution regional atmospheric model CCLM driven by ERA20C 
reanalysis. 
 

In summary, the analysis of longer periods than those usually considered in shorter reanalysis data 
unveils severe drought events in the Iberian Peninsula in 1906 and 1919, which may be casually 
linked to a warm Tropical Pacific, as it was probably the case for the more recent event in the year 
2000. The high-resolution regional simulation with the atmospheric model CCLM displays a broadly 
similar spatial structure of dryness over the Iberia but also clear differences in detail outside the 
Peninsula, in Northern Africa and the Western Mediterranean. In these two winter periods, the 
Lake Como region also observes this spatial heterogeneity and asymmetry in the response to 
Tropical Pacific forcing. This implies that, although the causal link can likely be attributed to the 
SSTs in the remote region of the Tropical Pacific, each event may convey a different fingerprint. 
ML prediction algorithms would, therefore, need long, high-resolution precipitation records to 
provide predictions at local and regional scales. Still, they can also help to understand why this 
response is heterogeneous across neighbouring regions and why the response to a given driver is 
asymmetric and spatially heterogeneous. 
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7. CONCLUSIONS 

Our review summarises the large-scale drivers of climatic EE and compound events assessed from 

the existing literature. Generally, the atmospheric circulation over the North Atlantic - the North 

Atlantic Oscillation and the boreal Polar Vortex - has an immediate influence on the frequency and 

intensity of different types of EE and compound events, particularly heat waves and droughts. Soil 

moisture resulting from the surface water balance in the previous seasons also contributes to the 

severity of summer HW. In turn, other boundary conditions, such as sea-surface temperatures and 

sea-ice extent, may influence the North Atlantic atmospheric circulation. The impact of sea-ice 

extent is still debated: it may exist, but it is arguably weak. Previous studies have identified a clear 

influence of North Atlantic and Tropical Pacific SST on hydroclimate conditions over Europe. 

Nevertheless, not all studies agree on the form in which this influence takes place, and sometimes 

even the sign of the sea-surface temperatures associated with dry conditions is debated. 

Assessing physical causal links with sea-surface temperatures is critical for detecting, predicting, 

and attributing extreme events, which is the main objective of WP3-5 within CLINT. A multi-model 

ensemble with atmospheric-only models of the CMIP6 project has been set up in CLINT as part of 

WP4 to address this question. Analysing the ensembles of simulations with atmospheric-only 

models within the CMIP6 project, driven by the same observed sea-surface temperature 

variations, reveals a weak signal in both mean seasonal climate and extreme seasons over Europe. 

However, only a persistent series of winters in the Iberian Peninsula, which occur only a few times 

in a century, can likely be attributed to sea-surface-temperatures, probably in the Tropical Pacific. 

This is supported by an asymmetric stratification of dry and wet winters in the Iberian Peninsula 

and the Lake Como basin according to positive or negative ENSO state in the previous autumn. 

However, the spatial precipitation signal of ENSO varies rapidly across space, particularly in areas 

of complex topography, and hence, a very detailed analysis is necessary. One regional simulation 

of this kind has already been carried out within WP4, which can be used as a high-resolution 

reanalysis-like dataset of the 20th century to train ML models. 

Regarding the mechanism behind compound extremes, they can be divided into the following sub-

categories: atmospheric circulation patterns, land-atmosphere interactions, ocean dynamics and 

coupled ocean-atmosphere patterns, and the climate change signal due to anthropogenic forcing. 

These drivers can improve the detection and prediction experiments by explicitly including the 

physical nature of extreme events rather than requiring the underlying AI model to learn the 

process by itself (Schultz et al., 2021). For instance, ML- algorithms can be made more effective by 

splitting the prediction algorithm into two steps: first, an initial image recognition algorithm can 

identify emerging known large-scale circulation drivers, such as persistent anticyclones or specific 

teleconnection patterns. In the second step, a prediction the ML- algorithm generates a prediction 

based on the phase of those identified atmospheric patterns. Such pre-filtering could enhance the 

derived forecast's physical consistency and performance by partitioning the data into (physically) 
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adequate subsets. Physical laws can also be implemented directly into the optimisation problem 

of the training process, for example, by imposing constraints on the loss function (Kashinath et al., 

2021). 

Furthermore, variables related to land-atmosphere feedback are helpful for drought and heatwave 

prediction, as they modulate underlying processes associated with the severity of EE and can 

potentially connect meteorological, ecological and hydrological droughts. Finally, anthropogenic 

forcing imposes non-stationarities on many extreme events, mainly their frequency and 

magnitude. However, such non-stationarities are only sometimes exploited by machine learning 

models, as many of these algorithms assume that the training and test distributions agree 

(Sugiyama and Kawanabe, 2012). Therefore, incorporating techniques that account for this climate 

non-stationarity could improve the model's performance, especially for experiments targeting 

long time horizons. 
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