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2022 test period. The solution with the highest validation score from the evolutionary 
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percentiles of the 1981-2010 period. 
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unitless, while tail dependence is expressed in probability. Since both indices have results 
between 0 and 1, they are plotted with the same scale.   
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Figure 6.16: Bivariate centroids of cluster six from the soft-dynamic time warping (figure 6.15) 
approach.  
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Figure A4.1: Clusters of European predictor variables for the heatwave driver Feature 
Selection Framework (Section 4). K-means clustering is applied to ERA5 daily data over the 
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period 1951-2010. The domain covers [30N,70N], [-15E,46E]. Values over the ocean are 
removed for 2m temperature and Soil Moisture. 

Figure A4.2: Clusters of North Atlantic predictor variables for the heatwave driver Feature 
Selection Framework (Section 4). K-means clustering is applied to ERA5 daily data over the 
period 1951-2010. The domain covers [0N,70N], [90W,46E]. 

Figure A4.3: Clusters of Arctic Sea Ice Concentration for the heatwave driver Feature Selection 
Framework (Section 4). K-means clustering is applied to ERA5 daily data over the period 1951-
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Figure A4.24 Clusters of global predictor variables for the heatwave driver Feature Selection 
Framework (Section 4). K-means clustering is applied to ERA5 daily data over the period 1951-
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reported, e.g. month 100 is May 2001, month 200 is September 2009, month 300 is January 
2018). 
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Figure A5.6: Heatmap: Cluster 6 (on the x-axis the 312 months between 1993 and 2018 are 
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2018) 

Figure A5.7: Heatmap: Cluster 7 (on the x-axis the 312 months between 1993 and 2018 are 
reported, e.g. month 100 is May 2001, month 200 is September 2009, month 300 is January 
2018). 

Figure A5.8: Heatmap: Cluster 8 (on the x-axis the 312 months between 1993 and 2018 are 
reported, e.g. month 100 is May 2001, month 200 is September 2009, month 300 is January 
2018). 
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Figure A5.9: Heatmap: Cluster 9 (on the x-axis the 312 months between 1993 and 2018 are 
reported, e.g. month 100 is May 2001, month 200 is September 2009, month 300 is January 
2018). 
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EXECUTIVE SUMMARY 

Detection of extreme events is of primary importance in climate science. Identifying the 

features that contribute to the occurrence of these phenomena can help improve early 

actions and prompt communication to institutions and stakeholders. This deliverable aims at 

applying and customising ML algorithms from WP2 that can enhance existing methods, 

mostly based on observations or dynamical models, or that can work alongside them. On the 

one hand, these studies corroborate expected relations. On the other hand, these methods 

may shed light on unexplored behaviours among various features, such as the events 

themselves, the indices that are used to define them, and the (observed or forecasted) values 

of weather variables at various temporal and spatial scales. 

As a first step in ML development, it is fundamental to properly select the drivers (or 

predictors) that are given as inputs to the models and to assess which model is the most 

appropriate for the characteristics of the problem at hand. A thorough selection of these 

aspects allows one to build a solid algorithm to avoid over-parameterization and reduce the 

computational footprint of models. The resulting models may improve or compete with 

existing models, which are often based on dynamical systems. 

This deliverable describes the first steps performed in the selection of drivers and machine 

learning algorithms to detect and predict the four types of climate Extreme Events (EE) 

considered in CLINT. The extreme events are: 

● Tropical cyclones: genesis and activity on different timescales (Chapter 2) and 

extratropical transitions (Chapter 3). 

● Heatwaves and warm nights (Chapter 4). 

● Extreme droughts (Chapter 5). 

● Compound events and concurrent extremes (Chapter 6). 

For each type of EE, a description of the datasets used, considered indices, and inspected 

models is provided. This is followed by a discussion on which of the candidate features 

indicated in D3.1 have been found to be the most relevant and effective. The skills of the 

implemented methods were compared to pre-existing ones and climatological baselines, 

obtaining indications about which methods to select and how to implement them at their 

best. Finally, it was possible to highlight the implications of these findings on the physical 

understanding of the phenomena. 

In the case of the detection of tropical cyclones at long time scales, the focus was on the 
analysis of the capability of the current Genesis Potential Indices (GPI) to indicate the correct 
number of TC generated in the corresponding model grid cell. This revealed different skills 
according to the type of GPI and the basin considered. Furthermore, it was found that GPIs 
had low skill in reproducing interannual variability and trends in future cyclone activity. The 
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Emanuel-Nolan GPI formula was optimised to perform better in terms of spatial and temporal 
correlation, obtaining relevant information about the weight of the drivers included in the 
expression. 

In the medium range, operational forecasts of tropical cyclone activity are largely based on 
dynamical models. The ECMWF ensemble was used as a skilful representative to evaluate the 
predictive performance of such models in comparison with the prediction obtained from 
climatological probability. Starting from these two benchmarks, various types of ML models 
were trained to improve the skill at various lead-times. More complex architectures 
performed best at the shortest lead times, followed by plain neural networks, and eventually 
dropped in skill below the climatological prediction. Even though a variety of predictors were 
tested, considerable improvements were found when including previous predictions or near 
real-time observations. 

For TCs in the North Atlantic, the prediction of the probability of extratropical transition is 
another application for which ML models were developed. Their performance was evaluated 
against forecasts based on the ECMWF ensemble and climatological probability. The 
decomposition of the Brier score revealed why no ML model was able to outperform the 
ECMWF ensemble. Even though the ML models were all better calibrated, they considerably 
lacked discriminative ability with respect to the binary outcome. The genesis position was 
identified as the most relevant predictor and logistic regression as the best model, indicating 
that non-linear dependencies were not yet sufficiently represented in predictor data and/or 
modelling approaches.  

The analysis of drivers and predictability of heatwaves was extended to other relevant indices 
of heat extremes, such as Warm Nights. The skill of European warm night forecasts in 
operational dynamical seasonal forecast systems was assessed and complements the existing 
knowledge of the dynamical skill of (daytime) heatwaves. Meanwhile, a two-step feature 
selection and optimization framework to identify drivers and produce forecasts of HW 
occurrence using a data-driven approach was developed. Despite the initial tests reducing the 
dimensionality considerably (i.e., using regional-scale area-averages as predictors), the 
method skilfully recreated the past decade of HW events in Lake Como. This framework 
identified drivers from local atmospheric conditions (e.g., SST and Z500) to global 
teleconnections. The results include quantification of the role of S2S drivers, which provides 
the foundation for building seasonal forecasts from this framework. 

The detection of Extreme Droughts has been the subject of extensive research in the past 
decades, with the development of a wide set of indices (e.g., SPI, SPEI, and SMA). However, 
these methods failed to reproduce drought impacts, such as the Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR) used to capture drought-induced stress on crops. 
The analysis considered 35,408 sub-basins in the pan European domain. The FRamework for 
Index-based Drought Analysis (FRIDA) was used to construct new composite drought indices. 
In particular, it helped identify the basin characteristics and extract the most relevant 
features. This process helped detect the relevant drivers for each cluster and enhanced the 
impact-based drought indices. 
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The study of compound events focused on multiple temporally and/or spatially 
overlapping/connected climate events and their corresponding impacts on the food, water, 
and energy sectors in Europe. A case study of compound event impacts on winter wheat in 
France revealed that large fractions of crop variability can be explained by the combined 
impact of wet and warm conditions in January and February, followed by warm and dry 
conditions in April. Furthermore, experiments with Random Forests suggested that these 
types of events can be accurately predicted at a local scale. These methods can be used to 
construct objective bounds and define thresholds for climate variables associated with 
substantial agricultural impacts. For the study of interconnected large-scale droughts and 
heatwaves on a global scale, state-of-the-art non-stationary statistical methods enhanced 
with Deep Learning allowed the identification of these relationships while considering the 
climate change signal. Furthermore, a nonparametric version of the well-known standardised 
precipitation and evapotranspiration index (SPEI) was proposed, with particularly enhanced 
performance for drought detection and better extrapolation characteristics in reference 
periods, thereby opening new opportunities to study interconnected heatwaves and 
droughts. 

Further work will be performed to improve the detection systems presented herein. This will 
be done according to the peculiarities of each extreme event, for example considering 
different ML routines, testing on different areas or applying detection algorithms to 
“prediction” mode. These will be the objects of the upcoming Deliverable. 
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1 INTRODUCTION 

The detection of extreme events is an important step towards understanding the mechanisms 

that drive these phenomena. This includes the exhaustive identification of indices that help 

define the events or their potential occurrence, and the analysis of which weather variables 

influence the development of the phenomena themselves. ML algorithms help these 

processes, enhance the existing methods and develop new approaches that can improve 

detection and prediction of extreme events. ML models require a thorough inspection of 

which drivers and algorithms to use. This helps to avoid overparameterization and reduces 

the computational time. 

Good ML models need to be trained on large and consistent datasets. In climate sciences 

these characteristics are provided by reanalyses (e.g., ERA5). Although reanalyses are partly 

built upon model approximations, they provide spatial and temporal consistency, which is not 

guaranteed by observations. At the same time, some variables can obtain reliable information 

from specific datasets (e.g., IBTrACS and FAPAR), which provide more on-point information 

and can be used as a benchmark for the training of ML models. 

Furthermore, the training process benefits from an accurate driver selection. Identifying the 

best drivers requires a different approach according to the physical and statistical 

characteristics of each considered phenomenon. In addition, the detection and the prediction 

of events imply the use of different drivers. While the former requires local predictors, the 

latter needs the inclusion of remote predictors in terms of time and space. In this deliverable, 

this selection is discussed, in combination with the evaluation of the algorithms and ML 

techniques that performed best in each case. 

For each of the following Extreme Events (EE): 

● Tropical cyclones: in terms of genesis and activity on different timescales (Chapter 2) 

and extratropical transitions (Chapter 3). 

● Heatwaves and warm nights (Chapter 4) 

● Extreme droughts (Chapter 5) 

● Compound events and concurrent extremes (Chapter 6) 

The report provides an overview of the problem, summarises the data used, describes the 

features of the inspected algorithms, explains the results, and finally analyses the physical 

and statistical implications.   
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2 TROPICAL CYCLONES 

2.1 Overview 

Tropical Cyclones (TC) form at a rate of approximately 80-90 times per year globally in the 
tropical latitude bands on both sides of the equator. TCs that make landfall are among the 
costliest and deadliest natural disasters due to the combination of strong winds, heavy 
precipitation, and eventual storm surges. Therefore, it is of paramount importance to 
accurately predict their activity on several timescales, ranging from a few days to seasonal 
and climate projections. 

To date, a comprehensive theory of TC formation is lacking. Several indicators were 
developed that relate the spatiotemporal distribution of TC formation to large-scale 
atmospheric and oceanic variables, such as atmospheric humidity, vorticity, and SST. These 
indices generally have good skill at the climatological/global scales at which they were 
trained, but their performance tends to degrade at interannual scales and varies from basin 
to basin. Another issue with genesis potential indices is that their future trends are often 
inconsistent with the estimates of future TC activity. 

A useful predictor for TC genesis/activity is one that has a reasonable correlation with the 
target and shows predictive skill. As the predictive skill is different for different predictors, 
the choice will differ according to the timescales of interest (i.e., a few days ahead vs. the 
climate change timescale). On sub-seasonal timescales, the Madden-Julian Oscillation is a 
powerful predictor (Klotzbach, 2014) and possesses predictive skill on a 3-4-week timescale 
(Vitart, 2009). The open question for ML design is whether to train on the underlying gridded 
data that form the indices or directly on the indices. 

Within Task 3.1, Subtask 3.1.1 focuses on the long climatological scales, using ML algorithms 
to discover improved formulations of genesis potential indices based on large-scale climate 
variables. Subtask 3.1.2, on the other hand, focuses on short time scales, developing ML 
predictors of TC activity for weather prediction and sub-seasonal time scales. 

2.2 Datasets and candidate drivers 

2.2.1 Datasets  

The datasets used as benchmarks included reanalyses (e.g., ERA5 and MERRA) and IBTrACS, 
a dataset that collects estimates of positions and intensity of TC in the considered basins. For 
the improvement of genesis indices, drivers were selected from the simulations included in 
ScenarioMIP and HighResMIP.  On the other hand, the ECMWF-ENS was used to improve ML-
based forecasts at sub-seasonal time scales. The datasets used are listed in Deliverable 3.1. 

2.2.2 Candidate drivers 

Subtask T3.1.2 aims to identify the key structures of TC genesis and activity. Such a goal 
required defining candidate drivers that could refer to local or remote conditions and could 



 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and  
adaptation design using machine learning 

EU H2020 Project Grant #101003876 

 

21 
D3.2 EXTREME EVENTS DETECTION 

be related to atmospheric or oceanic variables. In particular, local drivers can include variables 
such as humidity, vorticity, and SST. On the other hand, large-scale field potential drivers 
consider tropical and equator-tied waves such as the Convectively Coupled Equatorial Waves 
(CCEWs, Frank and Roundy 2006, Matsuno 1966, Kiladis et al. 2009, Schreck et al. 2012, Frank 
and Roundy 2006, Maier-Gerber et al. 2021, Lawton et al. 2022, Schreck et al. 2011) , empirical 
wave-like phenomena such as the Madden-Julian Oscillation (MJO, Klotzbachm, 2004), the 
African Easterly wave and, even though often rejected (Leroy and Wheeler 2008, Henderson 
and Maloney 2013), and Quasi-Biennial Oscillation (QBO, Gray 1984). Other effects that have 
a role in TC genesis can be the Rossby wave breaking (RWB, Zhang et al. 2016, 2017, Wang et 
al. 2020) or the baroclinic influence of the upper-level trough. The former may be represented 
by a driver that describes the extratropical influence (for example, upper-level layered-PV), 
the latter could be considered with the Coupling Index (CI; Bosart and Lackmann 1995). In 
addition, the Q-vector convergence (Q) and the lower-level thickness asymmetry (Th), used 
by McTaggart-Cowan et al. (2008, 2013), can be included to describe baroclinically influenced 
development pathways of TC genesis. Finally, oceanic drivers present slow varying features; 
possible candidates are local SSTs and teleconnections (e.g., ENSO) (Gray 1979, Gray 1984, 
Song et al., 2022). 

Special attention was given to the transition of TC to extra-tropical regions and the formation 
of TC outside of the tropics, and field variables such as MJO (whose phase can be determined 
by checking the EOFs of a set of zonal wind-related variables) were considered. 

2.3 Long term horizon 

2.3.1 Indices 

Subtask 3.1.1 aims to improve the indices developed to detect the genesis of TCs. We 
considered the Genesis Potential Index of Emanuel-Nolan (2004) (EN-GPI), the Tropical 
Cyclone Genesis index (TCGI) of Tippett et al. (2011) (TC-GPI), and the Dynamical Genesis 
Potential Index (Wang & Murakami, 2020) (WM-GPI). EN-GPI is based on large-scale variables, 
such as absolute vorticity at 850 hPa, relative humidity at 600 hPa, wind shear between 200 
and 850 hPa, and MPI (maximum potential intensity, Emanuel (1988), Bister & Emanuel 
(1998)). TC-GPI replaces MPI with relative SST (Ramsay & Sobel, 2011; Vecchi & Soden, 2007) 
and WM-GPI inserts additional dynamical variables instead of thermodynamic ones. Menkes 
et al. (2012) analysed the performance of these indices in reanalyses and found large 
differences. 

2.3.2 Skills and performance of existing indices 

The increased spatial resolution of HighResMIP (0.5° or finer in the atmosphere and 0.25° in 
the ocean) allowed the models to realistically reproduce TCs. Owing to this advance, it was 
possible to evaluate the performance of GPIs based on the number of generated TCs, using 
the ERA5 dataset as a benchmark.  
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The three GPIs were verified in several oceanic basins (North Atlantic NA, North East Pacific 
NEP, West North Pacific WNP, Northern Indian NI, Southern Indian SI, and West South Pacific 
WSP), focusing on the representation of interannual variability and multidecadal trends.  

Interannual variability was poorly represented by all GPIs in the historical simulations and 
future projections. In both cases, the indices showed different skills according to the basin 
considered (see Figure 2.1, left column). In general, a major decrease was found where indices 
calculated on reanalyses performed better, with a marginally poor performance of WM-GPI. 
The decrease appears to be more substantial for NA, probably due to overfitting, a 
consequence of the higher accuracy of historical observations in this area. Future projections 
result in an additional decrease of GPIs on NA, while for the other basins, they show a further 
improvement (Figure 2.1, right column). 

  

Figure 2.1: Left: Boxplots showing ensemble spread of correlation between yearly time series of number of detected TCs and number 
of TC detected with the three GPIs, calculated on historical simulations. Each box plot is related to a different ocean basin. The star 
indicates the same correlation, but calculated on ERA5 data. Right: Same as left column but for future projections. The star here 
represents the ensemble mean of correlations calculated on historical simulations. 
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The second step of the verification of index skill included analyses of how future changes in 
TC frequency and their multidecadal trends were described by GPIs. This was preceded by a 
comparison between the GPI projections on HighResMIP and the CMIP6 General Circulation 
Models ensemble over the 2015-2050 period and considering comparable emission scenarios. 
These experiments produced similar results, increasing the confidence in the robustness of 
the results obtained with HighResMIP.  

GPIs appear to have low skill in reproducing the interannual variability and trends of future 
cyclones simulated by HighResMIP. However, the three indices showed similar patterns of 
change with minor regional differences. Figure 2.2 shows the trend of the predicted number 
of cyclones for each GPI compared to the simulated trends. This was performed to distinguish 
between the combinations of models and basins. Here, between half and two-thirds of the 
model-basin pairs show inconsistency of sign between simulated and GPI trends, with slightly 
better performance for EN-GPI. These results suggest the need for further research to solve 
this issue, indicating possible reasons for the poor choice of variables and their tuning of 
variable coefficients in the GPI formulas. The work presented in this section was published by 
Cavicchia et al. (2023). 

 

2.3.3 Algorithm 

To improve the performance of GPIs, a genetic algorithm (NSGA-II, Deb et al., 2002) was used. 
This type of ML method can efficiently explore a large spectrum of solutions in multiple 
dimensions and is robust to local minima and maxima. Genetic algorithms are based on 
several iterations; in each of these, the best performing solutions (according to pre-defined 
objective functions) of the previous iteration are joined with permutations and mutations of 
their parameters. Within this joint group, the new best-performing ones are selected, forming 
a new generation of solutions that are passed-on to the next iteration. 

The parameters to be optimised were the coefficients and exponents appearing in the EN-GPI 
formula (see Table 2.1). A multi-objective optimization was performed by choosing the spatial 
correlation and interannual correlation between the GPI and the observed cyclones. 

  

Figure 2.2: Future trends of directly detected TCs and number of TC predicted with GPIs. 
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Additionally, the algorithm was allowed to change the pressure level at which the variables 
were calculated. 

2.3.4 Results: improved indices and relevant drivers 

The best combination of parameters for the improved EN-GPI formula was identified by 
selecting those that showed a good improvement in spatial and temporal correlations. This 
evaluation was visualised with Pareto fronts (Figure 3), where the scores of the solutions are 
displayed on a scatter plot, and it is possible to compare them to the scores of the original 
EN-GPI. Solutions (b) and (e) show the best balance between temporal and spatial scores. 
When comparing them to the neighbouring ones, it was possible to identify recurring 
patterns, such as the use of absolute vorticity at 600 hPa instead of 850 hPa.  

Analysing solutions (a) and (d), which are the best performing in terms of temporal 
correlation, it was found that thermodynamic variables were not influential, due to the 
presence of low exponents or to the choice of levels where the variables have negligible 
values (e.g., relative humidity at 1 hPa). However, these solutions tended to perform 
significantly worse in terms of the representation of spatial patterns (Figure 2.4, top left). 
Furthermore, the interannual variability of optimised GPI and IBTrACS appeared to be highly 
correlated, but with low similarity in their peaks (Figure 2.4, top right). This last issue is much 
less evident for solution (b), evaluated on the two reanalysis datasets (Figure 2.4, bottom 
panels), indicating the superiority of the solution optimised on both spatial and temporal 
aspects.  

Table 2.1 displays the shape of the solutions highlighted in Figure 2.3, and reports the 
verification results on different scores and on both reanalysis datasets. It is important to note 
that the exponents for the vertical wind shear (VS) are always in the range [-3, -2.4], and those 
for the absolute vorticity (η) are around 2. Finally, as observed in the bottom panels of Figure 
2.4, optimal solutions (b) and (e) performed with relatively high scores on the test reanalysis 
dataset (i.e., on which they have not been optimised). The work presented in this section is 
reported in Ascenso et al., 2023. 

 

 

  

Figure 2.3: Pareto fronts obtained optimizing the algorithm on ERA5 (left) and MERRA (right) 
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Table 2.1: Performance of the selected solution. Each row reports a solution with corresponding equations, and scores results. 

 

  

 

Figure 2.4: Top-left: comparison between spatial distribution on IBTrACS and solution (a). Top-right: Interannual variability curves for 
solution (a). Bottom-left: Same as Top-Right but for solution (b) on ERA5. Bottom-right: Same as Bottom-left but on MERRA2.  



 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and  
adaptation design using machine learning 

EU H2020 Project Grant #101003876 

 

26 
D3.2 EXTREME EVENTS DETECTION 

2.4 Short term horizon 

2.4.1 Target variable 

In Subtask 3.1.2, we aimed to improve the TC activity forecasts in the medium range. The 
target variable was derived from the IBTrACS (Knapp et al., 2010, 2018) dataset version 4 by 
evaluating, at every grid point on a 2.5°x2.5° grid separately, whether at least one TC occurred 
within a 48 h time period and radius of 300 km, to be consistent with the definition of TC 
activity used at ECMWF. The evaluation of occurrence was based on the original 3-hourly 
temporal resolution and only considered cyclones that reached tropical storm intensity (i.e., 
≥17 m/s). Given the extreme nature of TCs, the ratio of grid points at which TCs are active and 
non-active should not be too imbalanced for ML models to be able to learn a meaningful 
relationship between predictors and the target variable. The regional focus in this study was 
on the Southern Indian Ocean (defined here as 0°-30°S, 20°-90°E), where TCs occur over ocean 
grid points at a rather low mean relative frequency of 0.56% (Figure 2.5a), but are subject to 
a distinct annual variability (Figure 2.5b). As shown in many applications, such a ratio in the 
target variable should still be sufficient to train meaningful models. 

2.4.2 Skills and performance of existing forecasts 

Since the target variable considered in Section 2.4 is binary, all benchmarks and ML-based 
models were defined to output probability values, which convey more information than if the 
models predicted the binary labels directly. However, this implied that the verification of 
forecasts was more complex. To evaluate the predictive model performance on the test set, 
different tools were combined to address various verification aspects. ROC curves, which 
display the true positive rate as a function of the false positive rate, allowed the assessment 
of the potential predictive ability of a given model, with the best (no) skill indicated by an AUC 
of 1 (0.5). Because ROC curves are insensitive to miscalibration, it is possible to obtain good 
performance even when the distribution of the forecasts is not statistically consistent with 
observations. On the other hand, the BS (calculating the quadratic error averaged over all 
forecasts) carries this aspect in the evaluation by instances. This means that the expected 
score can only be minimised by predicting the underlying observed distribution. Following 
Dimitriadis et al. (2021), we further decomposed the BS into three additive measures: MCB 
represents the forecast miscalibration, DSC assesses the ability of the (re)calibrated forecasts 
to better discriminate between the outcome of the target (compared to the performance of 
a climatology-based forecast), and UNC expresses the uncertainty inherent in the forecasting 
problem. The BS, MCB, and UNC are negatively oriented (i.e., lower is better), whereas the 
DSC is positively oriented (i.e., higher is better). 

Before the rise of ML models, TC activity forecasts were either based on dynamical or 
statistical models, with the former more heavily used on the medium range and the latter 
mostly on the seasonal range. Since subtask 3.1.2 targets the medium range, ECMWF’s 
ensemble predictions (ENS) serve as the first benchmark. The ensemble system consists of 50 
perturbed ensemble members and one unperturbed control member, all having a horizontal 
resolution of 18 km up to 15 days ahead for the considered training and testing periods. In 
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each ensemble member, TCs were tracked (see Magnusson et al. (2021) for tracker 
description), including cases of genesis during the forecast. Based on the TC tracks in each 
ensemble member, a gridded field of probability of TC activity was calculated in the same 
manner as for the target variable. 

Figure 2.5: (a) Mean and (b) variance of relative frequency of TC occurrence (%) calculated for 1980-2015, which is used as 
training period. Note that interval boundaries are not equidistant. The blue box encloses the area in the Southern Indian 
Ocean, for which the ML models are trained. 

A second type of benchmark was generated from TC activity statistics over the training period 
from the climatology of the target variable, referred to as climatological model (CLIM). The 
simplest approach to generate a climatological forecast would have been to average over the 
entire training period (as shown in Figure 2.5a). However, from the variance signal in Figure 
2.5b and previous studies (e.g., Maier-Gerber et al., 2021) it seemed advantageous to 
calculate climatological probabilities separately for each day of the year to reflect seasonal 
variations. A 30-day window was applied to the day-of-year dimension to smooth out 
discontinuities resulting from undersampling. Because these statistics were calculated over a 
set of past realisations drawn from the observational distribution, climatological forecasts 
were inherently independent of the current state of the atmosphere, unbiased if trends 
and/or regime changes are negligible, and thus, independent of lead time. The resulting BS 
for CLIM was constant, which made it a good choice as a reference for any skill score, as it 
allowed easy comparison of the predictive skill of models across lead times. 

The years 1980-2015 served as the period from which the climatological forecast probability 
was derived and on which ML models were trained. All models were evaluated from April 
2016 to December 2022 in terms of various aspects of their forecast performance. All grid 
points in the Southern Indian Ocean region were pooled for verification so that the 
conclusions drawn were more robust. Grid points over land were not considered, as their 
inclusion would have further worsened the existing imbalance in the target dataset. 

The dynamical forecasts turned out to perform better than the climatological forecasts by 
more than 40% in BSS at 0-1 days lead time (Figure 2.6a). With increasing lead time, skill 
decreased continuously and dropped below the climatological reference beyond day 9. The 
decomposition of the BS revealed that the DSC and MCB terms for CLIM were of the same 
order as the UNC term, but almost cancelled each other out so that the BS was slightly lower 



 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and  
adaptation design using machine learning 

EU H2020 Project Grant #101003876 

 

28 
D3.2 EXTREME EVENTS DETECTION 

(i.e., better) than the UNC (Figure 2.6b). In contrast, the ENS model resulted to be well 
calibrated overall, except over the first two lead days, but it exhibited a good discriminative 
ability that yielded good BSS values over the first week mentioned before. The generally low 
UNC term resulted from the high imbalance of the target variables, which means that the 
trivial approach of always predicting a zero probability (referred to as ZEROS) did not perform 
much worse than the CLIM reference model. 

 

Figure 2.6: (a) Brier skill score (in %) of tropical storm strike probability with respect to the climatological model as function 
of lead time. (b) BS decomposition into uncertainty (grey), miscalibration (blue), and discrimination (red) for the two 
benchmark models. Resulting BSs are displayed by the black asterisks. 

2.4.3 Algorithm 

Each of the following ML models was trained for each time-lag of one day from 0 to 13, 
including in the features the values of the identified candidate drivers lagged by the selected 
number of days. 

2.4.3.1 Baselines 
The first set of algorithms considered to perform this task were the classical methods 
designed for tabular data: logistic regression (Kleinbaum et al., 2002), AdaBoost (Freund and 
Schapire, 1997), and extremely randomised trees (Geurts et al., 2006). Subsequently, different 
FFNN (Schmidhuber 2015) architectures were considered. These approaches focus on 
different aspects and are designed to address different issues in ML. Indeed, these tabular 
approaches do not consider spatial and temporal patterns. On the contrary, they consider all 
samples to be independent and identically distributed, i.e., they assume that all samples are 
drawn from the same joint distribution. 

The main advantage of these models is that they train a single model with all the data 
available for the region under analysis, with many samples and a reduced number of features, 
thereby mitigating the risk of overfitting. Their disadvantage is that they do not consider the 
spatial and temporal relationships among data, making them informed baselines for testing 
more advanced ML approaches. 

2.4.3.2 Convolutional-based approach 
CNNs (LeCun et al., 1998) are ML methods designed to deal with image data with the aim of 
exploiting the spatial location of pixels in an image. This technique is promising for TC activity 
prediction because the spatial distribution of the meteorological features can be exploited to 
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extract meaningful patterns. In this context, each feature is considered as a channel of an 
input image, and the target can be considered as a black-and-white image, where each pixel 
assumes a value between 0 and 1, representing the probability of TC occurrence. 

The CNN architecture designed for this forecasting problem follows the structure of 
autoencoders (Baldi, 2012), with an encoder structure that extracts meaningful features in a 
latent space and a subsequent decoder part that reconstructs an image from the latent space, 
minimising the reconstruction error with respect to the target image. Given the relatively 
small number of training images (11 323), the number of layers and nodes was designed such 
that the parameters number did not exceed the order of magnitude of the number of 
samples. 

A U-Net (Ronneberger et al., 2015) was also considered to compare the relatively simple 
structure of an autoencoder-based CNN with a more complex state-of-the-art CNN-based 
architecture specifically designed for image segmentation. An example of the U-Net 
architecture is shown in Figure 2.7.  

Figure 2.7: Example of U-Net, a state-of-the-art convolutional-based architecture considered for the task. Each feature is a 
channel of the input image, and the output represents the spatial probability of occurrence of a TC. Credits for the image: 
(Serifi et al. 2021). 

These convolutional-based approaches were trained considering binary cross-entropy as loss 
function, allowing to tune the number of iterations and topology of the networks. Comparing 
the CNN approach with the U-Net approach in these terms, the U-Net showed a slight 
improvement, with the cost of a much larger number of parameters. Therefore, both 
architectures were considered similarly meaningful. 

Further analysis of these neural network architectures will be provided in the future, with the 
purpose of improving their prediction skills with additional information, such as climate 
indices, temporal patterns, or more precise features in terms of granularity. 

2.4.4 Results: ML-based forecasts and relevant drivers 

As shown in Figure 2.8a, the baseline models clearly performed worse than the dynamical 
model and were found to have the following descending order in BSS: FFNN performed best, 
followed by extremely randomised trees, logistic regression, and AdaBoost. Note that the BSS 
of the latter was so low that it was not shown for the sake of readability. 
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Figure 2.8: Same as in Figure 2.6a, but including (a) the baseline and (b) the CNN-based ML models, respectively. 

Figure 2.8b presents the BSS over lead time for the best-performing versions of the CNN-
based ML methods, comparing them with the dynamical ensemble benchmark and the FFNN 
baseline model. While the FFNN model only reached half of the dynamical ensemble model 
skill on day 0, the U-Net slightly exceeded the dynamical model skill. The benefit of using the 
advanced methods, however, is only found up to 2 days lead time. These results and others 
from additional experiments suggested the following descending ranking in BSS for the 
advanced methods: U-Net, CNN, and LSTM. Thus, the TC strike probability was most 
accurately predicted by the U-Net approach (brown) for lead times up to 2 days, followed by 
the FFNN (green) for lead days 3-4.  

Figure 2.9: Qualitative summary of lessons learned: (a) the best-performing forecasting approaches for the lead times 
considered, and (b) evaluation of the impact of predictors when included in the predictor set. 

Beyond this, all models trained so far could not outperform the climatological reference 
model. 

More broadly speaking, the best-performing models were CNN-based models in the short-
range (Figure 2.9a), which were able to exploit spatial correlations in the input fields. For 
larger lead times, plain NNs were more useful as they still allow for modelling nonlinearities. 
However, these models were not able to identify spatiotemporal patterns. Finally, at very 
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large lead times the predictive signal resulted too weak, and climatological forecasts 
performed best. 

Additional experiments revealed that using oversampling techniques to combat the 
imbalance in the target dataset, as well as training on global input fields, led to a strong 
deterioration in skill, and were therefore not considered for further development. As 
summarised in Figure 2.9b a neutral effect was found for including the climatological 
probability, geographical information (latitude and longitude), and temporal information 
(year and day of year) as additional predictors, as well as for adding predictors from previous 
days. Another experiment showed that the proxy variable for convection, top net thermal 
radiation, could be replaced by the total column water vapour. This is an instantaneous (i.e. 
referred to a specific point in time) parameter and hence simplifies preprocessing in any real-
time application. Considerable improvements were achieved by expanding the predictor set 
using real-time observations (i.e., previous targets) and predictions for the previous day(s). 
Although operationally preferred, owing to the reduced data volume and lower pre-
processing costs, the trial to replace the daily averaged (thus, non instantaneous) predictor 
data with only the 00-UTC values resulted in a non-desirable reduction in predictive skill and 
therefore will not be pursued further. 

2.5 Summary and outlook 

The detection of TCs on long time scales has for a long time suffered from the coarse 
resolution of dynamical models. Thanks to the introduction of high resolution models, it has 
become possible to realistically reproduce TCs. This allowed us to thoroughly evaluate the 
performance of a set of Genesis Potential Indices. It was found that GPIs perform differently 
according to the basin considered for both historical simulations and future projections. In 
particular, the decrease in skill (compared to ERA5) on the Northern Atlantic indicated the 
presence of an overfitting, due to the fact that GPIs were defined taking this basin as 
reference. Moreover, the indices showed low skill in the reproduction of future trends in all 
basins, highlighting the need for an improvement of the definition of such indices. This was 
performed enhancing the Emanuel-Nolan GPI formula with a generative algorithm, which 
identified better coefficients and exponents to employ and gave indication on the pressure 
levels to be used for the considered variables. The enhanced GPIS showed improved spatial 
and temporal correlation with the occurrence of TCs. Finally, the analysis of these 
performances gave an insight on the role that different variable, such as thermodynamic 
ones, can have in the optimal formulation of GPIs. Further future work could include including 
additional variables in the GPIs, or optimise the GPI separately for each ocean basin. 

On the shorter range (up to two-week forecasts), ML models were developed for TC activity 
prediction and compared against predictive skill of dynamical ensemble forecasts and 
climatological probability predictions. Various model architectures were trained, ranging 
from simple baseline models, such as Logistic Regression and AdaBoost, to more advanced 
CNN-based models, such as LSTM and U-Net. Trained on an extensive predictor pool which 
combines well known influencing factors from the literature, the CNN-based models turned 
out to perform best for days 0-2, followed by a transition at days 3-4, at which plain NNs 
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worked better. The reason why a skill comparable to the ECMWF ensemble is only reached at 
day 0 is partly due to the fact that a coarse resolution of 2.5°x2.5° was deliberately chosen to 
enable quick iterations during the model development stage. In a next step, we will re-train 
the best-performing ML models on 1°x1° data so that the CNN-based models can better 
unfold their potential in identifying spatially correlated structures. Furthermore, new sources 
of predictability will be included through adding information from climate indices and tropical 
wave activity, which are both known to modulate TC activity. In addition, a statistical-
dynamical model will be implemented to extend the predictive skill, which has so far been 
limited to only a few days. In this hybrid approach, a statistical model is combined with 
predictors taken from dynamic model predictions to bring together the advantages of both 
individual approaches.  
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3 EXTRATROPICAL TRANSITION OF TROPICAL CYCLONES 

3.1 Overview 

At the end of their life cycle, some TCs curve away from the tropics and start to interact with 
the waveguide in the mid-latitudes. Extratropical Transitions (ETs) can have a substantial 
impact in the mid-latitudes, both if the cyclones directly (Evans et al., 2017; Baker et al., 2021) 
hit a sub-tropical stage, soon after ET (e.g., Sandy 2012, Leslie 2018, Lorenzo 2019) or 
indirectly (Keller et al., 2019) as the ETs can lead to downstream development (e.g., after TC 
Karl, 2016; Schäfler et al., 2018). Even if cyclones do not hit land, ocean waves can propagate 
over long distances and hit the coasts of Europe.  

Whether a TC approaches the extratropics is primarily determined by steering flow. If a TC is 
close to a bifurcation point in the flow (Riemer and Jones, 2014), large track forecast 
uncertainties and track errors can occur. Therefore, it is critical to correctly predict 
bifurcations in the steering flow and TC track towards these points. Magnusson et al. (2014) 
discussed an example of such sensitivity for TC Sandy (2012) and Magnusson et al. (2019) for 
TC Joaquin (2015), where small changes in the subtropical ridge caused very large differences 
in the future tracks of these TCs. 

A related uncertainty is phasing with the mid-latitude wave guide, where an upstream trough 
favours northward propagation into the extratropics. Correctly predicting the mid-latitude 
waveguide is crucial for capturing ETs. This sensitivity was highlighted by McNally et al. (2014), 
who found that satellite data over the northern Pacific influenced the predictions of landfall 
of TC Sandy. 

While TCs that undergo ET may create substantial impacts downstream over Europe, the 
majority of TCs do not undergo ET.  As was especially evident in 2020, several TCs could make 
landfall in the deep tropics or subtropics, spinning down quickly into a remnant low-pressure 
system. Other TCs weaken as they encounter high vertical wind shear or substantial low-
humidity air, which may occur in the tropics, especially in the extratropics. As a TC moves into 
the extratropics, it encounters much colder waters, removing the supply of thermal energy 
and moisture from the ocean, which is necessary to maintain the TC. 

In CLINT, we approach the ET problem in three different ways: 

1. 2-dimensional fields of TC activity in the northern part of the Atlantic can be predicted 
based on a set of predictors (either 2-dimensional fields or indices). The solution to 
this prediction problem is similar to that described in Section 2.4. 

2. Given that TC genesis is observed, the likelihood of it reaching high latitudes can be 
determined based on a set of predictors. 

3. Given that a TC reaches high latitudes, its impact in terms of weather extremes in 
Europe can be estimated (seasonal hindcast and climate projections).  
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In this section, we focus on (2), as (1) was discussed previously in this deliverable, and (3) will 
be reported later in CLINT WP7. In this section, we focus on the Atlantic basin, but depending 
on the degree of generalisation, the ML methods are transferable to other ocean basins in 
which TCs undergo ET (e.g., Northwest Pacific and Southern Indian Ocean). 

 

Figure 3.1: IBTrACS positions cyclones in the extratropical stage for April 2016-December 2022.  

3.2 Datasets, candidate drivers and target variable 

In this subsection, we describe the preprocessing of target values and predictors for the 
problem formulation “Given a TC genesis, what is the risk for it to reach high latitudes”. 

This method required: 

1. Definition of genesis instance. 

2. Definition of criterion to count if the target region is reached. 

3. Definition of predictors at the genesis time. 

The data periods were defined as 1980-2015 for training and validation and 2016–October 
2021 for the test period. 

For the observation dataset for TCs, the alternatives were either based on estimations from 
the National Hurricanes Centre (IBTrACS dataset) or from TCs tracked in reanalyses (e.g., 
ERA5; Magnusson et al., 2021). The advantage of IBTrACS is that the estimates are based on 
the best knowledge obtained from observations and human judgements. The disadvantage is 
the possible inconsistencies in time due to changes in practice. For ERA5, TCs were 
automatically tracked in atmospheric reanalysis ERA5 (Hersbach et al., 2020). The advantage 
here is the consistency of the method across time. One disadvantage is that the TC maximum 
wind is known to be underestimated by the reanalysis due to limited resolution and 
observation coverage. There could also be inconsistencies due to variations in the observation 
coverage during the reanalysis period.  
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In this report, we focus on the use of ERA5 as the observation dataset to keep the treatment 
of the ETs constant. Following common practice, we defined the TC genesis point as the first 
instance when the TC reached 17 m/s maximum sustained wind speed at 10 m height. We 
defined the target region to be north of 40N and between 98 W-0W, which agreed well with 
reported ET, as shown in Figure 3.1. If a TC at some point during its track passed inside that 
box, it counted as a true event (i.e., a TC that underwent ET). While the target variable was 
binary, all models produced a probability that indicated the likelihood that a given cyclone 
will undergo ET. 

For ERA5, the total number of TCs and the number that reached the target region in the 
training and test periods are given in the table below, together with the fraction. As can be 
seen from these numbers, the proposed train-test split preserved the fraction of ET cases in 
both subsets. 

Table 3.1: Total and train-test-split number statistics of all TCs and TCs reaching extratropical stage. 

  Total Train Test 

Total 481 390 88 

Reaching target 182 147 34 

Fraction 37.8 % 37.7 % 38.6 % 

 

The predictors were based on the TC properties at the genesis (position, intensity, day of the 
year, etc.) and climate indices from the CLINT-TS dataset (see D3.1). Examples of climate 
indices include SST averages, such as the Nino3.4 index and SST in the Tropical Atlantic (“main 
development region for TC”), and Euro-Atlantic weather regimes based on 500hPa 
geopotential height. There is an option to add beforehand a temporal filter to the indices. 

To benchmark the ML-based methods, we used two fundamentally distinct forecasting 
approaches. First, ECMWF ensemble forecasts (ENS) were used to compare the date-driven 
ML model with a physical model. Between March 2016 and July 2023, the ENS had a 
horizontal resolution of 18 km, but underwent several upgrades of the model and data 
assimilation. Based on automatic tracking (same as for ERA5 above), we examined the 
forecasts at the genesis time and counted the number of ensemble members (50 in total) that 
featured a TC in the target box during the next 15 days. The fraction of the ensemble that 
fulfilled the criteria determined the forecast probability. Second, the fraction of TCs 
undergoing ET in the training dataset (37.7 %) could be considered as a climatological forecast 
(CLIM), assuming the training sample represented the underlying distribution of the target 
variable and that there are no trends.  
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3.3 Skills and performance of existing forecasts 

Because the target variable is binary and forecasts are probability values, for the ET 
forecasting problem we used the same verification tools employed for the short-term TC 
activity predictions. Therefore, we refer to the third paragraph of section 2.4.3. 

A high ET fraction of 38.6% led to an equally high UNC of 0.237 (Figure 3.2), still close to 
BS=0.25, which was the value that a random forecasting approach would have resulted 
without any prior (e.g., climatological) knowledge. This demonstrated the large uncertainty 
associated with the forecasting problem. The CLIM model, being constant, has no 
discriminating ability; at the same time, it is by definition well calibrated, since its forecast 
probability is calculated from the underlying distribution of the target variable. In contrast, 
the ENS predictions exhibited considerable miscalibration, but their predictive ability to 
distinguish between ET and no-ET cases offset this by more than a factor of two, reducing the 
BS to 0.180. 

 

Figure 3.2: Brier score (BS) decomposition into uncertainty (grey), miscalibration (blue), and discrimination (red) for the two 
benchmark models. Resulting BSs are denoted by the vertical black lines. 

3.4 Algorithm      

3.4.1 Decision trees and random forests 

A decision tree builds a sequential chain of conditions that would favour one of the outcomes. 
We used the “DecisionTreeClassifier” and “RandomForestClassifier” models from the scikit-
learn package in Python. The only degree of freedom we explored was the depth of the tree 
(number of conditions). The choice of depth is a balance between stratifying the sample to 
get the most out of the training data and the risk of overfitting. 

3.4.2 Logistic regression 

For binary target variables, logistic regression models (Hastie et al., 2009) are a commonly 
chosen type of model that maps linear combinations of continuous predictor variables to a 
probability via a logit function. Regression coefficients are estimated by minimising a cost 
function maximum based on two terms: one corresponding to maximum likelihood 
estimation and the other applying an l2-regularisation, which keeps the coefficients of the 
predictors small and thus helps to prevent the model from overfitting. 

For the logistic regression model, a forward sequential predictor selection scheme was 
applied to the predictor pool to determine a subset that maximises the predictive skill over 
the training dataset. In each step, the predictor was added from the remaining pool, for which 
a predefined score was optimised in a 5-fold cross-validation applied to the training data. We 
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tested several scores and finally chose the AIC over the frequently used negative log 
likelihood, since it penalises the model for including too many features, and prevents 
overfitting. In a context of training data scarcity this allows a better generalisation. 

3.5 Results: ML-based forecasts and relevant drivers 

The results of the ROC analysis showed that the LOG model was the data-driven approach 
with the best potential predictive ability, followed by random forests (Figure 3.3a). While 
CLIM by definition follows the diagonal, indicating no skill, the use of a single decision tree did 
not perform much better. A similar ranking was also obtained when miscalibration was 
considered. All ML-based forecasts obtained a BS higher (i.e., worse) than the ENS, but lower 
(excluding the decision tree) than the CLIM. As revealed by BS decomposition, the LOG and 
random forests were better calibrated than the ENS, but were much less able to discriminate 
between ET and no-ET. The fact that random forests are usually superior to decision trees 
(owing to their ability to reduce overfitting without massively increasing bias-related errors) 
could be seen by the highly reduced miscalibration and enhanced discrimination. However, 
the best BS among all data-driven models was achieved by the LOG model. 

Figure 3.3: (a) ROC curves for all models with AUC scores in the legend. (b) As in Figure 3.2, but including the results for the 
ML models sorted by BS. 

From the statistics of the predictor selection process (Figure 3.4), conclusions could be drawn 
regarding the optimal number of predictors needed. This should be large enough to provide 
the model with the necessary predictive signals, but also small enough not to unnecessarily 
increase multicollinearity between predictors. Our choice to use the AIC for scoring results in 
only the latitude and longitude positions of TC genesis being included in the optimal subset 
(red curve). Employing the negative log loss, optimization would have been reached including 
the radius of maximum wind and standard deviations of anomalies of Nino3.4 and NAO 
indices (black curve). However, the small improvements gained with their addition were a 
sign of overfitting, which the negative log loss is prone to. Using the BIC would have led to 
decrease the number of selected features so that the optimum would already have been 
reached with the latitude of the genesis predictor. Given that the dynamical model still clearly 
outperformed the ML-based models, despite the larger miscalibration, and the generally low 
number of predictors being selected, the final predictor pool seemed to still lack relevant 
predictors. 
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Figure 3.4: Results of the sequential predictor selection applied to the logistic regression. Mean (line) and standard deviation 
(shading) of the negative log loss, the AIC, and the BIC as a function of the number of features. The dotted vertical line marks 
the optimal number of features identified for the corresponding score. 

3.6 Summary and outlook 

In the exploration of ML to predict whether a TC would reach high latitudes based on the 
properties at genesis time, we found it difficult to improve the ECMWF ensemble forecast, 
despite a positive frequency bias in the ensemble. The strongest influence was found to be 
related to the latitude and longitude of the genesis, which is reasonable particularly if a 
cyclone already forms at high latitudes. We found that mid-latitude flow and SST indices at 
the genesis time had a small influence on the chances of the TC reaching the target region. So 
far, the mid-latitude climate indices considered have been based on principal component 
analysis, which yields variance-maximising but rigid flow patterns. Since the prediction of ET 
is often subject to subtle local deviations from these large-scale patterns (e.g., phasing with 
trough and bifurcation points), we will develop and test more tailored indices. 

However, there are many degrees of freedom to explore this prediction problem, such as the 
choice of the model and model settings, index selection, and index smoothing. As a next step, 
best practices and method applications coming out from work on the other extreme events 
reported in this deliverable will be solicited to be tested on the ET prediction for TCs. 

Another future direction is to use the prediction from a dynamical forecast as an input 
predictor, which can either be a probability from the ENS or a binary result from a 
deterministic forecast (e.g., ERA5-based). However, this limits the sample size, which is 
already low. 
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4 HEATWAVES AND WARM NIGHTS 

4.1 Overview 

Temperatures beyond the threshold of human comfort are known to induce excess mortality 
in a range of climates (Perkins-Kirkpatrick et al. 2015). Meanwhile, temperature extremes can 
drastically reduce or alter the timing of agricultural production, while abrupt changes in 
temperature cause similarly abrupt changes in energy demand (Thomas et al. 2020; García-
Martínez et al. 2021; Zuo et al., 2015). Extreme temperatures are also precursors to other 
extreme climate events such as wildfires and droughts (e.g., Lesk et al., 2016). The timing of 
heat extremes, both in terms of seasons and time of day, plays a key role in the type of 
impacts. For example, above-normal nighttime temperatures have significant effects on 
human health, such as attenuated thermoregulation, exhaustion, and physiological effects 
favouring increased morbidity and premature deaths (Scoccimarro et al. 2017, Kendrovski et 
al. 2017; Garcia-Herrera et al., 2005). As a result, there are a growing number of indicators 
for extreme heat events, from heatwaves (HWs, prolonged periods of daily average or 
maximum temperature above a threshold) to warm nights (WNs, the equivalent for nighttime 
temperatures).  

The detection of extreme temperatures is crucial for the development of prevention plans 
and mitigation strategies that can minimise the risks associated with all types of heat 
extremes (e.g. Lowe et al., 2016). The variability, and therefore the potential predictability, of 
daytime and nighttime temperatures differs, with the latter being more sensitive to air 
humidity and cloud cover (Thomas et al. 2020; Luo et al. 2022). The skill of forecast systems, 
from short-term to seasonal, in detecting heatwaves has already been tested (e.g. 
Prodhomme et al., 2022). Early warnings provided by the current generation of operational 
seasonal forecast systems remain inhibited by poor representation of European summertime 
conditions, such as the representation of jet stream flows and persistence of weather 
patterns such as blocking (Domeisen et al., 2023). As a consequence of limited reliability of 
dynamical systems, efforts in recent years have turned to exploiting the power of Machine 
Learning methods to extract information on HW/WN drivers from observations/reanalysis. 
Such methods attempt to reduce the dimensionality, and therefore the computational 
expense, of the forecasting problem by using area-averaged time series (e.g. Zhang et al., 
2022) or modes of variability as predictors (e.g. Kämäräinen et al., 2019). 

In Task 3.2, the aims are to extend the validation of dynamical seasonal forecast skill to a 
wider range of heatwave indices and to develop ML techniques which provide more reliable 
forecasts of HW/WNs and improved explainability of their drivers. Three main activities, in 
line with the task aims, have taken place since the previous deliverable:  

1. Validation of warm night indicators in dynamical seasonal forecast systems (Section 
4.3). 

2. Development of a ML Feature Selection Framework for detecting HWs (Section 4.4). 
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3. Comparison of the variability and precursors of heat extremes via spatial clustering 
(Section 4.5). 

4.2 Datasets, candidate drivers and indices 

4.2.1 Datasets 

ERA5 (Hersbach et al., 2020) is the principal source of data used here for the development of 
data-driven forecasts, driver detection, and validation of dynamical forecasts of heatwaves 
and warm nights. While we typically exploit the original resolution of 0.25o, for the spatial 
clustering of candidate drivers, a resolution of 0.5o was used to reduce the computational 
expense of predictor clustering in the Feature Selection framework (see Section 4.4, for 
details and a list of variables used).  

The dynamical seasonal forecasting systems used for the comparison to data-driven methods 
(and for AI enhancement in future deliverables) are Meteo-France System 7, DWD System 
2.1, CMCC SPS3.5, and ECMWF SEAS5.1. These systems are the only members of the C3S 
ensemble to provide 6-hourly fields necessary to calculate warm-nights, namely 2m-dew 
point temperature, sea level pressure, and t2m temperature.  

A 2000-year paleo-simulation (MPI-ESM) has begun to be used in problems that benefit from 
an increased sample size (e.g., clustering of HWs in Section 4.5) (Jungclaus et al., 2017). This 
“past2k” simulation was performed with the MPI-ESM1.2-LR model, using ECHAM6.3 as its 
atmospheric and the MPIOM1.63 as its ocean component. A detailed description of the MPI-
ESM model and past2k simulation can be found in Jungclaus et al. (2014). The temperature 
and variables used to represent the candidate drivers were processed from a spectral T63 
grid, i.e. 192 × 96 grid points in longitude and latitude. 

4.2.2 Candidate Drivers 

In D3.1, a range of candidate drivers was identified from extensive literature to represent a 
range of timescales and local to regional phenomena that are known or expected to influence 
heat extremes over Europe. The approach to using candidate drivers in this Deliverable 
differed according to methodology. In the development of the Feature Selection framework 
(Section 4.4), a range of regional and global variables were clustered to reduce the 
dimensionality of the prediction problem and use the framework to identify those that 
contribute more to predictability. Indices of climate variability, such as NAO, were employed 
in the analysis of precursors to extreme heat events (Section 4.5). 

4.2.3 Indices 

A HW is defined as a persistent exceedance of the temperature over a threshold. In all 
activities reported here, the common definitions of persistence (three days or longer) and 
statistical threshold (90th percentile) (Barriopedro et al., 2023) are used. The reference period 
for the 90th percentile may vary depending on the data availability and application. As 
reported in D3.1, HWs are defined with a daily maximum 2m temperature, while WNs are 
defined using the average apparent nighttime temperature (between 23:00 and 06:00). The 
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apparent temperature is a function of relative humidity and therefore accounts for human 
discomfort.  

The following definitions are applied in this Deliverable, and are applied equally to HWs and 
WNs: 

● Daily Indicators:  

○ HW occurrence. Truth value of whether there is a heatwave (1) or not (0).  

○ HW intensity. The temperature anomaly of HW days relative to the 90th 
percentile.  

● Seasonal Indicators: 

○ Number of days above the 90th percentile in the target season (NDQ90). 

○ Number of HW days in the target season. 

○ HW Magnitude Index (HWMI): a measure of the strongest heatwave in a given 
season in terms of both duration and intensity (Russo et al., 2015). 

4.3 Skills and performance of existing indices and forecasts 

4.3.1 Heatwaves 

Prodhomme et al. (2022) showed that for Europe C3S systems generally outperform statistical 
models based on climatology or warming trends, although there is a large amount of 
heterogeneity in the forecast reliability. Here, the Lake Como region was used as a case study 
for the impacts of extreme events on water supply and crop production. In the Lake Como 
area HW forecasts are only marginally better than climatological forecasts (Prodhomme et 
al., 2022). The most skilful member of the CMCC-35 ensemble was able to capture forecasts 
of summer HW days (initialised in May) with a correlation score of 0.68. However, the 
ensemble spread was large (Figure 4.1), and as a result, the correlation score of the median 
was insignificant (0.18). Even the long-lasting HWs in 2003 and 2015 were severely 
underestimated by the dynamical system median. Disagreement in the ensemble spread 
inhibits the use of this system by climate services and makes the Lake Como region a suitable 
target for ML-enhancing of HW forecast. 

The measurement of seasonal forecast skill of extreme event detection is typically performed 
on seasonal indicators, such as the number of HW days, since these systems are not expected 
to provide accurate information on daily timescales. Skill of daily indicators is commonly 
tested with the F1-score, a measure of binary recall and precision of true positives (values 
range from 0 to 1, with 1 indicating perfect representation of the target data). To highlight 
this point, the CMCC-35 ensemble member with the highest seasonal skill score over Lake 
Como was found to have a very low F1-score for HW occurrence (0.12, Figure 4.2). Dynamical 
systems are generally unable to accurately capture the start and end times of HWs (Figure 
4.2). Instead, their value manifests in their ability to capture propensity (Figure 4.1). 
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Figure 4.1: Seasonal forecasts of the number of days of summer HWs in the Lake Como region over the 1993-2016 period. 
Values shown here are the annual sums of HW occurrence shown in Figure 1. The CMCC-35 ensemble spread for each year 
is represented by the box plots, and the median denoted (orange line).  

 

 

Figure 4.2: Seasonal forecasts of daily HW occurrence in the Lake Como region over the 1993-2016 period. Forecasts are 
taken from the CMCC-35 dynamical system for the summer period initialised on May 1st CMCC-35. The forecast shown (red) 
is the ensemble member with the highest correlation score of number of summer HW days (see Figure 4.1). ERA5 (black) 
data is used as the benchmark for validation. HWs are defined relative to the daily 90th-percentiles of the 1993-2016 
period.  

4.3.2 Warm Nights 

Prodhomme et al. (2022) validated the dynamical seasonal forecast skill of seasonal HW 
indicators over Europe. Within CLINT, a similar study was performed on extreme nighttime 
extreme heat indicators (Torralba et al., in review). Here, we present a summary of the results 
for WNs. In addition, the study also compared HWs defined with only  minimum daily 
temperature and average nighttime temperature. 
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Figure 4.3: Seasonal Forecast skill of warm nights over Europe. a) Domains: Northern Europe (NE), Western Europe (WE), 
Central Europe (CE), Eastern Europe (EE), Mediterranean (MED), Northern Africa (NAF), Middle East (ME), full European 
domain (ALL) b) Ensemble mean correlation values for the seasonal predictions of the b) HWMI  and c) NDQ90 based on the 
ATn. Results for the seasonal predictions from individual C3S seasonal prediction systems (CMCC-35, DWD-21, ECMWF-
SEAS5.1, MF-7) and their multi-model combination (MM) are shown for each region. The seasonal forecasts were issued on 
the 1st of May and the observational reference is ERA5. This assessment corresponds to the 15MJJA season in the 1993-
2016 period. Significant correlations at the 95% confidence level are marked with an asterisk. From Torralba et al. (in 
review). 

Similar to previous work on daytime HWs, we divided the European domain into seven regions 
and assessed the area-average WN correlation skill scores for a range of seasonal forecast 
systems (Figure 4.3). NDQ90 seasonal forecasts (Figure 4.3b) over the aggregated points in 
the Euro-Mediterranean domain were almost consistently better than the HWMI seasonal 
forecasts (Figure 4.3a) for the single regions, highlighting the decrease in predictability when 
applying the condition of temperature persistence to the HW definition. The predictions of 
HWMI showed potential in the Mediterranean region, where CMCC-35 and MM showed 
positive and significant correlations (Figure 4.3b). Similar results were obtained in Eastern 
Europe, where ECMWF-5 and MF-7 showed positive and significant correlations, and in the 
Middle East, where all systems considered showed the highest correlation values. As 
discussed in the previous section, limited skill was found in seasonal temperatures in 
Northern and Western Europe. The positive and significant correlations obtained for both 
HWMI and NDQ90 in several regions indicated the potential of seasonal predictions to 
provide useful information on WNs that can be used for the decision-making processes in 
different socio-economic applications. However, the potential application is region-
dependent, and the MM shows the majority of regions display insignificant HWMI skill.  

The seasonal prediction skill of HWMI and NDQ90 in specific regions such as Southern and 
Eastern Europe or the Middle East showed that these indices can be integrated into specific 
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climate services intended to reduce the impact of NHWs in vulnerable sectors such as public 
health or agriculture. Skill score patterns for WNs (defined with apparent temperature) across 
Europe were found to be greater than those of HWs and nighttime HWs (defined with 
standard temperature) only in specific locations across Europe (e.g. the Mediterranean 
coastal zone; Torralba et al; in review), indicating where variability in relative humidity 
provided greater sources of predictability. A more complete study of differences in 
predictability is the focus of Section 4.5.2. 

4.4 Algorithm: feature selection framework 

The data-driven forecasting framework is composed of two steps: dimensionality reduction 
of global variables, followed by feature selection to t identify the optimal combination of 
drivers. In the first step, the global clustering of specific variables (e.g., sea ice concentration 
and soil moisture) served to reduce the dimensionality of the problem and allowed the 
potential identification of local and regional dynamics crucial to the occurrence of European 
heat extremes (Figure 4.4). In the second step, a wrapper combining Extreme Learning 
Machines and the Coral Reef Optimization (CRO) algorithm (Salcedo-Sanz et al., 2014; 2017, 
Pérez-Aracil, J., 2023) was used to select the clusters of the different variables (features) that 
provided the optimal detection skill (F1-score) for the target time series: heatwave/warm 
night occurrence at Lake Como. The optimization is based on three targets: variable cluster, 
lead-time, and sequence length. The framework allowed the quantification of the relative 
importance of each variable and cluster, and crucially, to identify the time lag from short-term 
to seasonal time scales (up to 180 days). In Milestone 22, we provided a description of the 
general set-up. In Deliverable 2.4 (due Q1 2024) we will provide a fuller description of the set-
up, including a sensitivity analysis of hyperparameters. Here, we focus on the initial efforts to 
adapt the framework to create forecasts and provide an indication of the capabilities of the 
framework in detecting HWs.  

The following variables were used as candidate drivers. MSLP and z500 represented 
atmospheric circulation, which can serve as both short-term predictors of surface atmosphere 
conditions or indications of teleconnections on longer spatial and temporal time scales, such 
as Rossby waves. SST represented the slow varying influence of ocean-atmospheric fluxes and 
their impacts on circulation, such as North Atlantic SSTs (Cassou et al. 2005; Duchez et al. 
2016), ENSO (Zhu et al. 2015; Wulff et al. 2017), AMO (Della-Marta et al. 2007), and PDO 
(Kenyon and Hegerl 2008). SICreduction in late winter, which is known to influence springtime 
temperatures over Europe through changes in atmospheric heat flux and circulation (Zhang 
et al., 2020), was also included. Same was performed for precipitation (Stefanon et al., 2012) 
and soil moisture (Prodhomme et al., 2016), that are also precursors of European heatwaves. 
Outgoing Longwave Radiation was used as a proxy for blocking, MJO, and cloud cover 
(Rodrigues et al., 2022). In the case of T2M, ocean values were masked to avoid repeating the 
information provided by the SST clusters. The identification of relevant drivers using the 
framework is discussed in Section 4.5. 

In the reported set-up, we used an arbitrary but low number of clusters (i.e., five per 
region/variable, Appendix) to perform preliminary tests. The time series of the average values 
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of the variables in these clusters served as the predictor data. The target data were Lake Como 
HW occurrence, from ERA5, over the period 1950-2010, using the 90th percentile over the 
1981-2010 period as a threshold (see black squares in Figure 4.5). The CRO algorithm was run 
15,000 times in 10 independent runs to provide a total of 150,000 solutions (see Milestone 
11 for how validation scores increase with the number of runs). The concatenation of 
independent runs is important, given the inherent randomness of the initial solutions used in 
the evolutionary algorithm. A logistic regression model was used to train each solution, and 
the output was used to define the F1-score. Given that the algorithm tests lag times from 0 
to 180 days, the forecasting set-up was effectively to “nowcast” i.e. use predictor data from 
the short-term. Thus, the following results cannot be fairly compared to the dynamical 
systems described in Section 4.3.  

 

 

Figure 4.4: Schematic of Feature Selection Framework. First, the dimensionality of the problem was reduced by clustering of 
candidate driver variables (e.g. MSL; not all are shown here). The area-average of each cluster was used as input to the CRO 
optimisation algorithm, which worked to identify the best combinations of predictors to optimise F1-skill score of a logistic 
regression model (or other, ML models). The optimal solutions could then be used as training for other ML models to 
recreate the test data.  

The best solution for Lake Como HW occurrence among the 150,000 solutions during the 
validation period had an F1-score of 0.54. The corresponding test period F1-score for the 
same solution was 0.36. The difference in the validation and test period scores is considered 
a measure of model overfitting to the training data. Although the optimization algorithm was 
trained to optimise with a Logistic Regression model, the solutions could be used to train 
other, more sophisticated, ML, or DL models, with the aim of finding more accurate forecasts 
(Table 4.1). Taking the best solution and using it to train the Gradient Booster Classifier (GBC) 
model increased the test period F1-score from 0.36 0.6. This particular model reproduced 
some of the longer HW episodes, such as those in 2015, but showed a tendency to 
overestimate some others (e.g., in 2022; Figure 4.5). Seasonal indicators could be constructed 
from the forecast HW occurrence (Figure 4.6). GBC had the highest F1-score and displayed 
one of the highest correlation scores. SVC had the highest correlation but drastically 
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underestimated the number of HW days each year. This was not optimal, since a reliable ML 
model should display high skill for both daily and seasonal indicators. Furthermore, as shown 
in Table 4.1, the relationship between skills for daily and seasonal indicators was not linear.  

In the implemented preliminary set-up, the F1-scores shown here resembled those of the 
seasonal forecasts for the 1993-2016 period. The scores for the CMCC-35 ensemble median 
and the worst performing ML model (SVC) were 0.18 and 0.10 respectively, while the scores 
for the best-performing CMCC-35 ensemble member and the GBC model were 0.678 and 
0.60, respectively. Two important differences were found, in addition to the time period of 
the study. First, the ML models were in a nowcasting mode, benefitting from driver 
information on short timescales. Dynamical systems, on the other hand, have initial 
conditions for the 1st May and are provided no extra observation-based information during 
the summer period. Ideally, ML models should have had a considerably higher F1 score, 
reflecting near-perfect reconstruction of the HW record. However, the predictor data were 
based on averages over regional-scale areas. Thus, the (spatial) dimensionality reduction was 
considerably larger than the grid cell size of the seasonal forecasts (1o). It is therefore 
encouraging that the ML models could recreate HW occurrence with F1-scores of up to 0.6.  

Table 4.1: F1 scores of various ML models using the best solution from the evolutionary algorithm run.  

Method F1-score (daily) Correlation (Seasonal) 

Logistic Regression 0.36 -0.11 

SVC 0.10 0.51 

Decision Tree Classifier 0.44 0.30 

Random Forest Classifier 0.12 0.68 

K Neighbours Classifier 0.11 0.32 

AdaBoost Classifier 0.49 0.08 

MLP Classifier 0.2 0.26 

Gradient Boosting Classifier 0.6 0.68 
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Figure 4.5: Gradient Booster classifier forecast of daily HW occurrence in the Lake Como region over the 2011-2022 test 
period. The forecast shown (red) corresponds to the solution with the highest validation score from the evolutionary 
algorithm. ERA5 (black) data was used as the benchmark for validation. HWs were defined relative to the daily 90th-
percentiles of the 1981-2010 period. 

 

 

Figure 4.6: ML forecasts of the number of HW days in the Lake Como region over the 2011-2022 test period. The solution 
with the highest validation score from the evolutionary algorithm is used as input for various ML models. HWs are defined 
relative to the daily 90th-percentiles of the 1981-2010 period. 



 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and  
adaptation design using machine learning 

EU H2020 Project Grant #101003876 

 

48 
D3.2 EXTREME EVENTS DETECTION 

Using identical hyperparameters, set-up, and number of evaluations, equivalent forecasts 
were made for different extreme heat indicators for Lake Como to understand the capabilities 
and limitations of this method. Different indicators presented different levels of data 
imbalance, defined as the proportion of extreme event days in the target data. For example, 
using NDQ90 instead of HW occurrence increased the number of extreme events by 
approximately 40%, because this does not filter heat extremes by duration. In terms of data 
imbalance, the percentage of extreme event days in the dataset changed from 8.3% to 11.7%. 
Although the validation score was equal for both experiments, the test score increased to 
0.48 for NDQ90; similar increases were seen in the average of the top 10% of solutions. 
Overfitting seemed to have been reduced and test scores increased, implying that NDQ90 
detection is an easier problem to solve. The difference in skill quantified the loss of 
predictability when considering persistent heat extremes.  

There are fewer WN on records in Lake Como compared to HWs (Table 4.2), and this 
imbalance appeared to impact ML detection capabilities. Although the best validation scores 
were higher than those for HWs, the corresponding test scores were lower, indicating a higher 
degree of overfitting. Even the GBC method, which considerably boosted scores for HWs, 
performed similarly to the Logistic Regression. It should be noted that the lower number of 
WN events might not be the only reason for the reduction in skill; this could indicate that the 
predictor data used were insufficient to detect apparent temperature extremes. Temperature 
was used as a predictor and, as shown in Section 4.5, was unsurprisingly a key predictor for 
HWs in the short term. We did not include relative humidity as a predictor, which is a variable 
that may similarly impact WNs in the short term (especially given that WNs are defined with 
RH). 

Table 4.2: Solutions to experiments on diverse heat extremes in the Lake Como region. Lake Como HW occurrence is depicted 
in Figure 4.6. NDQ90 refers to the number of days above the 90th percentile (1981-2010). WNs are the equivalent to HWs but 
with the average apparent temperature at night. S2S removes the first 20 days lag time as possible solutions to the 
evolutionary algorithm. 

 

A crucial aim of this Task was to develop a seasonal forecast mode for this framework as 
opposed to the nowcasting setup. As explored in Section 4.5, the strongest sources of ML 

 Total HW 
occurrence (total 
days = 7380) 

Best F1-score 
(CV/Test) 

Average F1-score 
of top 10% 
(CV/Test) 

Highest F1-score 
(Method) 

Lake Como HWs 612 0.54/0.36 0.49/0.39 0.6 (GBC) 

Lake Como 
NDQ90 

861 0.54/0.48 0.52/0.48 0.64 (GBC) 

Lake Como WNs 517 0.60/0.32 0.53/0.33 0.37 (GBC) 

Lake Como S2S 612 0.3/0.24 0.25/0.21 0.28 (DTC) 
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model predictability come from variable clusters that impact HWs in the short term, as 
opposed to those on sub-seasonal to seasonal (S2S) timescales. We re-ran the optimization 
algorithm with the Lake Como HW data but forced it to ignore lag times of less than 20 days 
to create a preliminary seasonal-style forecast. This set-up was not yet comparable to 
dynamical systems initialised in May, as lag times of 20 days or longer for HWs later in the 
summer (i.e., August) still correspond to the summer period. In both the Logistic Regression 
and highest-performing models, the F1-score of the validation and tests was halved. The fact 
that a large portion of the skill comes from short lag times was not surprising, but it is also 
encouraging that half of the skill is derived from S2S drivers. 

4.5 Results: relevant drivers 

Two approaches for identifying extreme heat drivers were explored. The first was the 
continuation of the feature selection framework used to perform HW detection on the lake 
Como case study. Here, the clusters chosen to make optimal detection are reported. The 
second was a more “traditional” analysis of composites of atmospheric conditions, a spatial 
clustering of HW patterns was used to define regional drivers. 

4.5.1 Feature Selection Framework: Results for Lake Como 

As described in the previous section, the feature selection framework optimised the ML 
forecast F1-scores based on three dimensions of the solution-variable cluster, lead time, and 
sequence length. These dimensions were interpreted as potential drivers of summertime Lake 
Como HWs. In early tests (Milestone 22), an optimal solution (from a separate run of the 
optimization algorithm) was found to choose local and short-term drivers of HWs, such as 
T2m and Z500, in the clusters that contained the Lake Como region. Here, using a wider 
sample of data (the top 10% of the 150,000 evolutions), optimised solutions for Lake Como 
HW forecasts (corresponding to an average F1-score of 0.49) consistently chose the nearby 
T2m and Z500 clusters, as well as OLR from the Eastern Pacific and MSLP over the subpolar 
North Atlantic (Figure 4.7). The local dependence on temperature and atmospheric circulation 
is intuitive, while the OLR and MSLP clusters, given their locations, most likely correspond to 
representations of ENSO and NAO, respectively. However, these interpretations still need to 
be corroborated. Applying a further step of filtering, by taking the solutions that appear in 
more than 90% of the optimal solutions shown in Figure 4.7, we found that only these four 
solutions appear. The implications were that the majority of skill came from these clusters 
(hereon denoted as “VIP” clusters) and that the other potential predictors were essentially a 
source of noise.  

Prior studies, however, have shown that extreme temperature predictability is not limited to 
the three VIP clusters (e.g., Stefanon et al., 2012).  To explore this seemingly contradictory 
result, we repeated the experiment with the VIP clusters removed (NOVIP). The optimal 
solution for logistic regression was found to have only a slightly reduced F1-score, indicating 
that reconstruction of the target data was nearly as skillful without the VIP clusters (ALL vs. 
NOVIP; Figure 4.8). Moreover, ML methods using the optimal solutions of the NOVIP 
experiments were able to match or even outperform the ALL experiments (see GNB in Figure 
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4.8, for example). The clusters that appeared most in the NOVIP optimal solutions included 
local precipitation (tpEurope_cluster3) and European soil moisture (sm1Europe_cluster1 and 
sm_Europe_cluster2). Both could be linked to summer HWs in Europe (Stefanon et al., 2012, 
Prodhomme et al., 2016). We drew three conclusions from the NOVIP-ALL comparison. Firstly, 
the ability of clusters to provide predictive skill depends greatly on the models used. By using 
AdaBoost, for example, the NOVIP experiment was able to provide more skillful 
reconstruction than the ALL experiments. Secondly, NOVIP experiments showed that 
predictors with longer lag times can permit a similar quality of HW detection compared to 
short-term predictors; the peak skill from precipitation comes from 22 days prior to HW (in 
NOVIP), compared to the < 10 days for local temperature in ALL. This is a potentially promising 
result for the development of S2S forecasting applications, which cannot make use of short-
term information. Lastly, the equivalent skills between NOVIP and ALL imply that equivalent 
information was provided by the least discarded clusters in both experiments. For example, 
local temperature (the least discarded in ALL) and precipitation (the last discarded in NOVIP) 
may behave in a highly correlated way prior to HWs (e.g., Stefanon et al., 2012). Thus, the 
optimization algorithm must choose between clusters which effectively represent the same 
driving process. Further tests are necessary to interpret the algorithm's capability to 
differentiate between similar clusters. 

Figure 4.7: Solutions to optimisation of Lake Come HW occurrence predictors. The data shown corresponds to the top 10% 
of solutions by validation period skill (corresponding to an average F1-score of 0.49; Table 4.2). The colorbar represents the 
number of solutions in which the cluster and lead time is used. Maps of the clusters are shown in Appendix 4. 
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Figure 4.8: ML forecast scores using the optimal solution from two independent runs of the optimisation algorithm: using all 
clusters (ALL - grey) and excluding the most-frequently picked variables from the ALL run (NOVIP - green).   

4.5.2 Spatial Clustering of Heat Extremes: common drivers on regional-scales 

HWs at different locations are expected to be influenced by different drivers; however, 
certain combinations of driver states may lead to HWs in a larger area. To reduce the task of 
identifying drivers for a potentially infinite number of data points to a reasonably generalised 
one, an approach was chosen to find the dominant, recurrent, spatially coherent HW patterns 
over Europe. Drivers can then be identified for each of these larger-scale HW patterns, thus 
generalising the results obtained for local case studies such as Lake Como. To detect the 
dominant HW patterns over Europe, a clustering method was applied to cluster warm days, 
that is, exceedances of the 90th percentile of daily maximum 2m-temperatures, in ERA5 
(1950-2022) and the MPI-ESM past2k simulation. As in Prodhomme et al. (2022), a procedure 
by Mahlstein et al. (2015) was followed, where a polynomial regression was applied to 
smoothen the 90th percentiles computed for each day in summer (MJJA).  

While the clustering used in Section 4 was designed for feature selection and, hence, to 
identify potential local dynamical HW drivers, the clustering presented here was to reduce 
the dimensionality of the HWs themselves, in order to identify drivers at a regional scale. The 
clustering method of choice was the Simulated Annealing and Diversified Randomization 
(SANDRA) scheme (Philipp et al., 2007). SANDRA is based on conventional k-means clustering 
but implements two additional concepts: the process of simulated annealing allows fields to 
be temporarily assigned to certain clusters, even though this assignment might result in a 
temporary decrease in the overall data partitioning quality. In SANDRA, simulated annealing 
is repeated a large number of times under the concept of diversified randomization, which 
means that the starting clusters as well as the ordering of input fields were randomised 
throughout the iterative process of checking and reassigning. Therefore, SANDRA can 
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overcome many of the limitations of other methods, leading to clusters closer to the global 
optimum. SANDRA was first developed to classify large-scale atmospheric circulation fields 
(represented by sea-level pressure or geopotential height maps), and, to our knowledge, its 
CLINT application in the context of HWs is novel. 

Sensitivity tests were performed to determine an ideal number of clusters with both high 
intra-cluster similarity and low inter-cluster similarity. Finally, five clusters computed 
separately for the northern and central/southern European domain fulfilled these conditions 
best (Figure 4.9). The northern domain resulted to comprehend HWs over northern, 
southern, and whole Scandinavia as well as the Baltic regions, respectively. On the other hand, 
the southern domain showed HWs clusters centred over western Europe (France/Spain), 
central Europe, northeastern central and southeastern Europe. In both domains, more than 
15% of all summer days (MJJA) could be assigned to one of these clusters, whereas the 
remaining days were classified in the no-heatwave cluster, respectively. For the following 
analysis, based on heatwave clusters, a heatwave is defined as a period of at least three days 
being assigned to the same HW cluster. 

Figure 4.9: Clusters of daytime and nighttime HWs over Scandinavia and Europe. Using ERA5 over 1950-2022. Rows 1 and 3: 
Daytime HWs (Tmax). Rows 2 and 4: Nighttime HWs (Tmin).  

The patterns of HW clusters obtained from the past2k simulation were generally very similar 
to those computed from ERA5, although the order of the clusters (determined by their 
occurrence frequencies; the most frequent cluster is ranked first) varied slightly. The 
sensitivity to the climatology period used to compute the 90th percentile of daily maximum 
temperatures was tested in ERA5. In the southern domain, the effect of the underlying 
climatology resulted to be very small, and the clusters computed from anomalies with respect 
to percentiles based on either 1950-2022 or 1981-2010 were found to be very similar in terms 
of spatial pattern, maximum intensity, and the number of days assigned to them. In the 
northern domain, the order of the first two HW clusters was affected by underlying 
climatology. The northern domain clusters computed from the 2000-year past2k simulation 
showed the same order as that in ERA5. In the southern domain, the two eastern European 
clusters were centred slightly off the ones in ERA5, while the central European cluster 
occurred more frequently than in ERA5. 
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To identify potential physical drivers for the individual HW clusters, a classical composite 
analysis was performed, where a large set of different variables and derived indices were 
tested for their connection to the occurrence of the HWs. Maps, as shown in Figure 4.10 
(upper left), for geopotential height at 500hPa (GPH500) averaged over the one-week period 
before the onset of all northern Scandinavian HWs were produced for all HW clusters using 
mean sea level pressure, geopotential height at different pressure levels, sea surface 
temperatures, sea ice, and soil moisture over the North Atlantic/Europe area. Time lags of up 
to several months before the onset of HWs were analysed.  

Figure 4.10: Composites of variables prior to HWs.  First row: GPH500 one week before and NAO index around northern 
Scandinavian heatwaves. Second row: PCs of EOF4 and EOF5 of GPH500 anomalies over the North Atlantic around western 
European (left) and Baltic (middle) HWs; frequency of southern Scandinavian HWs dependent of ENSO state in March.  

From the example shown in Figure 4.10 (upper left), the well-known connection between a 
high-pressure system and an HW occurrence in the same region was confirmed. Furthermore, 
a connection between HWs over Scandinavia and the North Atlantic Oscillation (NAO) was 
indicated by the negative GPH500 anomalies close to Iceland, together with the positive 
anomalies south of them. This connection could also be seen when looking at the NAO index 
prior to HW onset (Figure 4.5, upper right), which showed a clear upward trend from around 
two weeks before the onset of Scandinavian HWs onwards. This upward trend appeared even 
earlier (~3.5 weeks) before HWs over southern Scandinavia (cluster 3 in the northern domain) 
and around the same time before HWs over western Europe (cluster 3 in the southern 
domain). 

The NAO index was computed as the principal component (PC) of the first empirical 
orthogonal function (EOF) of the North Atlantic GPH500 anomalies. PCs with higher EOFs, 
which represent variabilities such as those stemming from the East Atlantic pattern, were also 
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tested, and some of them indicated a potential connection to individual HW patterns, such as 
PC4 for Western European HWs and PC5 for Baltic HWs (see Figure 4.10, second row). 

Composite maps and time series, such as those shown in Figure 4.10, upper left, were 
computed for both ERA5 and the past2k simulation. While there are strong similarities 
between the datasets, for example the importance of the NAO for HWs in specific regions, 
other variables differ in their signals prior to the HW onset. These differences, which include 
different SST signals in the North Atlantic, are yet to be understood. Differences are also seen 
in a potential connection between the El Niño Southern Oscillation (ENSO) in spring and the 
occurrence of certain HW clusters, which is suggested only from the long model simulation, 
but not from the shorter reanalysis dataset (see Figure 4.10, lower right, as an example). By 
understanding the reasons for these differences, deeper insight into the underlying physical 
mechanisms in the development of HWs at different locations can be obtained.  

We also began to analyse potential drivers not only of daytime HWs, but also to conduct a 
systematic comparison of warm nights and nighttime HWs (Section 4.2). The differences 
between extremes in the daily temperature maxima (HWs) and minima were explored. 
Cluster patterns of daytime and nighttime HWs were generally very similar in the northern 
domain but, as expected, were less intense during the night (Figure 4.9). The same was found 
to be true for nighttime HW intensity in the southern domain, where not all daytime HW 
patterns had equivalents at nighttime. Similarities and differences could be inferred for the 
role of the NAO in daytime and nighttime HWs (Figure 4.11). More nighttime HWs occurred 
in summers after positive NAO phases in March. This effect was observed throughout summer 
and resulted to be similarly consistent after positive NAO phases in February for nighttime 
HWs, but slightly weaker and especially not as strong in February for daytime HWs.  

Figure 4.11: NAO phase prior to summer HW/WNs. Left: Frequency of nighttime HWs during the summer based on all years 
(green), years in which NAO in March (mon3) was positive (red) or negative (blue). Nighttime (middle) and daytime (right) 
HW frequency anomalies after positive (respective lower left triangles in each square; red-blue color scale) and negative 
(respective upper right triangles in each square; brown-green color scale) NAO phase in spring and winter months before 
HW onset. 

4.6 Summary and outlook 

Here we report demonstrate progress on the main three aims of Task 3.2. Firstly, validation 
of warm night indicators in dynamical seasonal forecast systems was performed in a 
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consistent way to equivalent works on (daytime) HWs (Section 4.3.2) Prodhomme et al., 
2022). Secondly, a ML feature selection framework (Section 4.4) was developed to detect 
drivers of extremes and reconstruct the daily HW record. Lastly, we performed a comparison 
of the variability and precursors of heat extremes via spatial clustering of the events (Section 
4.5). The work on dynamical system validation provided an indication as to where forecast 
enhancement efforts, using the feature selection framework, should be made. Meanwhile, 
the physical explainability of both dynamic and ML-based predictability was explored with the 
spatial clustering of the events.  

Following the validation of dynamical seasonal forecasts of both daytime (Prodhomme et al., 
2022) and nighttime (Torralba et al., in review) temperature extremes for C3S systems, we 
obtained enough information regarding target identification for data-driven forecasts or ML 
enhancements to dynamical systems. The large ensemble spread in the Lake Como region, 
typical of the heterogeneity of dynamical forecast reliability across Europe, is representative 
of the current obstacles to the mid-latitude predictability of heat extremes.  

The two-step feature selection framework presented here provided forecasts of heat 
extremes and a level of explainability (relevant clusters and timings). Preliminary results 
showed the capacity to recreate HW records with reasonable skill, considering the 
dimensionality reduction. Future work will explore changes in skill with dimensionality (i.e., 
the number of clusters used). In principle, this framework can be extended to other target 
data and extreme events. Other means to reduce dimensionality include target and pre-
defined candidate drivers (e.g. Zhang et al., 2022). The optimization algorithm can select from 
a range of candidate drivers, thereby uncovering new drivers. Manually defined drivers of 
HWs will need to change depending on the season. To adapt to other target variables or times, 
no adjustment to the method described here needs to be made. However, much continued 
development of this method is underway: refining the number of clusters to explore the effect 
of dimensionality reduction, applicability to different heat extremes (e.g., WNs), 
representation of trends linked to global warming, representation of teleconnections, and 
propagating wave patterns (e.g. complex EOFs to represent Rossby waves; Majumder et al., 
2019). 

A crucial application of this method will be the creation of data-driven seasonal forecasts. The 
results shown here mostly correspond to a nowcasting mode of the framework, in the sense 
that predictor information from the summer is not omitted (unlike in a dynamical forecast 
initialised in May). Thus, we cannot yet provide a comparison to dynamical system skill. While 
we demonstrated that removing the short-term (<20 days) information from the algorithm 
drastically reduces skill, there is still room for improvement over dynamical systems in regions 
with very poor dynamical skills, such as Lake Como. We will explore changes in the set-up to 
provide a seasonal forecast version of the framework. First, a data-driven approach that 
learns from predictors prior to April can be compared with dynamical forecasts initialised in 
May. Second, the predictor output of dynamical systems will itself be used to make enhanced 
dynamical forecasts, with the aim of reducing the ensemble spread or choosing the optimal 
ensemble members. Moreover, advances in the parallelization of the framework will speed 
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up the optimization algorithm (to be described in Deliverable 2.4) and make a pan-European 
application of the method more feasible.  

The exploration of HW and WN drivers using more “traditional” methods, such as composite 
analysis, can provide us with an indication of which drivers/indicators the data-driven 
approach could benefit from. However, the suggested impacts found so far, such as the 
potentially greater impact of NAO on WNs compared to HWs, will require further 
investigation.  
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5 EXTREME DROUGHTS 

5.1 Overview  

Drought is one of the costliest natural hazards, causing extensive damage and affecting a 
significant number of people (Wilhite, 2000). For this reason, and because of the ever-
increasing severity and frequency of this phenomenon in recent decades (Chiang et al., 2021), 
the interest in drought monitoring, prediction and risk analysis is growing (AghaKouchak et 
al., 2023). The first crucial step in reducing the damage caused by droughts is to detect them.  

Drought detection is based on the analysis of a series of drought indices that represent the 
conditions of different components of the hydrological cycle (e.g., precipitation, soil moisture, 
and river flow) that are associated with a particular type of drought. Drought indices are 
quantitative measures that characterise drought in terms of intensity, onset, termination, 
duration, and severity by assimilating data from one or several variables into a single 
numerical value. These indices generally represent statistical anomalies of the current 
situation with respect to the long-term climatology at a given location and period and thus 
provide a measure of the probabilistic severity of a given event.  

5.2 Datasets and indices 

The computation of drought indices requires a time series of different hydroclimatic variables 
over the Pan-European domain. The European Hydrological Predictions for the Environment 
model (E-HYPE; Hundecha et al 2016), a semi-distributed hydrological model, combined with 
HydroGFD2.0 (Berg et al 2018) reanalysis data represents a suitable dataset for this analysis, 
as it provides the following data: 

● Precipitation and temperature obtained from HydroGFD2.0 reanalysis. 

● Simulations of evapotranspiration, streamflow, and soil moisture were produced as 
outputs of the E-HYPE model forced with HydroGDF2.0. 

HydroGFD is a merged dataset of historical precipitation and temperature from 
meteorological reanalysis and global observations. The reanalysis system from ECMWF 
(European Centre for Medium Range Weather Forecasts) uses atmospheric and surface 
observations to reproduce the observed weather and climate as closely as possible on a global 
scale. However, the reanalysis product has systematic errors (biases) that prevent its direct 
use in hydrological models. In fact, reanalysis data are known to contain biases due to errors 
in the underlying weather forecast model. For this reason, there is the need for bias 
correction, in order to bring simulated capacity factors in line with reality. The bias-
adjustment for ECMWF seasonal forecasts was performed using a modified version of the 
distribution based scaling (DBS) method (Yang et al 2010) to HydroGFD as the reference. 

The E-HYPE model (the HYPE model version for European basins) developed by the Swedish 
Meteorological and Hydrological Institute, is based on a semi-distributed, process-based 
approach where the hydrological system is represented by a network of sub-basins. It 
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simulates components of the water cycle (i.e., snow accumulation and melting, 
evapotranspiration, soil moisture, streamflow generation, groundwater recharge, and routing 
through rivers and lakes) using a daily time step. 

Statistical indices are currently the most commonly used tools for the detection of drought 
events. CLINT aims to advance traditional drought detection by defining AI-enhanced, impact-
based drought indices that link the observed impacts of extreme droughts (e.g., reduction in 
electricity production or crop failures) with the candidate drivers of the event, including 
climatic, meteorological, and hydrological variables over different spatial and temporal scales.  

However, traditional indices do not consider some relevant factors that may actually lead to 
impacts, which are ultimately determined by a complex set of social, economic, and 
environmental factors. Therefore, it is important to explore the link between drought indices 
and their impact.  

In total, the analysis focuses on the calculation of eight statistical indices focusing on the 1, 3 
and 6 months scale: 

● Standardised Precipitation Index at 1-month scale (SPI-1) and 3-months scales (SPI-3). 

● Standardised Precipitation and Evapotranspiration Index at 1-month scale (SPEI-1) and 
3-months scale (SPEI-3). 

● Soil moisture anomalies at the 1-month (SMA-1), 3-months (SMA-3), and 6-months 
(SMA-6) scales. 

● Standardised Streamflow Index at 6-months scale (SSI-6). 

The E-HYPE combined with the HydroGFD2.0 reanalysis were used for the computation of 
these indices for each month between 1993 and 2018 and for every sub-basin (35,408 in 
total), as reported in Figure 5.1. 

To test the skill of the indices, the drought events detected were compared with the Fraction 
of Absorbed Photosynthetically Active Radiation (FAPAR) anomaly index. FAPAR is a 
biophysical variable derived from satellite observations and monitored by the European 
Drought Observatory (EDO), which measures the proportion of incoming solar radiation in the 
photosynthetically active radiation (PAR) range (400-700 nm) that is absorbed by the 
vegetation canopy of a particular area. Hence, the higher the FAPAR, the higher the 
photosynthetic activity, indicating a better state of vegetation. In this sense, the FAPAR 
anomaly (FAPAN) can be considered a proxy for drought impact. 

5.3 Skills and performance of existing indices 

Considering the large gradient of topography and climate conditions in the pan-European 
domain, a quantitative analysis was performed on predefined hydrological clusters among 
the sub-basins. Building on the work of Pechlivanidis et al. (2020), the E-HYPE sub-basins were 
divided according to their hydrological behaviours, and 15 streamflow signatures from the E-
HYPE hydrological model setup were categorised, resulting in 11 clusters of different sizes and 
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variable distributions in the signatures. Figure 5.2 shows their spatial distribution, which did 
not necessarily include sub-basins that are geographically close. The properties that 
characterise the clusters are as follows: (i) key streamflow signatures, (ii) geographical 
domains, and (iii) dominant hydrological processes.   

 

Figure 5.1: Occurrence of droughts (left) and mean duration of droughts measured in months (right) in 1993-2018, 

according to the different statistical drought indices.  

A qualitative comparison between the statistical drought indices and the FAPAN index was 
produced in the form of a heatmap (Figure 5.3), which can also be used to investigate whether 
the drought events detected by these indices are aligned with each other. The example 
reported here refers to cluster 10 (see Appendix A5.1 for the other clusters). Each row in the 
figure represents a specific index, whereas on the x-axis, 312 months between 1993 and 2018 
were reported. Each pixel was filled with a colour according to the result obtained in that 
specific month by each index. Red pixels denote identified drought events, and dark red pixels 
refer to extreme drought events. Not Available values (NA) are marked in grey; we have a 
long series of NA at the beginning of the time period for FAPAN since this index has been 
implemented in EDO since 2001. 
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Figure 5.2: Spatial distribution of Clusters. The 11 clusters are identified by ascending numbers from 1 to 11.  

 

Figure 5.3: Heatmap: Cluster 10 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is May 
2001, month 200 is September 2009, month 300 is January 2018).
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Figure 5.4: Scatterplot matrix: Cluster 10.  

The FAPAN trajectory showed less intense drought events than those identified by statistical 
indices. This result is consistent with the analysis of the other ten clusters. 

Quantitatively, these discrepancies between the statistical drought indices and FAPAN were 
confirmed using the scatterplot matrix (Figure 5.4). The figure shows both scatterplots (below 
the main diagonal) and correlation values (above the main diagonal) between the different 
indices, and the last column reports the correlation values between the FAPAN and the 
statistical drought indices. Considering the last column, the maximum correlation did not 
exceed 0.2 (0.17 between SPEI-1 and FAPAN), suggesting that the statistical drought indices 
failed in detecting drought impacts in these sub-basins. Similarly, a low correlation between 
the statistical drought indices and FAPAN indices was identified for the other clusters. These 
low correlation values are probably due to the discrepancies between the processes captured 
by the drought indices that refer to drought drivers and the impacts represented by the 
FAPAN, as well as to the complex dynamics linking drivers to impacts. Indeed, it is  possible 
that during a meteorological drought captured by the SPI, the impacts on vegetation could be 
mitigated by the presence of water storage or groundwater irrigation (Zaniolo et al., 2018). In 
contrast, relevant impacts may have been registered in months when no meteorological 
drought was detected because of the challenges in irrigation supply. 

5.4 Algorithms  

The traditional indices analysed in the previous section failed to detect the drought impacts 
represented by the FAPAN values. In this context, the FRamework for Index-based Drought 
Analysis (FRIDA) was used to support the construction of new composite drought indices that 
could be tailored to the unique hydrological and meteorological conditions of a particular 
region, thus better capturing the impacts of a drought event. 
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Table 4.1: Set of candidate input features for W-QEISS. 

 

Figure 5.5: FRamework for Index-based Drought Analysis (FRIDA).  
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FRIDA was structured in three steps (see Figure 5.5):  

1. Identification of basin characteristics 

The first step consisted of the selection of a target variable and collection of candidate 
predictors. The target variable is an appropriately chosen proxy for drought impacts 
in the basin, which was the FAPAN index in our study. The dataset of predictors 
contains candidate features to reproduce the target variable and consists of observed 
hydro-meteorological variables and composite drought indices computed over 
different spatiotemporal scales.  

In this study, the resulting dataset was composed of 18 features, as listed in Table 4.1. 
Because the FAPAN index (target variable) is available only from the middle of 2001, 
the length of the time series is equal to 210 samples. 

2. Feature extraction 

The second step was devoted to the selection of more relevant variable subsets that 
better explained the selected target variable. This was done by employing an 
advanced input variable selection (IVS) algorithm, namely, the Wrapper for Quasi-
Equally Informative Subset Selection (W-QEISS). A multi-objective evolutionary 
algorithm (in this work Borg MOEA (Hadka and Reed, 2013)) recursively explored the 
input space of candidate predictors to select Pareto-efficient subsets of predictors 
with respect to four objectives: (i) accuracy, (ii) cardinality, (iii) relevance and (iv) 
redundancy. To compute the predictive accuracy of each set, a calibrated Extreme 
Learning Machine (ELM, (Huang et al., 2006)) was used. The iterative search stopped 
when the termination criterion was met (i.e., the number of iterations). 

Low-accuracy solutions were discarded from the pool of Pareto-efficient subsets, and 
the output of the W-QEISS algorithm was by consequence a set of quasi-equally 
accurate subsets.  

In this work, The FRIDA experimental setting was the following: 

● The number of function evaluations of the Borg MOEA was equal to 50,000. 

● The number of hidden neurons in the ELM presenting a sigmoidal activation 
function was equal to 30. 

● A k-fold cross-validation process (with k=10) was repeated 10 times, and the 
average of the Symmetric Uncertainty values over ten 10 experiments was 
used to estimate the predictive accuracy of each model. 

● The W-QEISS experiment was run 10 times to filter out the random component 
of the search process. The final results were obtained by merging the Pareto 
fronts obtained by each repetition into a final set of non-dominated solutions. 

3. Drought index modelling  
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After selecting the preferred efficient solution within the set of quasi-equally accurate 
subsets, an appropriate regressor is fitted to the sample of inputs and target variable. 
The choice of the model class was determined by the application of interest.  

5.5 Results 

5.5.1 Improved indices and relevant drivers  

New impact-based drought indices were formulated for each cluster using FRIDA to better 
capture drought impacts with respect to traditional drought indices.  

Taking Cluster 10 as an example, the Selection Matrix obtained by running the input variable 
selection of W-QEISS is shown in Figure 5.6. It includes four subsets of predictors with 
accuracy values within a 20% range with respect to the highest one. The alternative subsets 
were sorted in ascending order of cardinality (from top to bottom) and accuracy (within each 
cardinality level). A coloured marker is placed at the intersection between the row that 
identifies a given subset and columns corresponding to the selected predictors. The marker 
colour varies with the cardinality of the subset, with lighter shades of grey indicating the 
smaller subsets. In this case, cardinality spans three to five features. The highest accuracy is 
reported in red. Moreover, the vertical bars traced by joining markers across multiple rows 
provide information regarding the relevance of a predictor.  

Among the quasi-equally informative subsets reported in the selection matrix, we selected 
subset number 2 as the preferred one for Cluster 10: beside being the most accurate one, it 
resulted to include the two most relevant predictors and its cardinality is sufficiently small. In 
summary, the selected predictors were as follows: 

● Mean soil moisture aggregated over 3 months (meanSRFF3); 
● Mean runoff aggregated over one month (meanCOUT1); 
● Standardised Precipitation Index aggregated over three months (SPI−3); 
● Standardised Precipitation-Evapotranspiration Index aggregated over three months 

(SPEI−3). 

The basins of this cluster, characterised by the typical streamflow responses of 
Mediterranean river systems, are located at low elevations and experience low flows and 
relatively low runoff coefficients due to high evapotranspiration. This is consistent with the 
selected predictors that were detected: meanCOUT1 reflects the low runoff coefficients and 
the possibility of worsening an already compromised situation even considering a short 
cumulation time, whereas SPEI-3 is related to the important role that temperature plays in 
this cluster. This result demonstrates the advantages of using FRIDA to support the automatic 
identification of the main drivers of drought conditions and related impacts.  
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Figure 5.6: Selection matrix: Cluster 10.  

The same selection procedure was applied to the other clusters (see Appendix A5.2 for 
selection matrices).  

Starting from Cluster 1, the most relevant predictors in the most accurate subset were 
identified as SMA-1 and meanSRFF6, while the latter reflected the slow dynamics of soil 
moisture in this cluster, where the streamflow characteristics are controlled by baseflow. 

Cluster 2 is characterised by precipitation-driven river systems with frequent peaks and long 
recessions. Consistently, the most relevant predictors from the selection matrix were: 
meanSRFF3, SMA-6, and SPI-3. The first two regard the long recession aspect, whereas SPI-3 
is related to the influence of precipitation in the streamflow signature. 

For Cluster 3, the most relevant predictors were the meanCOUT1, SPI-3, and SPEI-3. This 
cluster is in fact marked by high interannual variability, particularly between the low and high 
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streamflow segments (confirmed by the presence of meanCOUT1) and snow‐dominated 
streamflow regimes. Moreover, the dampening of streamflow due to the presence of lakes 
and wetlands and low actual evapotranspiration is coherent with the other two predictors 
associated with precipitation and temperature conditions. 

In Cluster 4, regions receive high precipitation and are highly responsive. Occasionally, flow is 
regulated for hydropower production during winter (snow and ice melt), but still has some 
spring streamflow tendency. This was again confirmed by the most relevant predictors: 
meanCOUT1 reflects the significant role of streamflow, while sumCPRC-sumEPOT3 and SPI-1 
are related to responsiveness to precipitation. 

In Cluster 5, basins are characterised by a highly variable streamflow regime. The response is 
sometimes driven by snow melting, and this was confirmed by the most relevant predictor 
SSI-6 at longer terms; the streamflow is also precipitation-driven, which explains the high 
relevance of SPI-3.  

Looking at the selection matrix of Cluster 6, the most relevant predictors were sumCPRC-
sumEPOT3, SPI-3, and SPEI-3. These variables are consistent with the hydrological description 
of the cluster: a highly variable streamflow regime quickly responds to precipitation, yet with 
long recessions. In particular, a long recession is evident by the seasonal cumulation time 
(three months) characterising all the selected variables. 

Cluster 7 has elevated basins with a high variability in the streamflow regime. Precipitation 
causes flashy streamflow responses owing to low actual evapotranspiration, which results in 
high runoff coefficients. The most relevant predictors were SPI-1, SPI-3, and SMA-1, which 
confirm the fast dynamics given their short accumulation times. In particular, the first two 
indices are related to the important role of precipitation. In addition, the high runoff 
coefficients may lead to fast saturation of the soil, which led to the selection of SMA-1 in the 
matrix. 

The selection matrix related to Cluster 8 reported SMA-1 as the most relevant predictor, with 
a relevance reaching 100%. In this cluster, the hydrographs are baseflow-dominated with a 
streamflow characterised by a small annual variability. The variables related to the soil 
component, such as the SMA, are mainly linked to a slow dynamic, regardless of the time 
scale  for which they are computed. 

Similar interpretation of Cluster 8 was also applied to Cluster 9. The basins in this cluster are 
characterised by highly baseflow-dominated streamflow with very little response to 
precipitation; therefore, the most relevant variables are SMA-3, SMA-6, and SSI-6. 

In Cluster 11, basins are characterised by low runoff coefficients, yet they experience 
relatively high annual variability, that is, a fast response to precipitation and fast hydrograph 
recession. Streamflow can also be influenced by human practices (i.e., irrigation). According 
to the selection matrix, the most relevant predictors were SMA-3 and the meanSRFF1. The 
low runoff coefficient obtained indicates that what happens in the soil is sufficient to consider 
streamflow drought conditions.  
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5.5.2 Results: AI-enhanced drought indices  

Concerning model class choice, on one hand Artificial Neural Networks (ANNs) provide a good 
balance between accuracy and flexibility. However, since they are black-box models, their 
interpretation  is not intuitive. On the other hand, interpretability of linear models is easy and 
immediate to be understood in its physical meaning, though at the price of poorer 
approximation skills. Therefore, different model structures were considered: ANNs, ELMs, 
and linear models. The new impact-based drought index was represented by the best model 
structure that used the variables selected by W-QEISS to reproduce the FAPAN index 
trajectory as closely as possible to the observed one. The skill of the new impact-based 
drought index was assessed with the correlation between predicted and observed FAPAN. For 
Cluster 10, the selected model structure was a Deep ANN with 15 nodes subdivided into three 
layers, being able to reach a correlation value of 0.70. On average, considering all the clusters 
(see Table 5.1), the FRIDA indices increased the correlation with FAPAN by 0.35. The 
improvements obtained via FRIDA are shown in Figure 5.7.  

 

Figure 5.7: Qualitative improvement obtained via FRIDA: on the left side, the catchments are filled with light colours, 
representing low initial correlation values between the best traditional statistical drought indices for each cluster (i.e., the 
one with the highest correlation) and the corresponding FAPAN; on the right side, the catchments are filled with darker 
colours, indicating higher correlation values between the FRIDA indices and FAPAN.  

5.6 Summary and outlook 

This chapter reports the results of Task T3.3 focused on the design of impact-based drought 
indices, with an application at the pan-European scale. Specifically, we first computed 
different standardised drought indices and assessed their skill in reproducing the drought 
impacts, represented here by the Fraction of Absorbed Photosynthetically Active Radiation 
(FAPAR) anomaly index. We then leveraged feature extraction algorithms using the 
FRamework for Index-based Drought Analysis (FRIDA) to identify new, impact-based 
drought indices via Machine Learning. Finally,we  quantified the improved representations 
of drought impacts provided by the FRIDA indices and discussed the role of the selected 
variables involved in the index definition with respect to the characteristics of  river basins. 
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Our results show that the FRIDA indices substantially advanced the detection of drought 
impacts related to the agricultural sector, as represented by FAPAN, with respect to 
traditional statistical drought indices. This improved detection method will then be used to 
advance climate services in WP6 and produce AI-enhanced projections of drought impacts, 
which will be reported in Deliverable D6.2. Moreover, the detection of drought impacts on 
other sectors, such as energy, will also be investigated. Finally, FRIDA will be tested at the 
local scale in selected Climate Change Hotspots in WP7, where stakeholders are interested 
in advancing drought detection.  

Table 5.1: Numerical improvement obtained via FRIDA. 2nd column: best model structure selected; 3rd column: selected 
predictors for each cluster, 4th column: best initial correlation value between traditional drought indices and FAPAN; 5th 
column: final correlation value between FRIDA index and FAPAN; 6th column: improvement obtained for each cluster via 
FRIDA. 
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6 COMPOUND EVENTS AND CONCURRENT EXTREMES  

6.1 Overview  

The objective of T3.4 is to study compound events and their impacts on the food, water, and 
energy sectors in Europe. For such temporally or spatially simultaneous or lagged climate 
extremes, the interconnectedness of droughts and heatwaves is often of interest, as these 
types of events are strongly linked through their physical nature (MS24 and D4.1) and have 
high impact on socio-economic sectors, such as crop yields, water, vegetation and energy 
(Hao et al., 2022). In the food sector, for example, droughts and heatwaves can reduce cereal 
yields by 9-10% at national level, and these types of phenomena can explain 40% of the yield 
interannual variability (Lesk et al., 2016; Zampieri et al., 2017). Extreme events being 
dependent in space and/or time are often called concurrent extremes (Toreti et al., 2019b). 
Furthermore, multiple climate events that are not individually extreme can also be associated 
with disproportional socioeconomic impacts, as ecosystems may not be directly adapted to 
the covariability of temperature and precipitation, so that bivariate anomalies can have large 
effects without these variables being univariately extreme (Mahony and Cannon, 2018). Such 
events are called compound events (Zscheischler et al., 2018; Zscheischler et al., 2020). An 
example of these types of events are the so-called false-spring events. These events occur 
when above-average wet and warm conditions prevail in winter, leading to early plant 
growth, followed by severe drought or frost in the following spring, resulting in significant 
crop losses (Allstadt et al., 2015; Chamberlain et al., 2019). These events are expected to occur 
even more frequently in the future due to climate change (Ault et al., 2013; IPCC, 2021) with 
record hot and dry summers like 2018 potentially becoming the norm by the mid-century 
(Toreti et al., 2019a). This emphasises the need to study these types of events to adequately 
assess the risk, which can be underestimated by considering only single extreme events (Wahl 
et al., 2015; Zscheischler and Seneviratne, 2017). We studied interconnected drought and 
heatwave events at the global level and wet and warm later winters together with dry and 
warm springs, focusing on the corresponding impact on winter wheat yields in Europe.  

We first review the datasets, drivers and known climate indices in sub-chapters 6.2 and 6.3, 
followed by a discussion on the AI and hybrid approaches employed for the analysis in chapter 
6.4. Finally, chapter 6.5 discusses the current results and future directions of this work. 

6.2 Datasets and candidate drivers 

6.2.1 Datasets   

The analysis of concurrent extreme events focused on global interconnectivities of droughts 
and heatwaves, while the analysis of compound events dealt with multiple climate events and 
their impact on the water, energy, and food sectors in Europe. For all meteorological 
variables, the ERA5 (Hersbach et al., 2020) reanalysis was used, except for Sea Surface 
Temperatures (SSTs), which stemmed from the DOISST (Huang et al., 2021). For the impact-
related datasets, quality-controlled data from AGRI4CAST and EUROSTAT were utilised for the 
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food sector, while data from the European Network of Transmission System Operator of 
Electricity were obtained for the energy sector. For impacts in the water sector, model data 
from the E-Hype hydrological model operated by the Swedish Meteorological and 
Hydrological Institute were used. A detailed description of the datasets can be found in D3.1. 
For this deliverable, we focused on compound events impacting the food sector. Other 
sectors will be covered in future research. 

6.2.2 Candidate drivers 

While the drivers of compound events and concurrent extremes are intensively discussed in 
the frame of MS24 and D4.1, a summary is provided here for a comprehensive report. Drivers 
of compound events and concurrent extremes can be divided into the following sub-
categories: atmospheric circulation patterns, land-atmosphere interactions, ocean dynamics 
and coupled ocean-atmosphere patterns, and the climate change signal due to anthropogenic 
forcing. Multiple hot and dry climate extremes are frequently associated with persistent 
blocking highs, subtropical highs, and stagnation events (Zhang et al., 2021). The prevalence 
of high-pressure systems is related to increased shortwave radiation, reduced moist air 
inflow, and can impose a shift in storm track paths (Dong et al., 2018; Schumacher et al., 2019; 
Kautz et al., 2022), leading to stable dry conditions and clear skies with high air temperature 
conditions. Relevant and connected circulation patterns for such events are stationary jet-
stream positions (Duchez et al., 2016), persistent circulation modes such as the positive-phase 
North Atlantic Oscillation (NAO; Hao et al., 2019b; Mukherjee et al., 2020), the Scandinavian 
Pattern (Bueh and Nakamura, 2007) and Rossby waves (Kornhuber et al., 2020; Ionita et al., 
2021). Another important modulator for warm and dry conditions is soil moisture (Miralles et 
al., 2019). Soil moisture deficits reduce evapotranspiration, resulting in reduced latent heat, 
thus leading to enhanced local heat (Barriopedro et al., 2023; Domeisen et al., 2023). During 
droughts, soil moisture affects the atmospheric evaporative demand (AED) as the 
combination of low relative humidity (RH), high air temperatures and low cloud cover 
increases the AED and triggers soil evaporation and plant water consumption through 
transpiration (Miralles et al., 2019). Plants also react to these conditions by closing their 
stomata to prevent water loss, which further reduces evapotranspiration (Massmann et al., 
2019). Increased AED can exacerbate agricultural and environmental droughts by further 
stressing crops and increasing water use in irrigated areas (García-Garizábal et al., 2014), 
thereby contributing to hydrological droughts (Vicente-Serrano et al., 2017). SST anomalies 
can also force persistent atmospheric circulation patterns connected with heatwaves and 
drought conditions (Domeisen et al., 2023). Furthermore, teleconnection patterns related to 
SSTs have been shown to positively influence droughts and heatwaves such as El Niño 
Southern Oscillation (Hoerling et al., 2013; Hao et al., 2019a; Cai et al., 2020), Pacific Decadal 
Oscillation (Nguyen et al., 2021), Indian Ocean Dipole, as well as combinations of these 
patterns when they are in phase (Zanchettin et al., 2008; Steptoe et al., 2018; Nguyen et al., 
2021). Finally, anthropogenic influence is an individual driver of drought and heatwave 
events, as the global temperature increase leads to a higher frequency of heatwaves. 
Together with the interconnectivity of heatwaves and droughts this implies that hot and dry 
conditions will become more frequent in the future (IPCC 2021).   
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Warm and wet conditions are modulated when temperature increases over open water 
bodies, thereby increasing surface humidity (Zhang et al., 2021). However, this effect can be 
limited over land (Fischer and Knutti, 2013). Intense heat can also reduce sensible heat flux 
and moisture convergence, resulting in extreme precipitation events (IPCC, 2021). Studies 
have further linked warm and wet conditions to the advection of warm air originating in 
tropical areas (Katsafados et al., 2014; Freychet et al., 2017). However, recent reviews have 
noted that the drivers of wet and warm events are still less well understood (Raymond et al., 
2021; Zhang et al., 2021). Future projections show that these types of events are expected to 
increase (Russo et al., 2017; Meng et al., 2022) with potentially very critical implications for 
human health (Davis et al., 2016). For example, it is being discussed that the 6-hour wet bulb 
temperature in tropical and subtropical Asia could rise to over 30 °C by 2100 and possibly 
even exceed 35 °C, which is considered a critical threshold for the survival of humans (Pal and 
Eltahir, 2016). This further highlights the importance of studying such events. 

6.3 Existing indices  

This section briefly describes the climate indices and algorithms used to analyse compound 
events and concurrent extremes. For a more detailed description, we refer to D3.1 and the 
literature. 

6.3.1 Climate indices  

To describe wet and dry conditions, the standardised precipitation and evapotranspiration 
index (SPEI; Vicente-Serrano et al., 2010) was utilised, which is essentially a normalised water 
balance index. The derivation of the water balance requires an approximation of the 
evapotranspiration, for which we employed the Hargreaves-based approach by Droogers and 
Allen (2002). To describe the impact of warm temperature-related impacts on agriculture, we 
employed the Active Temperature Sum (ATS), which is the aggregated daily temperature 
above 0 °C and a canonical metric to describe the consequent plant phenological phases 
within the growing season (Ceglar et al., 2019). The Heat Magnitude Day (HMD) is defined as 
the cumulative maximum temperature exceedances during a heatwave, where a heatwave is 
commonly defined as days on which the maximum temperature exceeds the long-term 90th 
percentile for at least three consecutive days (Perkins and Alexander, 2013). The HMD was 
employed to detect heatwave events, as it has been shown to capture well the covariability 
between heatwaves and droughts and the resulting impacts on agriculture (Zampieri et al., 
2017; Toreti et al., 2019b).  

6.3.2 Statistical measures for dependence  

A statistical tool for detecting the dependencies of large-scale heatwaves and droughts is the 
inhomogeneous J-function (Cronie and van Lieshout, 2016; Toreti et al., 2019b). The main 
advantage of these types of functions is the ability to take into account the non-stationarity 
of the occurrence of extreme events, which must be assumed as the frequency of heatwaves 
and droughts is expected to alter in the course of climate change (IPCC, 2021). For instance, 
if we examine connectivities of heatwaves in two different regions, these types of 
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dependencies might be confused with the shared forcing or the co-trending of the two 
phenomena. Furthermore, the trend can be modelled nonparametrically through an 
inhomogeneous intensity function (e.g., Diggle, 2014), which can offer useful insights into the 
temporal evolution(s) of these types of events without making strict assumptions. The J-
function models three types of dependency structures: Independence, Clustering and 
Inhibition (see e.g., Baddeley et al., 2016). However, the final decision as to which dependency 
structure the observed phenomenon belongs to is still determined graphically by the user and 
is therefore characterised by subjectivity. Furthermore, visual analysis of the output does not 
allow the function to be applied to large datasets and/or ensembles. In CLINT, we propose an 
AI-based automation tool based on Monte Carlo simulations to circumvent this problem (see 
chapter 6.4.3). 

6.4 Algorithms   

The following section describes the basic concepts of the implemented algorithms. More 
technical details are provided in WP2 deliverables. 

6.4.1 Time series clustering algorithms  

Clustering algorithms offer a flexible framework for defining subgroups in high-dimensional 
datasets. However, many classical clustering methods, such as k-means (e.g., Hastie et al., 
2017) calculate clusters based on constant centroids, which are potentially unable to learn 
the temporal evolution of the time series, including nonstationarities imposed by climate 
change (IPCC, 2021). A well-known framework to employ time distance-based measures and 
avoid the above problematics is the Dynamic Time Warping (DTW), which has also been 
intensively used for clusters (e.g., Aghabozorgi et al., 2015; Sardá-Espinosa, 2019). We 
employed a recently developed approach for DTW called soft-dynamic time warping (SDTW; 
Cuturi and Blondel, 2017), which was seen to significantly outperform baseline clustering 
algorithms. In addition, the individual time series can have different time lengths and/or time 
intervals and can be multivariate. Considering the covariability of climate components (such 
as droughts, heatwaves, and agro-climatic regions), the multivariate approach increases the 
sample size and leads to more robust statistics. These features made this method particularly 
useful for our purposes. 

6.4.2 Regularised generalised canonical correlation analysis (RGCCA)  

Canonical correlation analysis (CCA) can identify large-scale predictors and relationships 
between climate variables. However, to make this algorithm feasible for high-dimensional 
settings, the feature space needs preprocessing using, for instance, principal component 
analysis (e.g., Wilks, 2011) to handle the spatial correlations in climate data. A promising 
approach called Regularized Generalised Canonical Correlation Analysis (RGCCA; Tenenhaus 
and Tenenhaus, 2011; Garali et al., 2018) introduces adequate regularisation schemes and 
can deal with high-dimensional predictors and high collinearity in the features. Furthermore, 
the approach can handle multiple variables and can be augmented by a priori graph structure 
for preliminary hypotheses, thus setting a stage for a very flexible framework covering many 
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well-known multi-block methods as special cases (Tenenhaus et al., 2017). However, this 
approach is based on maximising the covariances between variables such that only linear 
relationships can be studied. Tenenhaus et al., (2015) showed that RGCCA can be extended 
to nonlinear relationships by making use of kernels (e.g., Efron and Hastie, 2016). Rahimi and 
Recht (2007) proposed an elegant mapping method making use of random features, which 
are designed to have an approximately equal inner product to those in the feature space of a 
shift-invariant kernel. Loosely speaking, the idea behind this is that applying linear algorithms 
to the random features leads to a similar result as using kernel-based approaches, but since 
the algorithm is based on linear methods, it is faster and potentially numerically more 
efficient. Indeed, they show that these methods often outperform kernel-based approaches 
on benchmark datasets. Further theoretical and simulation evidence was presented by 
Sutherland and Schneider (2015) and we used their methods to approximate the Gaussian 
kernel, which has desirable characteristics for climate variables (Hannachi, 2021). We 
combine the random feature-based approach with RGCCA to obtain a non-linear RGCCA, 
which, to our knowledge, has not yet been implemented in climate science. 

6.4.3 Imbalanced random forests  

As substantiated in the introduction, multiple climate events that lead to high socio-economic 
impacts can also be a combination of non-extreme climate events, the impacts of which may 
be negligible individually but may be harmful when combined (Mahony and Cannon, 2018; 
Zscheischler et al., 2018). An additional difficulty arises with respect to the thresholds for 
identifying such events. In other words, what thresholds are “warm enough” or “wet enough” 
to be associated with high socio-economic impacts? Within CLINT, we analysed these 
questions using Random Forests (RF) as they perform forecasting and classifying based on 
partitioning the dataset. Exploiting these splitting bounds can be useful for identifying the 
thresholds that lead to a high impact, since they have a certain degree of optimality in 
predicting the desired outcome and are objectively calculated by the algorithm. An additional 
difficulty, however, is that multiple climate events seldom occur, by definition, and are thus 
constrained to be highly imbalanced. Recently, O'Brien and Ishwaran (2019) proposed an 
imbalanced RF approach based on the q-classifier to mitigate this issue. If the number of 
events is still too small to be adequately trained, they show that their algorithm can be 
augmented with oversampling methods, for which they suggest the Majority Weighted 
Minority Oversampling Technique (MWMOTE) algorithm (Barua et al., 2014). 

6.4.4 AI-enhanced inhomogeneous J-function  

The inhomogeneous J-function allows the user to explore whether the obtained extreme 
events showed clustering, inhibition, or independence while considering their non-
stationarity (Toreti et al., 2019b). However, the choice of which dependency structure the 
given dataset belongs to is still subjective. The main goal in CLINT is to circumvent this 
subjectivity by introducing an AI-based interpretation tool that makes the method applicable 
to large datasets, such as ensembles. The method is applied to automatically identify the 
relationships between large-scale droughts and heatwaves on a global scale. For this purpose, 
well-known point process models are implemented to simulate surrogate data that mimic the 
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desired dependency structures so that they can be labelled, and a classification problem can 
be trained. We used Monte Carlo simulations based on numerical experiments by van 
Lieshout (2011) and Cronie and van Lieshout (2015) to simulate a large dataset of surrogate 
data, and we estimated the (marked) inhomogeneous J-function for each simulated dataset 
following Cronie and van Lieshout (2016). Specifically, we used the inhomogeneous Poisson 
process for simulating independent samples, the Log-Gaussian Cox Process for clustering, and 
the Mattern-Type-II process for inhibition (see e.g., González et al., 2016). Furthermore, we 
estimated the intensity function non-parametrically using a recently proposed resample-
smoothed Voronoi estimator, which has been shown to outperform kernel-based approaches 
(Cronie and van Lieshout, 2018; Moradi et al., 2019). With this setup, we simulated an 
arbitrarily large training set and used deep learning methods, as they can process multivariate 
data well. Furthermore, we were interested in the highest possible accuracy of the predictions 
such that there are no “black box” problems (McGovern et al., 2019; Kashinath et al., 2021; 
Schultz et al., 2021). We used a combination of Convolutional Neural networks and Gated 
Recurrent Units (e.g., Chollet et al., 2022) to train the classifier showing already desirable 
performance with relatively simple networks. 

6.4.5 Non-parametric SPEI  

As described above, the SPEI is based on the probability integral transformation and is 
generated by estimating a seasonally dependent distribution function of the water balance, 
which is then transformed using Inverse Transform Sampling to obtain a standard normal 
distributed time series. This requires an appropriate choice of distribution function for the 
variable, most commonly the log-logistic in the case of water balances (Vicente-Serrano et al., 
2010; Beguería et al., 2014; Vicente-Serrano and Beguería, 2016). Some studies have 
indicated that the approach works well on the monthly scale, but might not be optimal on the 
daily scale, for which the Generalised Extreme Value Distribution can be superior (Stagge et 
al., 2015). More importantly, the log-logistic distribution is bounded, and the support 
depends on the associated parameters, such that values outside the support are assigned a 
zero probability and cannot be mapped through Inverse Transform Sampling. This can be 
critical when the distribution is calibrated on reference periods, as values outside the support 
or unforeseen values cannot be extrapolated. An example of this is given in Appendix A6.1 for 
the time series “wichita” used in SPEI demo (https://cran.r-
project.org/web/packages/SPEI/index.html). 

Reference periods are important tools in climate science, and we were additionally interested 
in the link between droughts and heatwaves. Heatwaves are, however, commonly defined 
based on reference periods (Barriopedro et al., 2023) and when studying their links with 
droughts, this problem must be taken into account, as the comparison of two time series 
calibrated on different reference periods is inappropriate. We used a nonparametric kernel-
based estimator of the distribution function with an unbounded kernel function instead of 
the log-logistic distribution. By construction, the estimator approximates the true (unknown) 
distribution function and can circumvent the extrapolation problem as the estimator is a 
superimposition of unbounded kernel functions (thus unbounded). We employed a local-
polynomial likelihood kernel estimation as it can correct also for higher moments (Loader, 
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1996; Loader, 1999). Originally, these types of estimators were only feasible for unbounded 
continuous (random) variables, but recent studies (Geenens, 2014; Geenens and Wang, 2018; 
Nagler, 2018a; Nagler, 2018b) have shown that they can be extended to discrete variables, 
mixtures of discrete and continuous variables, and bounded variables. This allowed the 
mapping trick used to construct the SPEI to be extended to other climate variables, such as 
temperature, total precipitation, relative humidity, and cumulative intensities, to obtain 
standardised non-seasonal climate indices. For instance, we used this approach for the non-
Gaussian ATS to obtain the standardised non-seasonal active temperature sum (SATS) used 
in the study of compound events. Finally, the proposed estimators could be combined with 
vine copulas (e.g., Czado and Nagler, 2022) to construct multivariate standardised climate 
indices. 

6.5 Results   

6.5.1 Compound events  

The investigation of compound events focused mainly on relatively wet and warm late 
winters, followed by dry and warm springs, with the corresponding (agricultural) impacts on 
winter wheat yields in France, the largest winter wheat producer in Europe. 

6.5.1.1 Agro-climatic sub-regions  
France can be divided into climate subregions, among which the contribution of 
meteorological drivers to crop yield varies remarkably (Ceglar et al., 2016). As described 
above, clustering was employed for SATS, the non-parametric SPEI (NP-SPEI), and the 
observed winter wheat yields. To study the impacts of climate on crop yields, the adaptation 
effect defined by the improvement in the agricultural practices must be taken into 
consideration. A commonly made assumption is that the adaptation effect is mainly captured 
by the multi-annual trend, such that non-linear detrending can be applied to remove this 
effect (Ceglar et al., 2016; Zampieri et al., 2017). We used local polynomial smoothing as the 
detrending approach, with the bandwidth chosen as in Feng et al. (2020). For ease of 
interpretation, we multiplied the derived crop yield anomalies with -1 such that positive 
anomalies are associated with high impacts. After the trend was removed, the SDTW 
clustering algorithm (Section 6.4.1) was applied to all time series as a multivariate clustering 
problem. The outputs of the clusters are shown in Figure 6.1. 

The clusters (similar to those of other studies, e.g., Ceglar et al., 2016) resulted in reflecting 
climate conditions well and identifying the Mediterranean regions in cluster one, central 
continental France in two, northern oceanic France in three, southwestern-Pyrenees France 
in four, and eastern mountainous France in five. The SDTW approach produced a time series 
as the centroid, as shown in Figure 6.2. These captured high-impact events, such as 1998, 
2003, and 2016 differently throughout the sub-regions. Table 6.1 gives an overview of the 
total wheat produced in the five clusters. 

Even though the northern regions (clusters two, three and five) were found to generate 
approximately 80% of the total wheat and might already be appropriate for studying the 
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agricultural impacts, we found significant improvements when all regions were studied, as 
the local effect of climate could be better modelled.  

 

  

Figure 6.1: Obtained agro-climate regions from multivariate clustering approach.  

Table 6.1: Total and relative contribution of each cluster to the total winter wheat yield in France.  

Yield  Cluster 1  Cluster 2  Cluster 3  Cluster 4  Cluster 5  

Total (t/ha)  1658.96  4000.80   5671.78  1885.91  3382.27  

Relative  10.00 %  24.13 %  34.89 %  11.37 %  20.40 %  

6.5.1.2 Relevant drivers  
For the analysis, we first generate the random features for all climate variables following the 
recommendations of Sutherland and Schneider (2015). For winter wheat such a 
transformation was not employed to enhance the interpretability of the analysis, as the 
predicted variable of the experiment could be better understood. The analysis could be 
augmented using an a priori graph of the connections. We connected all variables to winter 
wheat to identify its predictors, and we connected winter wheat to itself to identify the 
dominant patterns. Finally, we interconnected all climate variables to model the 
interdependencies of the climate variables separately for each season. In addition, as the 
clusters are intercorrelated, we connected the yields in different clusters. The local climate 
resulted to be represented by NP-SPEI and SATS, while large-scale patterns were represented 
by SSTs, geopotential height at the 500 hPa level, and RH at the 700 hPa level.  We estimated 
the final model jointly for all the clusters.  

Winter wheat basic function values were all positive for all clusters, except for cluster four, 
where 75% of the weights were positive. This allowed us to interpret the retained winter 
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wheat time series for each cluster as positive weighted averages so that positive values could 
be associated with impacts or crop yield losses. Figure 6.3 shows the time series of the 
retained components, where for the northern clusters, the well-known 2016 crop failure is 
visible, while for the southern regions 1998 can be identified.  

Figure 6.2: Centroids corresponding to the Clusters displayed in Figure 6.1.  

A shortcoming of non-linear kernel-based methods is the lack of one-to-one mapping from 
the kernel input space to the original feature space (Scholkopf et al., 1999), implying that the 
eigenvectors cannot be displayed in the usual manner. To identify monotone relationships, 
we correlated each grid point with the retained projected component using the Spearman 
correlation coefficient. We tested the significance of the correlation using a Student’s t-test 
and considered the multiple testing problem by applying the false discovery method 
(Benjamini and Hochberg, 1995), which was also shown to effectively deal with spatial 
correlations (Wilks, 2006).   

For the NP-SPEI displayed in Figure 6.4, January and February were significantly associated 
with wet conditions in almost all regions and a drought pattern emerged in April.  March and 
May exhibited weak and inconsistent signals, respectively. The SATS values in Figure 6.5 show 
warm patterns in January, February, and April throughout France, while in March and May, 
they partially show dominant warm patterns.  Hence, it was found that non-linear and 
multivariate analyses can effectively filter out events similar to the desired compound events. 
Figure 6.3 marks in orange lines the events when the projected patterns of NP-SPEI and SATS 
were in a positive phase, demonstrating that they were mainly associated with yield losses 
for most of the clusters. 
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Figure 6.3: Obtained projected components from the non-linear RGCCA for the winter wheat series of individual clusters. 
Orange lines indicate time points at which the associated SATS and NP-SPEI time series were in a positive phase.  

Next, we explored the associated large-scale circulation of these patterns. Figure 6.6 shows 
the 500 hPa geopotential height, where, except for cluster one, a pattern similar to a positive 
NAO is observed in January and especially in February. In April, a tripole is visible in the 
different clusters, associated with strong blocking and consequently with dry and warm 
conditions (see Chapter 6.2), consistent with the NP-SPEI and SATS patterns (Figures 6.4 and 
6.5). Dry conditions in April also emerge in the 700 hPa RH patterns (Figure 6.7). However, 
positive correlations over Central Europe in February indicate wet conditions. 

In Figure 6.8, warmer SSTs along the French Atlantic coast are observed for January and 
February. Considering the cooler atmosphere during winter compared to the ocean, these 
stronger differences might trigger enhanced heat exchange towards the atmosphere, 
increased evaporation, and higher air humidity. The westerly circulation in Figure 6.6 at 500 
hPa may thus be connected to increased precipitation over land and wet conditions, 
suggesting a potential mechanism connecting the three different large-scale patterns 
observed in the winter months. 
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Figure 6.4: Spearman correlation coefficients for obtained projected time series of non-linear RGCCA. Only statistically 
significant values at the 90% confidence level are displayed.  

 Figure 6.5: Same as figure 6.4, but for SATS.  
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 Figure 6.6: Same as Figure 6.4, but for 500 hPa geopotential height. Contour lines indicate statistical significance at the 90 
% confidence level.  
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Figure 6.7: Same as Figure 6.6, but for relative humidity on the 700 hPa level.  

To further understand the non-linear relationship between crop yield and climate variables, 
we modelled the non-linear impact of these derived components on winter yield using D-vine 
copula-based regression (Kraus and Czado, 2017; Schallhorn et al., 2017). Because including 
too many variables might lead to overfitting, and estimation can be hindered due to the small 
sample size, a good balance between the model's complexity and predictability is required. 
Kraus and Czado (2017) recommend using the Akaike Information Criterion to determine the 
best subset of predictors. The results for cluster three (associated with the highest winter 
wheat yield) are shown in Figure 6.9, and the marginal effect of each component on crop yield 
was estimated following Schallhorn et al. (2017).  
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Figure 6.8: Same as Figure 6.6, but for SSTs.  

 

Figure 6.9: Estimated Marginal effects of D-Vine-Copula based quantile regression model for predicting yield variability in 
cluster three. Values of alpha represent the conditional quantile for which the model was estimated. 
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The chosen variables or statistical predictors for this cluster are the winter NP-SPEI, spring RH, 
SST, and 500 hPa geopotential height. The algorithm tended to choose more large-scale 
predictors (Figure 6.9), which is interesting because they modulate the local climate variables 
and are apparently also better statistical predictors. Hence, higher crop yield losses were 
observed during the positive phases of the variable (xk > 0). For the negative phase, only 
moderate impacts were found, except for RH-spring, where a non-linear increase in the 
impact could be observed with the strengthening magnitude of the pattern (i.e., high RH-
spring values). For the SST-spring, for instance, the effect resulted to be approximately linear 
for the positive phase. Nevertheless, Figure 6.9 shows that the relationship between climate 
variables and impacts on winter wheat were found to be non-linear functions, underlining the 
added value of the non-linear analysis. 

6.5.1.3 Learning compound event definition  
Compound events are generally regarded as not necessarily extreme multivariate climate 
events that lead to high socioeconomic impacts (e.g., Zscheischler et al., 2018). This “non-
extremeness” can pose a challenge for their definition and selection, as the thresholds to be 
chosen for their characterization cannot be chosen beforehand. For example, it is not clear 
which temperatures are sufficiently high, or water balances sufficiently low, to be associated 
with high impacts. These thresholds can be indicated by using decision trees, as they split the 
variables for prediction and classification and the corresponding internal nodes (James et al., 
2021) gives a suggestion for “warm enough” or “dry enough” from a statistical or prediction-
based point of view. Multivariate climate events seldom occur by definition, so we employed 
imbalanced RFs based on the q-classifier (O'Brien and Ishwaran, 2019). To find the splitting 
points, we extracted the first internal node to distinguish between compound and non-
compound events. This was the safest choice, because deeper nodes become more uncertain 
and unimportant for predictions (Ishwaran et al., 2010). We defined the compound event of 
interest (wet and warm late winter, together with dry and warm springs) as classes for the 
classification. Based on the insights of Section 6.5.1.2, we could define warm conditions by 
setting SATS-2 > 0 for February and NP-SPEI-2 > 0, both values above average for the 
corresponding month. Similarly, we set -NP-SPEI-2 > 0 and SATS-2>0 in April to obtain the 
overall warm and dry conditions from March to April. We used the negative NP-SPEI-2 in April 
so that the RFs could search for strictly positive bounds in all variables and associate negative 
values with the absence of compound events. At this point, we defined two types of 
compound events: meteorological compound events (MCE) and pure compound events 
(PCE). An MCE takes place when all the meteorological conditions (i.e. NP-SPEI and SATS being 
in the state described above) are fulfilled and the PCE event is defined when, additionally, the 
70th percentile of the wheat yield reduction is exceeded, indicating “high agricultural 
impact”. Thus, for the latter, we defined a multivariate climate event with corresponding 
socio-economic impacts, thus falling into the class of compound events (Zscheischler et al., 
2018).   

To recognize the desired events (MCE or PCE) starting only from the climate variables, these 
are used as predictors in the training of the classification problem. For the MCE, only the state 
of the climate needs to be recognized, whereas for the PCE, events with high impact also need 
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to be predicted. The MCE is considered a control experiment to show that, for compound 
events, the decision to estimate the thresholds with RF works. If successful, the RFs should be 
able to recognize that for the MCE, the input variables are in a positive state such that the 
extracted decision bounds cluster around zero. On the other hand, when including high 
impacts in the class, the RF would theoretically need to adjust the bounds to capture 
agricultural impacts. In other words, it is necessary to determine which temperature or water 
balance anomalies are sufficiently warm or wet/dry to be associated with a high impact, which 
is our question of interest. We expect the extracted limits from the PCE to be higher than 
those of the MCE, as it takes a significant but potentially non-extreme anomaly to damage 
the crop. 

However, for the entire experiment, we first had to check the capability of the RF to predict 
the desired events. For this preliminary assessment, we trained the RF for each of the clusters 
shown in Figure 6.1, considering the agro-climatic zones and climate sub-regions in France. 
We considered accuracy as a classical intuitive metric and the geometrical mean (G-Mean; 
Kubat et al., 1997) as a measure for imbalanced categorization, which is the recommended 
metric for the q-classifier (O'Brien and Ishwaran, 2019).  Table 6.2 shows the results for the 
test set, defined as the most recent one-third of the observations. We also included “cluster 
0” in the experiment, which is simply the full dataset without sub-regions, to evaluate 
whether using the clusters adds value to the RF performance. 

Table 6.2: Performances of RF for each cluster. Cluster one to five correspond to the clusters in Figure 6.1 and cluster zero 
means that the training is done for the full region.  

Cluster  MCE-Accuracy MCE – G-Mean PCE - Accuracy PCE – G-Mean  

1  0.88  0.88  0.95  0.94  

  2  0.99  0.99  0.98  0.93  

3  0.97  0.97  0.92  0.94  

4  0.97  0.98  0.96  0.98  

5  0.98  0.93  0.97  0.83  

0  0.99  0.92  0.99  0.91  
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We observed that the performance of the MCE appeared to be very good, with the metrics 
being mostly higher than 0.9 (being 1 the optimal value) except for cluster one with an 
accuracy and G-mean of approximately 0.88. In comparison, the performance of the PCE was 
slightly worse, except for cluster five with a potentially undesirable G-mean of 0.83. 
Furthermore, if we ignored the local climate and performed the RF for the entire region 
(denoted as cluster zero), we obtained the second-worst performance in terms of G-mean for 
PCE and MCE. This proved that the prediction can be improved by considering the local 
climate. In summary, the performance of the RFs was satisfactory.  

  

Figure 6.10: Retained splitting bounds from RF for the SATS. Light blue lines indicate the PCE and orange lines the MCE. Points 
are displayed below together with a kernel density estimator for graphical orientation.  

The report now focuses on the results related to the extracted internal nodes. Figures 6.10 
and 6.11 show that, except for SATS-winter in cluster two to four and SATS-spring in cluster 
four, the MCE results are grouped around zero. This indicates that the extraction of bounds 
worked for all variables except SATS-winter. This finding requires further investigation and 
cannot be explained at this stage. As expected, the bounds of PCE resulted to be larger than 
or equal to those for MCE because small variations could be compensated by the crop's 
resistance, but serious damage can occur when these types of conditions intensify. We 
statistically verified whether the bounds for the MCE were stochastically smaller than those 
of the PCE using the Kolmogorov–Smirnov test. We also computed the mean of the reported 
statistics as an additional intuitive measure. It was observed that the KS-test was indeed 



 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and  
adaptation design using machine learning 

EU H2020 Project Grant #101003876 

 

86 
D3.2 EXTREME EVENTS DETECTION 

significant for most of the panels and the mean of the PCE was larger. The latter is potentially 
a first suggestion for an objective bound for defining the thresholds “wet enough”, “dry 
enough” and “warm enough” to be associated with high impacts on the crop yields. 

Furthermore, all the means were found to be smaller than one (i.e. below one standard 
deviation of the standardised input variables), suggesting that they could hardly be 
considered extremes and that non-extreme events could actually be associated with high 
impacts. Our idea of extracting bounds showed plausible results and could be a promising 
step towards the definition of thresholds for non-necessarily-extreme events that lead to 
large socio-economic (in this case, agricultural) impacts. However, because we only extracted 
the first internal node of the tree, it is likely that we have not yet optimally processed the 
results of the classification trees. This will be the focus of future applications.  

Figure 6.11: Same as Figure 6.10, but for NP-SPEI. 

Finally, because the performance of the RFs in the first experiment was undesirable, the data 
were augmented with oversampling approaches. For this, we used the MWMOTE approach, 
simulating so much surrogate data that the minority class had approximately 20% of the data. 
Higher values were not found to increase RF performance. 
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6.5.2 Concurrent extremes  

In contrast to the analysis of compound events, the focus of the concurrent extreme events 
analysis was on dependent extreme events that are spatially and/or temporally linked, and 
the report will focus on the dependencies of large-scale droughts and heatwaves.  

6.5.2.1 Non-parametric SPEI  
To validate our proposed method with the NP-SPEI, we compared the SPEI for different 
accumulation schemes, namely 1, 3, 6 and 12. First, we investigated whether the NP-SPEI 
could better extrapolate unforeseen events associated with infinite SPEI (obtained when the 
quantile function of the standard normal distribution is applied to 0 or 1). For this study we 
restricted the analysis to the Northern Hemisphere, as it has more land and higher data 
quality. Figure 6.12 shows the results for SPEI calibrated for the full time period (1940-2022) 
and figure A.6.2.1, when they are calibrated on the reference period 1961-1990.  

 

Figure 6.12: Number of non-extrapolatable points, when the log-logistic distribution is used as a mapping function for the 
SPEI.  

The SPEI calibrated during the full period performed well and only showed small regions 
where non extrapolatable points occurred. Beguería et al. (2014) stated that this issue occurs 
mainly in very dry climates or high altitudes. However, when focusing on the SPEI calibrated 
for the 1961-1990 reference period, non-extrapolatable points appeared quite frequently 
across the globe. This suggests that the extrapolation issue is a major problem for the SPEI, 
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and that the log-logistic distribution may not be appropriate if the SPEI is calibrated on 
reference periods. For NP-SPEI (figure A.6.2.1), this phenomenon almost vanished. Hence, the 
NP-SPEI was quite successful in performing extrapolation compared to the original SPEI.  

This finding sets the stage for our next experiment, in which we compared the NP-SPEI to the 
SPEI and judged whether the NP-SPEI can be an adequate drought index. For this purpose, we 
correlated the two SPEI versions and computed the upper and lower tail dependence (see 
e.g., Coles, 2004). We set the quantile to exceed to -1 for drought detection and to 1 for wet 
event detection, which are the typical thresholds for detecting these events. In other words, 
we checked the likelihood that the NP-SPEI had the same central tendencies (indicated by 
high correlation) and detected the same drought and wet events as the already established 
SPEI. Figure 6.13 shows the results when the indices were calibrated on the full period and 
figure A.6.4.1, in the appendix, when it was calibrated on the reference period 1961-1990.  

 

Figure 6.13: Pearson Correlation coefficient, upper and lower tail dependence of SPEI and NP-SPEI, when the indices are 
calibrated on the full period. Pearson correlation values are unitless, while tail dependence is expressed in probability. Since 
both indices have results between 0 and 1, they are plotted with the same scale.   

The NP-SPEI and SPEI calibrated over the entire time period (figure 6.13) resulted to be highly 
correlated and tail-dependent over the entire globe. For the versions calibrated to the 
reference period, this phenomenon was somewhat attenuated but still very strong, with 
values mostly greater than 0.8. For the reference period, the sample size was smaller (30 
years) than that for the full period, resulting in more uncertain statistics that could explain 
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the observed difference. However, the NP-SPEI was found to be an adequate drought index 
because it captured (almost) the same phenomenon as the SPEI.  

Finally, we examined whether the NP-SPEI could be considered a superior index to the SPEI. 
To answer this question in a statistical manner, we checked whether the NP-SPEI reproduced 
values that could be better matched by a standard normal distribution than the SPEI (Vicente-
Serrano et al., 2010; Beguería et al., 2014). For this purpose, we computed the Cramer-von-
Mises (CVM) statistics with the standard normal distribution as a reference for the obtained 
samples from the SPEI and NP-SPEI. The statistic decreased if the mapping to the standard 
normal distribution was better preserved. At this stage, we performed this analysis only for 
the full period, as indices calculated on the reference period were expected to be standard 
normally distributed only on the reference period itself, and it was not clear which distribution 
function should have been used as a reference check for the full period. We focused on the 
latter for future applications. 

Figure 6.14: Difference of Cramer-von-Mises Statistics for the SPEI and NP-SPEI. Positive values indicate that the Cramer-von-
Mises statistic is smaller for the NP-SPEI, suggesting a better mapping to the standard normal distribution.  

As shown in Figure 6.14, the NP-SPEI produced overall lower CVM statistics for all scales, 
hence a better fit. This phenomenon increased with  the increasing scale of the SPEIs. This 
result suggests that the NP-SPEI is superior to the SPEI. Furthermore, our approach can be 
used for any climate variable to obtain a non seasonal and normalised climate index, as the 
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distribution function is estimated nonparametrically. On the other hand, the classical SPEI 
shows even worse performance. 

This clearly proved the added value of our proposed method, and demonstrated that vine 
copulas can be used to extend the approach to multiple climate variables. For instance, one 
can construct a joint heatwave and drought index by estimating the distribution function 
nonparametrically and then estimating the joint distribution function with a vine copula. 
However, an assumption underlying the methods (for both SPEI versions) is that the 
distribution is stationary over time. Recently, there have been approaches to consider non-
stationary reference distribution functions (Masanta and Srinivas, 2022) and we will focus on 
this in our future studies. 

 

6.5.2.2 Clustering of droughts and heatwave  
To identify the areas of interest, the objective grouping of the drought- and heatwave-related 
indices was performed by clustering. A time series-based clustering approach based on 
dynamic time warping was implemented to allow centroids to vary in time. Owing to the 
presence of climate change, this is a more reasonable assumption compared to methods that 
use fixed centroids such as k-means or k-medoids (e.g., Hastie et al., 2017). Additionally, as 
HMD and SPEI are highly correlated, we adopted a multivariate clustering approach that 
processed the information of the datasets more efficiently. Clustering was performed on a 
seasonal basis to consider the different atmospheric circulation patterns or seasonal 
characteristics of the two phenomena. Figure 6.15 shows the first results using the SDTW 
(Chapter 6.4.1) with ten clusters. 

 

Figure 6.15: Obtained clusters from the multivariate clustering of heatwaves and droughts based on soft-dynamic time 
warping for k=10 clusters.  

The number of clusters was chosen using the Silhouette Coefficient (Rousseeuw, 1987), which 
works well in a wide variety of clustering setups, particularly in high dimensions (Arbelaitz et 
al., 2013). Figure 6.16 shows the (bivariate) centroid of one example cluster (six). The 
centroids were found to represent the peaks between heatwaves (red) and droughts (blue), 
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indicating that multivariate clustering is well-suited to capture the covariability between 
these two components.   

  

Figure 6.16: Bivariate centroids of cluster six from the soft-dynamic time warping (figure 6.15) approach.  

6.5.2.3 Deep Learning based interpreter of J-functions  

The training of the J-function-based classifier was performed for the full ensemble of J-
functions (see, Toreti et al., 2019b) to better account for the uncertainty, such that the 
problem was comparable to a multivariate time series classification problem. We solved this 
problem by using a deep neural network based on convolutional operations and gated 
recurrent units. Figure A.6.4.1 and Table 6.3 present preliminary results for the network. The 
test and validation accuracies were found to be very similar (see A.6.4.1), and from Table 6.3 
the performance on the test set is approximately 97.4%. Thus test, validation, and testing sets 
performed with very similar performance and appeared to not overfit the problem (Chollet 
et al., 2022). Table 6.3 further reveals that the network showed very favourable performance 
for all different types of dependence structures, with the accuracy of inhibition (Mattern-
type-II process) being the highest (99.7%), clustering (Log-Gaussian Cox process) in the middle 
(98.5%), and independence (inhomogeneous Poisson process) the lowest (94.5 %). These 
simulations were performed using deterministic intensity and mean functions. Future 
applications will focus on the implementation of stochastic versions to generalise the data-
generating process. Furthermore, we explore the possibility of including the simulated point 
process in addition to the estimation J-Function ensemble to potentially further enhance the 
performance of the neural network as additional information is included.  

Table 6.3: Test performance of deep neural network.  

Independence  Clustering  Inhibition  

0.945  0.054  0.001  

0.015  0.985  0.000  

0.003  0.000  0.997  
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6.5.2.4 Example application  

To demonstrate the detection of large-scale heatwaves and droughts, the regions in 
northeastern USA (USA-NE; 263°–285° E, 36°–52° N), southeastern USA (USA-SE; 263°–285° 
E, 26°–36° N), and Central Europe (3°–20° E, 46°–56° N) were chosen following the Köppen-
Geiger climate classification by Beck et al., (2018). We performed the analysis for the summer 
(June, July, and August). SPEI and HMD indices were computed for each of these regions, and 
we performed first grid point-wise drought (SPEI < -1) and heatwave detection (HMD exceeds 
the 90th percentile). A large-scale heatwave event or drought event was then defined when 
at least 20% of grid points fulfil these conditions for the stated regions of interest above. For 
these large-scale events, the J-functions were calculated and classified using the neural 
network described above. The results are shown in Figure 6.17. The concurrent extreme 
events can be seen as the type of events for which clustering of events is identified, such as 
heatwaves in the USA-NE and Central Europe (Figure 6.17, top row, right column).  

The case study demonstrated that the analysis of concurrent extreme events can be 
performed in a fast and automatized way because of the developed J-function tool, while 
taking into account the non-stationarity of the climate imposed by climate change.  

 

Figure 6.17: Results of the J-Function based interpreter applied for the three regions of interest.  
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6.6 Summary and outlook   

The analysis showed that machine learning can provide added value in analysing compound 
events and concurrent extremes. AI can be used in recognising relationships between large-
scale heatwaves and droughts by improving known non-stationary statistical methods from 
point process theory. Kernel-based methods were able to detect physically reliable large-scale 
drivers and local climate patterns that dominate winter wheat variability in Europe's largest 
winter wheat producer, France. In addition, RFs were used to derive definitions for multiple 
climate events leading to socio-economic impact assessments based on more objective 
climatic thresholds. Moreover, RFs were able to efficiently predict the desired climate events 
at local level. Finally, the use of multivariate methods improved the performance of clustering 
algorithms used to identify homogeneous drought and heatwave regions both at the global 
level and in the agroclimatic sub-regions in France, demonstrating the added value of 
multivariate analysis.  
  
Future applications will focus on improving the derived methods and better understanding 
their physical causes. For example, the J-function based interpreter will be improved by 
implementing a second pipeline that processes both the point process and the J-function, 
allowing to fully utilise the available data. We will also analyse how these dependencies relate 
to teleconnections such as NAO and ENSO and will identify the joint modulators of the 
dependencies using causal methods (WP4). In addition, non-stationary distribution functions 
will be used to develop the non-parametric climate indices, for which methods from AI can 
potentially be adopted.  
  
The analysis of relatively wet and warm winters will be expanded to larger regions of Europe. 
The RF-based approach to derive objective boundaries will be extended to extract decision 
boundaries deeper in the individual classification trees. Causal algorithms developed within 
WP4 will be used to further identify the interdependencies of these phenomena as they are 
currently built with covariances that cannot distinguish indirect and direct relationships. 
Finally, further types of compound events will be analysed. For instance, the analysis of dry 
winters followed by hot summers will focus on representative case studies for record-
breaking summers in Europe and their impact on agriculture and energy.  
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7 GENERAL SUMMARY AND OUTLOOK  

This deliverable reports the preliminary results in the improvement of extreme events 
detection with ML algorithms. 
The study has focused on different categories of extreme events: 

● Tropical cyclones: genesis and activity on different timescales (Chapter 2) and 

extratropical transitions (Chapter 3). 

● Heatwaves and warm nights (Chapter 4) 

● Extreme droughts (Chapter 5) 

● Compound events and concurrent extremes (Chapter 6) 

Each part has focused on pre-existing detection indices (e.g. GPI, SPI) or methods evaluating 
their scores and capabilities to identify the corresponding extreme events. Generally, these 
were taken as a starting point for the research. However, in some cases, specifically when 
evaluating the prediction skill, the goal was to outperform dynamical forecasts (for example, 
ECMWF).  
The employed ML algorithms (developed in WP2) are diverse and have been chosen according 
to the peculiarities of each problem. In some cases, they were used to improve the definition 
of existing indices (e.g. EN-GPI for TC) or to identify thresholds which are useful to detect the 
event themselves (e.g. RF for compound events). In other cases (e.g. ET, HW drought 
detection) ML algorithms were employed to highlight the drivers to consider for the 
implementation of data driven detection systems, opening discussion on the physical 
meaning of such selection. Finally, ML algorithms were trained to perform predictions of the 
events (short term TC prediction). 
In all chapters the results were assessed with scores, evaluating eventual improvements 
compared to the state of the art and identifying where further work can be performed to 
increase the advantages of ML-enhances extreme event detection. 
The implementation of ML prediction systems, together with the testing of the methods on 
different spatial scales (either locally or regionally, according to the needs) and with different 
ML settings, will be the subject of the next studies and upcoming Deliverables. 
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APPENDIX A4 

In this Appendix, the clusters of predictor variables used for the heatwave driver feature 
selection are reported. 

 

Figure A4.1: Clusters of European predictor variables for the heatwave driver Feature Selection Framework (Section 4). K-
means clustering is applied to ERA5 daily data over the period 1951-2010. The domain covers [30N,70N], [-15E,46E]. Values 
over the ocean are removed for 2m temperature and Soil Moisture. 

 

Figure A4.2: Clusters of North Atlantic predictor variables for the heatwave driver Feature Selection Framework (Section 4). 
K-means clustering is applied to ERA5 daily data over the period 1951-2010. The domain covers [0N,70N], [90W,46E]. 
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Figure A4.3: Clusters of Arctic Sea Ice Concentration for the heatwave driver Feature Selection Framework (Section 4). K-
means clustering is applied to ERA5 daily data over the period 1951-2010. The domain covers the northern polar region; 
parts of the domain which have never experienced sea ice are removed from the clustering. 

 

Figure A4.24 Clusters of global predictor variables for the heatwave driver Feature Selection Framework (Section 4). K-
means clustering is applied to ERA5 daily data over the period 1951-2010. The domain covers all latitudes and longitudes. 

  



 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and  
adaptation design using machine learning 

EU H2020 Project Grant #101003876 

 

113 
D3.2 EXTREME EVENTS DETECTION 

APPENDIX A5 

A5.1 

In this Appendix, the heatmaps for the Clusters not discussed in the Chapter 5 are reported. 

 

Figure A5.1: Heatmap: Cluster 1 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is May 
2001, month 200 is September 2009, month 300 is January 2018). 
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Figure A5.2: Heatmap: Cluster 2 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is May 
2001, month 200 is September 2009, month 300 is January 2018). 

 

Figure A5.3: Heatmap: Cluster 3 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is May 
2001, month 200 is September 2009, month 300 is January 2018). 
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Figure A5.4: Heatmap: Cluster 4 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is May 
2001, month 200 is September 2009, month 300 is January 2018). 

 

Figure A5.5: Heatmap: Cluster 5 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is May 
2001, month 200 is September 2009, month 300 is January 2018). 
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Figure A5.6: Heatmap: Cluster 6 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is May 
2001, month 200 is September 2009, month 300 is January 2018) 

 

Figure A5.7: Heatmap: Cluster 7 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is May 
2001, month 200 is September 2009, month 300 is January 2018). 
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Figure A5.8: Heatmap: Cluster 8 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is May 
2001, month 200 is September 2009, month 300 is January 2018). 

 

Figure A5.9: Heatmap: Cluster 9 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is May 
2001, month 200 is September 2009, month 300 is January 2018). 
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Figure A5.10: Heatmap: Cluster 11 (on the x-axis the 312 months between 1993 and 2018 are reported, e.g. month 100 is 
May 2001, month 200 is September 2009, month 300 is January 2018). 

A5.2 

In this Appendix, the selection matrices for the Clusters not shown in the Chapter 5 are 
reported.

 

Figure A5.2.1: Selection matrix: Cluster 1.                                                                  Figure A5.2.2: Selection matrix: Cluster 2. 
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Figure A5.2.3: Selection matrix: Cluster 3.                                                                       Figure A5.2.4: Selection matrix: Cluster 4. 

 

Figure A5.2.5: Selection matrix: Cluster 5.                                                                       Figure A5.2.6: Selection matrix: Cluster 6. 
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Figure A5.2.7: Selection matrix: Cluster 7.                                                                       Figure A5.2.8: Selection matrix: Cluster 8. 

 

Figure A5.2.9: Selection matrix: Cluster 9.                                                                       Figure A5.2.10: Selection matrix: Cluster 
11. 
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APPENDIX A6 

A6.1 Nonparametric SPEI for the wichita time series 

As an example for the extrapolation problem described in chapter 6.4.5, figure A.6.1 
displays a time series called “wichita” which is used in the demo software of the SPEI. It can 
be seen that values outside the reference period cannot be extrapolated by the algorithm 
indicated by the red dots in the figure for which the value infinity is obtained, whereas NP-
SPEI is able to map these time points. Furthermore, by visual inspection we observed that 
the NP-SPEI and SPEI were highly correlated. For instance, the Pearson correlation 
coefficient of the two time series calculated for the full period was approximately 0.996.   

 

Figure A.6.1: Example calibration of SPEI and NP-SPEI for the wichita of the SPEI-demo package (see text for more details). 
Upper panels show the calculated SPEI based on the log-logistic distribution, while the lower panels display the calculated 
SPEI based on the nonparametric approach. Red dots in the upper-right panel show values which cannot be mapped.  
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A6.2 Number of non-extrapolatable points of the nonparametric SPEI 

Figure A.6.2 shows the number of non-extrapolatable points for the non-parametric SPEI. 
These points cannot be identified by the eye. Indeed, all maps shown in figure A.6.2 have 
approximately 31 million grid points, and we have found 1000 grid points, where non-
mappable values occur and the latter only when the calibration was performed on the 
reference period. When the full time period was used, this phenomenon vanished, in contrast 
to the regular SPEI. 

 

Figure A.6.2: Same as Figure 6.13, but for calibration on the reference period.  
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A6.3 Comparison of nonparametric SPEI and SPEI on the reference period   

Figure A.6.3 compares the nonparametric SPEI to the SPEI, which are both calibrated on the 
reference period 1961-1990 with the same statistics as in figure 6.13. 

Figure A.6.3: Same as Figure 6.15, but for calibration on the reference period.  

A6.4 Deep Learning based training.   

Figure A.6.4 shows the evaluation plot of the deep neural network used for the AI-based J-
Function-based interpreter in Section 6.5.2.3. The accuracy of neural networks converged fast 
with similar performances to those obtained on the validation set, thus not indicating 
overfitting (Chollet et al., 2022). 

 

Figure A.6.4: Evaluation plot of the deep neural network used. The blue line represents the accuracy of the test set, while 
the green line represents the accuracy of the validation set. 
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