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EXECUTIVE SUMMARY 

In Machine Learning (ML), an essential part of the work is to define the training data set, both in 

terms of the target variable and the predictors. Once an ML model is constructed, one should 

benchmark it against an existing prediction model to validate its benefit. Therefore, one must 

consider the selection of datasets before developing the ML method. 

This deliverable aims to describe indices and data to be used to detect the different types of Extreme 

Events (EE) considered in CLINT. The extreme events are: 

● Tropical cyclones, in terms of genesis and activity on different timescales and extratropical 

transitions. 

● Heatwaves and tropical nights 

● Extreme droughts 

● Compound events and concurrent extremes 

For each type of EE, the report gives an overview of the problem, lists relevant indices and datasets, 

and discusses candidate drivers. The selection is based on a comprehensive review of current 

literature on each topic. 

For tropical cyclones, local drivers for predictability, such as sea surface temperature (SST), moisture 
and vertical wind shear, will be combined with teleconnections of the Madden-Julian Oscillation 
(MJO) and the El Nino- Southern Oscillation (ENSO) to predict tropical cyclone activity at the sub-
seasonal scale. On the climate scale, the genesis potential index (GPI) will be improved to detect 
cyclone activity. 
 
For heatwaves and tropical nights over Europe atmospheric conditions such as flow regimes (NAO 
and blocking) together with remote oceanic, land and sea ice will be explored to predict the extreme 
events.  
 
For extreme droughts, a combination of precipitation indices and hydrological models will be used 
to detect the event. To predict the extreme drought, similar drivers as for the heatwaves will be 
explored. 
 
For compound events and concurrent extremes, ML will be utilised to detect events based on their 
impact on the water, food and energy sectors, derived from observations and impact models and 
appropriate combinations of precipitation and temperature indices.  
 
The insights from this report will be used as input for the ML models that will be developed in the 

next stage of the CLINT project.  
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1 INTRODUCTION 

In Machine Learning (ML) an essential part of the work is to define the training data set, both in 

terms of the target variable and the predictors. After constructing an ML model, one should 

benchmark it against an existing prediction model to validate the benefit. Therefore, one must 

consider the choices of datasets before building the ML method. 

To obtain a good ML model, a sufficiently long training period with consistent data is needed. For 

this purpose, re-analyses (e.g., ERA5) are often used as they are produced with the same method 

for a long period. For observational time series, such consistency is harder to obtain as observation 

practices might have changed over time and space. However, the drawback with reanalysis products 

is that they partly build upon model approximations and may also suffer from non-stationarity issues 

in input observations. 

Different types of problems require different solutions in terms of the type of predictors to use to 

train the model. The first distinction is whether an event is to be detected when it happens (e.g., 

whether there is a drought), or an event is to be predicted ahead of time (e.g., the genesis of a 

tropical cyclone). While local predictors are crucial for detection, prediction problems may require 

a combination of local and remote predictors.  

This deliverable aims to describe indices and data to be used to detect the different types of Extreme 

Events (EE) considered in CLINT. The extreme events are: 

● Tropical cyclones, in terms of genesis and activity on different timescales and extratropical 

transitions. 

● Heatwaves and tropical nights 

● Extreme droughts 

● Compound events and concurrent extremes 

For each type of EE, the report gives an overview of the problem, lists relevant indices and datasets, 

and discusses candidate drivers. 
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2 TROPICAL CYCLONES 

Tropical Cyclones (TC) form at a rate of about 80-90 times per year globally in the tropical latitude 
bands on both sides of the Equator. TCs making landfall is among the costliest and deadliest natural 
disasters. This is due to the strong winds, heavy precipitation, and the associated risk of storm 
surges. Therefore, it is of paramount importance to be able to accurately predict their activity on 
several timescales, ranging from a few days to seasonal and climate projections. 

A comprehensive theory of TC formation is lacking so far. Several indicators have been developed, 
however, relating the spatio-temporal distribution of TC formation to large-scale atmospheric and 
oceanic variables, such as atmospheric humidity, vorticity, and sea surface temperature. These 
indices generally have good skill at the climatological/global scales at which they have been 
trained, but their performance tends to degrade at interannual scales, and varies from basin to 
basin. Another issue with the genesis potential indices is that often their future trends are not 
consistent with the estimates of future TC activity. 
A useful predictor for TC genesis/activity is one that has a reasonable correlation with the target, 
and shows predictive skill as well. As the predictive skill is different for different predictors, the 
choice will differ among the different timescales of interest (i.e., a few days ahead vs the climate 
change time scale). On sub-seasonal timescales, the Madden-Julian Oscillation is a powerful 
predictor (Klotzbach, 2014) and also possesses predictive skill on a 3-4 week timescale (Vitart, 2009). 
The open question for the ML design is whether to train on the gridded data that form the indices 
or directly on the indices.  

Within Task 3.1, Subtask 3.1.1 will focus on the long climatological scales, using ML algorithms to 
discover improved formulations of genesis potential indices based on large-scale climate variables. 
Subtask 3.1.2, on the other hand, will focus on short time scales, developing ML predictors of TC 
activity for weather prediction and sub-seasonal time scales. 

2.2 Indices for tropical cyclone detection 

The Genesis Potential Index (GPI) was developed by Emanuel & Nolan (2004), aiming at describing 
the climatological distribution and seasonal variations of TCs. Its functional form is given by: 
 

𝐺𝑃𝐼 = |105𝜂|3/2 (
𝐻

50
)

3

(
𝑃𝐼

70
)

3

(1 +  0.1 𝑉)−2  

 
where η is the absolute vorticity at 850 hPa, H the relative humidity at 600 hPa, V the wind shear 
between 200 hPa and 850 hPa and Maximum Potential Intensity (MPI or PI) that is a theoretical 
estimate of the maximum attainable TC wind speed in a given environment. The calculations behind 
MPI are described in Emanuel & Bister (2008). MPI values have been computed using the Python 
package tcpiPY (Gilford 2020)1. 

 
1 https://github.com/dgilford/tcpyPI 
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The Tropical Cyclone Genesis index (TCGI) is an alternative formulation of GPI proposed by Tippett 
et al. (2011). In the formulation of TCGI, the MPI is replaced by the relative sea surface temperature 
(SST): 
 

𝑇𝐶𝐺𝐼 =  𝑒𝑥𝑝(−4.47 + 0.5 𝜂 + 0.05 𝐻 + 0.63 𝑅𝑆𝑆𝑇 −  0.17 𝑉 +  𝑙𝑜𝑔 𝑐𝑜𝑠 𝜑)  
 
where η is the absolute vorticity at 850 hPa, H the relative humidity at 700 hPa, V the wind shear 
between 200 hPa and 850 hPa and RSST is the SST anomaly with respect to the mean tropical SST 
(30 °N – 30 °S), and ϕ is the latitude. 

 

Table 1 List of the indices employed in the characterisation and detection of Tropical Cyclones in Task 3.1. 

Acronym Name Essential 
climate 

variables 

Description References 

GPI Genesis Potential 
Index 

vorticity, 
wind shear, 

relative 
humidity, SST 

Index describing the spatio-
temporal distribution of TC genesis 

as a function of environmental 
parameters 

Emanuel & Nolan 
(2004) 

TCGI Tropical Cyclone 
Genesis Index 

vorticity, 
wind shear, 

relative 
humidity, SST 

Index describing the spatio-
temporal distribution of TC genesis 

as a function of environmental 
parameters 

Tippett, Camargo 
& Sobel (2011) 

MPI Maximum 
Potential Intensity 

SST, air 
temperature, 

specific 
humidity, 

MSLP 

Theoretically derived estimate of 
the maximum intensity attainable 

by a TC in a given environment 

Emanuel (1988), 
Bister & Emanuel 

(2008) 

ACE Accumulated 
Cyclone Energy 

wind speed Lifetime-integral of squared cyclone 
wind speed 

Bell et al (1999) 

MJO Madden-Julian 
Oscillation 

OLR, zonal 
winds at 850 
and 200hPa 

2 leading modes of variability in the 
equatorial region 

Hendon and 
Wheeler, 2004 

Nino3.4 Nino3.4 SST SST anomaly in 5N-5S, 190E-240E,   

Acronym = Abbreviation used for the index, Name = full name of the index, Essential climate variables = variables 
required for the computation of the index, Description = short definition of the index, References = Publications where 
the index is used or defined. 
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2.3 Datasets for tropical cyclone detection 

Data sets are listed in Deliverable 8.3, 'First update of the Data Management Plan2 

2.3.1 ERA5 

In Subtask 3.1.2, we will use ERA5 as it is a global reanalysis for atmospheric gridded variables. ERA5 
is a global ECMWF atmospheric reanalysis available for the period between January 1950 to the 
present day (Hersbach et al. 2020). It is based on a version of the ECMWF atmospheric model 
(Integrated Forecasting System, cycle 41r2) that was operational in 2016, and it employs a four-
dimensional variational analysis (4D-Var) for data assimilation. ERA5 provides hourly fields with a 
spatial resolution of approximately 30 km.  
As the predictor variables in this task are large scale (see Table 1), we only use the reanalysis data 
valid 00 UTC for the time-series, and at 2.5-degree resolution, in order to smooth unpredictable 
noise and to lower the dimensionality for the ML. To generate the training data, ECMWF has created 
a small software package (CLINT-TS) to create both time series of indices and gridded data for the 
training. The software and a selection of indices will be available on GitHub. 
For the TC genesis indices, ERA5 monthly data from the relevant fields are used, also at a resolution 
of 2.5 degrees. 
In addition to the gridded data from ERA5, we will also use tracking files of TCs from ERA5. This 
dataset will form an alternative target dataset to IBTrACS. For ERA5, the TCs have been tracked using 
the tracking algorithm described in Magnusson et al. (2021). 

2.3.2 IBTRACS 

At least four times a day, each of the Regional Specialized Meteorological Centres (RSMCs) and 
Tropical Cyclone Warning Centres (TCWCs) produce estimates of the position and intensity of all 
present TCs in their basin. These observations are often referred to as Best Track.  
The Best Track is a subjective human assessment of the TC centre's location, intensity, and structure, 
using all observations available at the time of the analysis. As aircraft missions are generally only 
present in the Atlantic, the estimates are often based on different satellite products. A common tool 
is the Dvorak technique (Dvorak, 1984), where the analyst identifies patterns in cloud features in 
satellite visible and enhanced IR imagery and associates them with an intensity (T) number. From 
this, look-up tables are available to determine the minimum central pressure (Pmin) and maximum 
wind speed (Vmax). As this technique involves a human judgment, uncertainties naturally arise both 
in terms of intensity and whether the system should be classified as a TC or an extratropical one. 
After each season, the TCs are re-evaluated, and the estimates can be modified before the final Best 
Track is completed. The International Best Track Archive for Climate Stewardship (IBTrACS) 
combines track and intensity estimates from several RSMCs and other agencies to provide a central 
repository of both working and final Best Track (Knapp et al. 2010). 
 
 

 
2 Table of the Data Management Plan: 

https://docs.google.com/spreadsheets/d/1s4igaxwHKxecsrM2ZoQXCbQ_k78B9LpN/edit#gid=2127184400 
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Table 2 List of observational and reanalysis dataset used in Task 3.1. 

Name Source Handled  
by 

Processed  
by 

Stored  
by 

ETD Used 
by 

ERA5 C3S-CDS CMCC   N/A ECMWF, CMCC August 31, 
2022 

CMCC, ECMWF  

IBTrACS  CMCC N/A CMCC August 31, 
2022 

CMCC, ECMWF 

Name = short name of the dataset, Source = original producer, Handled by = partner doing the download/extraction of the dataset 
over the region of interest, Processed by = partner applying any "model output statistics" if any (downscaling, calibration etc.), Stored 
by = partner distributing the data for the consortium partners (e.g., centralised CLINT repository at DKRZ), if need be, ETD = estimated 
date of availability (from handling/storing partner), Used by = partner using the data (case study). 

2.3.3 CMIP6 MODEL SIMULATIONS OUTPUT 

In order to benchmark the skill of existing genesis potential indices, data at a monthly frequency 
from a large number of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) 
are considered. In particular, simulations output from two model ensembles within CMIP6 are used: 

● Scenario Model Intercomparison Project (ScenarioMIP) simulations: this is a large set of GCM 
simulations covering a number of different climate scenarios. Simulations from the SSP585 
(business as usual) and SSP126 (emission stabilisation) are used for the historical (1950-
2014) and future (2014-2100) periods. Models in this ensemble have an average horizontal 
resolution of 1 degree, therefore, direct detection of TCs is not possible. 

● High Resolution Model Intercomparison Project (HighResMIP) simulations: this is a smaller 
set of simulations using high-resolution models, allowing for direct TC detection, and 
tracking. Simulations from the hist-1950 (1950-2014) and highres-future (2015-2050) 
simulations are used. 

The tracks of the TCs detected in HIGHResMIP simulations were obtained by a public repository, as 
described in Roberts et al.  (2020).  
 
Table 3  List of ScenarioMIP climate projections datasets used in Subtask 3.1.1 

Name Source Handled by Processed 
by 

Stored  
by 

ETD Used 
by 

ACCESS-CM2 ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

ACCESS-ESM1-5 ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

AWI-CM-1-1-MR ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

BCC-CSM2-MR ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 
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Name Source Handled by Processed 
by 

Stored  
by 

ETD Used 
by 

CAMS-CSM1-0 ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

CAS-ESM2-0 ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

CMCC-CM2-SR5 ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

CMCC-ESM2 ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

CanESM5 ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

EC-Earth3-Veg-LR ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

EC-Earth3-Veg ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

EC-Earth3  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

FGOALS-f3-L  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

FGOALS-g3  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

FIO-ESM-2-0  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

GFDL-ESM4  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

IITM-ESM  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

INM-CM4-8  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

INM-CM5-0  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

IPSL-CM6A-LR  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 
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Name Source Handled by Processed 
by 

Stored  
by 

ETD Used 
by 

KIOST-ESM  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

MIROC6  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

MPI-ESM1-2-HR  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

MPI-ESM1-2-LR  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

MRI-ESM2-0  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

NESM3  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

NorESM2-LM  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

NorESM2-MM  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

TaiESM1  ESGF CMCC N/A CMCC August 31, 
2022 

CMCC 

Name = short name of the dataset,  Source = original producer, Handled by = partner doing the download/extraction of 
the dataset over the region of interest, Processed by = partner applying any "model output statistics" if any (downscaling, 
calibration etc.), Stored by = partner distributing the data for the consortium partners (e.g., centralised CLINT repository 
at DKRZ), if need be, ETD = estimated date of availability (from handling/storing partner), Used by= partner using the 
data (case study). 

 
Table 4 List of HIGHResMIP climate projections datasets used in Task 3.1. 

Name Source Handled by Processed 
by 

Stored  
by 

ETD Used 
by 

CMCC-CM2-SR5 ESGF CMCC N/A CMCC August 
31, 2022 

CMCC 

CNRM-CM6-1-HR  ESGF CMCC N/A CMCC August 
31, 2022 

CMCC 

EC-Earth3P-HR  ESGF CMCC N/A CMCC August 
31, 2022 

CMCC 
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Name Source Handled by Processed 
by 

Stored  
by 

ETD Used 
by 

HadGEM3-GC31-
HM  

ESGF CMCC N/A CMCC August 
31, 2022 

CMCC 

MPI-ESM1-2-XR  ESGF CMCC N/A CMCC August 
31, 2022 

CMCC 

 Name = short name of the dataset, Source = original producer, Handled by = partner doing the download/extraction of 
the dataset over the region of interest, Processed by = partner applying any "model output statistics" if any (downscaling, 
calibration etc.), Stored by = partner distributing the data for the consortium partners (e.g., centralised CLINT repository 
at DKRZ), if need be, ETD = estimated date of availability (from handling/storing partner), Used by= partner using the 
data (case study). 

 

2.3.4 ECMWF FORECAST 

In order to benchmark the forecasts based on ML, the ECMWF ensemble forecasting system (ENS) 
is used. The ensemble system consists of 50 perturbed ensemble members and one unperturbed 
control member, all using a horizontal resolution of 18 km up to 15 days ahead. The forecasts are 
run twice a day (00UTC and 12UTC) up to 15 days ahead. Twice a week, the ensemble is extended 
out to 46 days ahead with 36 km resolution. In each ensemble member, the TCs are tracked (see 
Magnusson et al. [2021] for tracker description), including cases of genesis during the forecast.  
Based on the TC tracks in each ensemble member, a gridded field of probability of TC activity is 
calculated over a time window. The calculation assumes an impact radius of 300 km. Operationally 
at ECMWF, the product is calculated with time windows of 2 and 7 days and for the intensity 
thresholds 8, 17 and 32 m/s. Figure 1 shows examples of the gridded product for tropical storms 
(>17 m/s) for forecasts valid 17-19 September 2020, initialised on 16 September 00 UTC (left) and 7 
September 00 UTC (right). The aim of Subtask 3.1.2 is to produce the same kind of products based 
on ML. 

 
Figure 1 Examples of tropical 2-day storm activity 17-19 September 2020 from ECMWF ensemble with lead time 24-72 
hours (left) and 240-288h (right).   
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2.4 Candidate drivers for tropical cyclones  

The aim of Subtask 3.1.2, namely, to define new key structures for TC genesis, requires a 
comprehensive pool of candidate drivers. Local atmospheric conditions are certainly foremost in 
terms of the potential for TC genesis over a tropical ocean, as they provide the necessary 
environmental ingredients. These fields, however, are modulated by different types of tropical 
waves that imprint their signals onto the local fields. Oceanic conditions determine whether a 
potential TC can tap the ocean heat content as the vital source to develop and maintain convection-
supporting surface heat and moisture fluxes. In addition, certain extratropical conditions are 
included because TCs occasionally result from interaction with baroclinic structures – a process 
referred to as 'tropical transition'. These structures are mostly associated with midlatitude dynamics 
but may also have a tropical history (e.g., tropical upper-tropospheric troughs). Individual candidate 
atmospheric and oceanic drivers are discussed and motivated in more detail below. 

● Atmospheric drivers: A variety of studies analysing TC formation (e.g., Palmen 1948, Gray 
1968) led to a commonly accepted list of necessary environmental factors. Accordingly, 
relevant atmospheric factors (and corresponding fields) are the existence of an initial vortex 
of sufficient strength (850 hPa absolute vorticity), moist mid-to-low levels to foster 
convection (600 hPa relative humidity), low wind shear (200-850 vertical shear), nonzero 
Coriolis force, and others. It, therefore, stands to reason that indices for TC genesis, such as 
the GPI and TCGI introduced above, are defined in a way to combine several of those factors. 

The fields underlying these factors are modulated by different types of tropical waves (Frank 
and Roundy 2006). A large group of equator-tied waves can be theoretically described by 
solutions of the shallow water equations (Matsuno 1966), which are referred to as 
convectively coupled equatorial waves (CCEWs; Kiladis et al. 2009) and include Kelvin, 
equatorial Rossby, mixed Rossby-gravity and inertio-gravity waves. In contrast, the Madden-
Julian Oscillation (MJO) is an empirically discovered wave-like phenomenon that propagates 
eastward along the Equator. In the North Atlantic, another relevant wave type is the African 
Easterly wave, which propagates along the off-equatorial African jet, forming 'pouches' 
frequently conducive to TC formation. 

The MJO is found to have a strong impact on TC genesis in several of the basins, as 
documented in Klotzbach (2014). For example, over the southern Indian Ocean the TC 
activity (in terms of accumulated cyclone energy) is, on average, increased by 15-20% during 
phases 2-5. The role of CCEWs in TC activity has also been demonstrated in various studies 
both for individual basins and globally (Schreck et al. 2012, Frank and Roundy 2006, Maier-
Gerber et al. 2021, Lawton et al. 2022, Schreck et al. 2011). Compared to other models, 
ECMWF's sub-seasonal forecasts show the lowest biases regarding the mean state and 
activity of CCEWs and the MJO (Janiga et al. 2018). This confirms the suspected potential of 
wave indices as predictors for probabilistic forecasts of TC genesis beyond medium-range 
lead times (Frank and Roundy 2006). 

Although tropical waves are tied to the Equator, they can influence North Atlantic TC 
formation well outside the Tropics (Schreck et al. 2012, see their Fig. 7). This remote link, 
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along with the fact that tropical waves and TCs are typically nonstationary, makes it difficult 
to design any local predictors.  For Subtask 3.1.2, we will hence test to use the components 
of the MJO as gridded global fields as training and compare it with training directly on the 
MJO phases. A common index definition of the MJO is based on the EOFs of OLR, u850 and 
u200 in the tropical band (Wheeler and Handon, 2004). From the projection onto the two 
leading EOFs, the phase of the MJO can be determined. If time permits, wave-filtered 
gridded data are used as input parameters for the ML. 

More recent studies have investigated the impact of extratropical processes on subtropical 
TC activity. Rossby wave breaking (RWB) was found to alter environmental fields (e.g., shear 
and moisture) in the North Atlantic (Zhang et al. 2016, 2017) and the North Pacific (Wang et 
al. 2020). Dynamically, this occurs through a potential vorticity (PV) streamer forming at the 
equatorward side of an anticyclonic RWB event (Thorncroft et al. 1993). Because these 
structures impact TC activity on (sub-)seasonal timescales (Papin et al. 2020), a candidate 
driver representing such extratropical influence (e.g., upper-level layer-averaged PV) will be 
included. Going out to and beyond medium-range lead times, however, PV is not expected 
to be well forecast by NWP models. Nevertheless, to provide an integrated measure of the 
baroclinic influence of the upper-level trough, the Coupling Index (CI; Bosart and Lackmann 
1995) could be used to represent the bulk tropospheric stability and, thus, the Rossby 
penetration depth. The CI is calculated as the difference in equivalent potential 
temperatures at the 2-PVU dynamic tropopause and 850-hPa. Because of its useful 
application for replacing the canonical SST-based 26.5°C-threshold in case of tropical 
transitions (McTaggart-Cowan et al. 2015), the CI is considered a relevant extratropical 
driver. Based on two area-averaged metrics, the upper-level Q-vector convergence (Q) and 
the lower-level thickness asymmetry (Th), McTaggart-Cowan et al. (2008, 2013) classified 
five types of baroclinically influenced development pathways for TC genesis. The fields on 
which the two metrics are based could be another option for PV or CI fields, respectively. 

The Quasi-Biennial Oscillation (QBO), a stratospheric driver, has been suggested in the 
literature as another source to impact Atlantic TC activity (Gray 1984). Its use as a predictor, 
however, has often been rejected in statistical model development due to weak correlation 
signals (e.g., Leroy and Wheeler 2008, Henderson and Maloney 2013). 

Oceanic drivers: Oceanic conditions are slowly varying and impact the risk of TC genesis and the life 
length of the systems. Therefore, a candidate driver could be local SSTs over sub-domains of the 
basins (e.g., the Main Development Region (MDR) or the Gulf of Mexico). Teleconnections, such as 
the El Niño-Southern Oscillations (ENSO), are believed to influence the large-scale wind patterns 
remotely over the subtropical Atlantic (Gray 1984) and also the circulation over the Indian Ocean, 
and thus to impact the TC formation (e.g., Gray 1979, Song et al., 2022). For Subtask 3.1.2, we will 
test using SST as a gridded global field for training and will compare it with training directly on the 
ENSO indices and local SST averages.  
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3 EXTRATROPICAL TRANSITION OF TROPICAL CYCLONES 

3.1 Overview  

Tropical cyclones (TC) form in the tropics outside the equatorial region. At the end of the life cycle, 
some TCs curve towards the extratropics and start to interact with the mid-latitudinal flow. Often 
referred to as Extra-tropical (ET) transitions, these can cause substantial impact in the mid-latitudes, 
both if the cyclones that directly (Evans et al., 2017; Baker et al., 2021) make landfall in a sub-tropical 
stage or soon after an extratropical transition (e.g., TC Sandy 2012, TC Leslie 2018, TC Lorenzo 2019) 
or indirectly (Keller et al., 2019) as the extratropical transitions can lead to downstream 
development of strong lows (e.g., after TC Karl, 2016; Schäfler et al., 2018). The increased risk of 
windstorms over Europe originating from ET was investigated by Sainsbury et al. (2020). 

Whether or not a TC will approach the extra-tropics is determined by the steering flow in the tropics 
and the phasing with the mid-latitude wave guide, where an upstream trough favours a northward 
propagation into the extratropics. Being able to predict the mid-latitudinal flow is, therefore, crucial 
to capture the ETs. 

The majority of TCs do not undergo ET, as they dissipate and/or hit land before reaching higher 
latitudes. TCs that undergo ET, however, may create substantial impacts downstream over Europe. 
As was especially evident in 2020, several TCs can make landfall in the deep tropics or subtropics, 
spinning down quickly into a remnant low-pressure system that can bring substantial flooding 
rainfall for several days.  Other TCs weaken as they encounter high vertical wind shear or substantial 
low-humidity air, which may occur in the tropics and especially the extratropics. As a TC moves into 
the extratropics, it also encounters much colder waters, removing the supply of thermal energy and 
moisture from the ocean that is necessary to maintain the TC. 

Figure 2 (top) shows all North Atlantic TCs in the IBTrACS database spanning 1980 to 2021. In this 
task, we will consider TCs that at least once appeared north of 40°N to be ET cases. Figure 2 (bottom) 
shows the genesis points of non-ET cases (pink) and ET cases (black). The genesis region might be 
the first predictor of the risk of ET later in the life cycle. 
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Figure 2 All North Atlantic tropical cyclone positions (top) and genesis points (bottom; non-ET cases - pink, ET cases - 
black) in the IBTrACS database spanning 1980 to 2021. 

Figure 3 shows the inter-annual variability of the fraction of TC undergoing ET. Here we find a large 
year-to-year variability, which is promising for being able to predict ET if it is possible to identify the 
predictors responsible for this variability by applying Machine Learning (ML) algorithms. The results 
will be benchmarked against ECMWF forecasts.  
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Figure 3 Fraction of TCs undergoing ET each year in IBTrACS 1980-2021. 

 

The aim of this task is to identify candidates for factors influencing the probability of ET of Atlantic 
TCs, and to create training datasets based on these parameters. While many studies have targeted 
the processes around ET, we did not find much in the literature on large-scale factors that can be 
predicted on the timescale 1-2 weeks ahead. The ML problem will be formulated as the conditional 
probability for ET conditioned on the genesis of TCs. 

3.2 Indices for extratropical transition of tropical cyclones 

In section 3.1, the candidate drivers for TC genesis (formation point) and activity (integrated track 
over the life length) are outlined. While these candidates will be important as well for the ET (having 
a TC is a necessary condition), we introduce here information on the mid-latitude drivers. 
In order to create the indices from the ERA5 reanalysis, a software package (CLINT-TS) has been 
created (to appear on GitHub3). Based on the software, a range of indices has been calculated for 
the period 1980-2022. 
  
  

 
3 https://github.com/climateintelligence 

https://github.com/climateintelligence
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Table 5 List of the indices employed in the characterisation and detection of extratropical transitions in Task 3.1.3. 

Acronym Name Essential climate 
variables 

Description References 

NAO North Atlantic 
 Oscillation 

z500 The leading mode of 
atmospheric (z500) variability 

over the North Atlantic 

ECMWF SEAS 
teleconnection 

patterns 

EAT East Atlantic 
Ridge 

z500 Mode characterised by an 
anticyclone over the Central 

Atlantic 

ECMWF SEAS 
teleconnection 

patterns 

PNA Pacific-North 
American  

 

z500 a large-scale weather pattern 
with two modes, denoted 
positive and negative, and 

which relates the atmospheric 
circulation pattern over the 

North Pacific Ocean with the 
one over the North American 

continent. 

ECMWF SEAS 
teleconnection 

patterns 

NPD North Pacific 
Dipole 

z500 The second EOF of the 
Pacific/North American. The 

sign convention, referred to as 
the North Pacific dipole, is such 

that positive projections 
correspond to an amplification 

of the respective stationary-
wave ridge. 

ECMWF SEAS 
teleconnection 

patterns 
 

Nino3.4 Nino3.4 SST SST anomaly in 5N-5S, 190E-
240E 

 

SubAtlSST Sub-tropical  
Atlantic SST 

SST SST anomaly in the sub-tropical 
Atlantic 20N-30N, 60W-20W 

 

Acronym = Abbreviation used for the index, Name = full name of the index, Essential climate variables = variables 
required for the computation of the index,  Description =  short definition of the index, References = Publications where 
the index is used or defined. 

 

3.3 Datasets for extratropical transition of tropical cyclones  

3.3.1 ERA5 

See 2.3.1. 

3.3.2 IBTRACS 

See 2.3.2. 
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Table 6 List of observational and reanalysis datasets used in Task 3.1.3. 

Name Source Handled  
by 

Processed  
by 

Stored  
by 

ETD Used 
by 

ERA5 ECMWF MARS ECMWF   N/A ECMWF June  30, 
2022 

ECMWF  

ERA5 TC 
tracks 

ECMWF ECFS ECMWF  ECMWF June  30, 
2022 

ECMWF 

IBTrACS NCEP 
https://www.
ncdc.noaa.gov

/ibtracs/ 

ECMWF  ECMWF June  30, 
2022 

 

ECMWF 
ENS TC 
tracks 

ECMWF ECFS ECMWF  ECMWF June  30, 
2022 

ECMWF 

Name = short name of the dataset, Source = original producer, Handled by = partner doing the download/extraction of 
the dataset over the region of interest, Processed by = partner applying any "model output statistics" if any (downscaling, 
calibration etc.), Stored by = partner distributing the data for the consortium partners (e.g., centralised CLINT repository 
at DKRZ), if need be, ETD = estimated date of availability (from handling/storing partner), Used by = partner using the 
data (case study). 

 

3.3.3 ECMWF forecasts for benchmark  

To benchmark the forecasts based on ML, the ECMWF ensemble forecasting system (ENS) will be 
used. In each ensemble member, the TCs are tracked (see Magnusson et al. (2021) for tracker 
description), including cases of genesis during the forecast. The forecasts could be verified in a 
similar method as applied by Bergman et al. (2019), see also 2.3.4. 

3.4 Candidate drivers for extratropical transition of tropical cyclones 

In the literature, an effort has been made to classify and describe the consecutive stages of a typical 
ET event (Klein et al. 2000, Jones et al. 2003). Despite the validity of such generalised concepts, 
several case studies showed that the actual pathway of how ET manifests can vary largely from case 
to case. This variability results from the complexity of the (thermo)dynamic interplay between the 
transforming TC, the subtropical high, and the trough embedded in the midlatitude flow. Therefore, 
the set of predictors used in Task 3.1 comprises candidate drivers for ET of tropical and extratropical 
origin. 
Climatologically, the likelihood of a North Atlantic TC successfully undergoing an ET increases over 
the season (Bieli et al. 2019). This can be explained by the poleward extending zone of favourable 
oceanic conditions (i.e., high SSTs) and the equatorward penetrating zone of baroclinic growth 
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associated with the midlatitude dynamics (Hart and Evans 2001). Consequently, a TC would have to 
cover an increasingly shorter distance through a decay-prone area before reaching the baroclinic 
influences that induce ET. Different factors contributing to ET cases reaching Europe were 
investigated by Sainsbury et al. (2022). 
With the targeted medium-range lead times, the aim of skilfully forecasting ET requires a 
combination of the case-specific and the climatological perspectives. While oceanic conditions are 
slowly varying in general, atmospheric conditions (both tropical and extratropical) range from large-
scale patterns to the near-storm environment. Because forecasting ET can be seen as a conditional 
analysis of TCs, track-related information is considered another major source of predictability. 
Individual candidate atmospheric, oceanic, and track-related drivers are discussed and motivated in 
more detail below. 
 

 
Figure 4 500hPa Teleconnection patterns from ECMWF. (From www.ecmwf.int). 

 

● Atmospheric drivers: On the planetary scale, the mid-latitude atmospheric patterns can be 
diagnosed using an EOF analysis of the 500-hPa geopotential height. In this task we will make 
use of the teleconnection patterns derived for ECMWF seasonal forecast products. The 
patterns are based on EOF analysis over two sectors (we will not use the Siberian sector 
here). Retaining the two leading EOFs, one obtains the Pacific-North American (PNA) and 
North Pacific Dipole (NPD) from the Pacific sector and North Atlantic Oscillation (NAO) and 
East Atlantic Ridge (EAT) from the Atlantic sector, respectively. Although NAO and PNA were 
found to individually explain less than 10% of the year-to-year variability in ET frequency and 
fraction (Hart and Evans 2001), the indices may be of greater importance for individual ET 
cases. The Pacific patterns are expected to be relevant for generating the waveguide that 
later affects the Atlantic, while the Atlantic patterns influence the local conditions for ETs. 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 

 

EXTREME EVENTS DETECTION 28 

 

On the synoptic scale, idealised simulations have shown that it is not so much the strength 
of the midlatitude trough (Ritchie and Elsberry 2003) but rather its phasing with the TC that 
is crucial for ET completion and reintensification (Ritchie and Elsberry 2007). Going out to 
medium-range lead times, however, the phasing is not expected to be well captured in NWP 
models. Nevertheless, to provide an integrated measure of the baroclinic influence of the 
upper-level trough, the coupling index (CI; Bosart and Lackmann 1995) is used for 
representing the bulk tropospheric stability and, thus, the Rossby penetration depth. The CI 
is calculated as the difference in equivalent potential temperatures at the 2-PVU dynamic 
tropopause and 850-hPa. Because of its useful application in an ET case study (McTaggart-
Cowan et al. 2003) as well as for replacing the canonical SST-based 26.5 °C-threshold in case 
of tropical transitions (McTaggart-Cowan et al. 2015), the CI is included as a relevant 
extratropical driver. 

Atmospheric conditions in the near-storm environment are certainly key for the ET process. 
To first order, most of the variables that enter into the GPI (Emanuel and Nolan 2004) 
described in MS6-7 should also be relevant to ET, viz. 850-hPa absolute vorticity, 600-hPa 
relative humidity, and 200-850-hPa vertical wind shear. As those are acting more on a local 
scale, which is less predictable on the timescale of interest, such quantities could be 
integrated over regions. The CLINT-TS software is flexible for generating such additional 
training datasets. 

Beyond these conditions of direct physical influence, wave-type tropical drivers, such as the 
Madden-Julian Oscillation or Convectively Coupled Equatorial Waves, may additionally 
imprint their signals onto the near-storm environment. As these waves typically are more 
persistent, they might carry predictive signals from which ET prediction could benefit as well. 

● Oceanic drivers: Oceanic conditions are slowly varying but climatologically determine the 
poleward extent of support for the tropical phase, thus setting the pre-ET scene. Relevant 
drivers for the Atlantic could be local sea-surface temperatures (SST) over sub-domains (e.g., 
subtropical Atlantic). In Bieli et al. (2020), the predictor selection for the development of an 
ET prediction model indeed yielded locally averaged SST as one of two key factors. 
Furthermore, remote influences from teleconnections, such as the El Nino-Southern 
Oscillation (ENSO), are known to modulate the large-scale wind patterns over the (sub-
)tropical Atlantic (Gray 1984). The Southern Oscillation Index (SOI; Troup 1965), a measure 
for the ENSO state, correlates significantly with ET frequency (R = +0.228), as does the NAO 
index, but has no climatological relationship to ET fractions in the North Atlantic (Hart and 
Evans 2001). However, it may be that in individual cases, there is a more direct connection 
with ENSO. 

● Track-related drivers: In addition to the atmospheric and oceanic drivers, track-related 
information is deemed to be particularly relevant for ET prediction. Beside the apparent 
geographical differences in genesis locations (LATgen, LONgen) between ET and non-ET 
cases discussed in Hart and Evans (2001) and displayed in Figure 2, a recent study by Datt et 
al. (2022) showed that the degree of baroclinic influence during TC genesis impacts on 
whether the TC eventually undergoes ET. This suggests that there is some sort of 'memory' 
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effect that can be exploited for ET prediction. The underlying development pathways were 
proposed by McTaggart-Cowan et al. (2008, 2013) based on two area-averaged metrics: the 
upper-level Q-vector convergence (Q) and the lower-level thickness asymmetry (Th). In the 
North Atlantic, the strong tropical transition and trough induced pathways are significantly 
more likely to result in ET than the other pathways (Datt et al. 2022). Since this relationship 
still holds when controlling for genesis latitude, the demonstrated relationship to ET fraction 
gives rise to consider these metrics in our models, either directly as drivers or by training 
models separately for individual pathways. 

Along with information on track history, predictors representing the TC's current state will 
be provided to the model. Basic track-related predictors are included for cyclone position 
(LAT, LON), intensity (central pressure, max. sustained wind), and movement (heading angle, 
translation speed). Although Bieli et al. (2020) identified latitude as the only relevant track-
related predictor for their ET prediction model, we nevertheless include all the 
aforementioned in our predictor pool to ensure that a comprehensive set is provided. 

Cyclone phase space (CPS; Hart 2003) metrics, nowadays widely accepted in the operational and 
research communities, give insight into a cyclone's thermal symmetry (B metric), upper-level 
thermal wind (-VTU metric), and lower-level thermal wind (-VTL metric). Analysing a cyclone's 
trajectory in CPS allows it to identify phase transitions (e.g., ET). During a North Atlantic ET, the TC 
usually first acquires a cold core before losing its symmetric thermal structure, which is the reverse 
of the usual global behaviour (Bieli et al 2019). Despite its utility and acceptance, the CPS concept 
was shown to predict North Atlantic ET worse compared to a simple logistic regression model (Bieli 
et al. 2020), which motivates its use as for candidate drivers but also to better leave the prediction 
component to a dedicated (statistical) model. 

4 HEATWAVES AND TROPICAL NIGHTS 

4.1 Overview 

Heat waves (HW) and tropical nights (TN) are among the most frequent extreme climate events that 
cause immense stress on human health and ecosystems, but also socio-economic losses when 
affecting agriculture or energy systems (Thomas et al. 2020; García-Martínez et al. 2021). The 
relationship between heat waves and mortality has already been demonstrated for specific episodes 
(see Perkins et al. 2015 and references therein), however, the impact of above-normal night-time 
temperatures should not be neglected, as it has significant effects on human health (Trigo et al., 
2005). Other reported HW impacts include increased electricity demand and decreased power 
production (Zuo et al., 2015), heat stress on vegetation activity and terrestrial ecosystems, as well 
as increasing risk of wildfires, droughts and crop yields (e.g., Lesk et al., 2016). 

HWs can occur in combination with other hazards, therefore conforming compound events. 
Examples of HW-compounded hazards include high humidity (humid HWs; e.g., Russo et al., 2017) 
or droughts (e.g., Miralles et al., 2014). For example, the combination of abnormally high night-time 
temperatures with increased humidity can lead to reduced body regeneration, attenuated 
thermoregulation, exhaustion, and other physiological effects favouring increased morbidity and 
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premature deaths (Scoccimarro et al. 2017, Kendrovski et al. 2017).  Hence, the detection of those 
EE in advance might be crucial for the development of prevention plans, and mitigation strategies 
that can minimise the risks associated with both HW and TN events.  

For the detection of HW and TN, it is important to understand the mechanisms that trigger and 
maintain the events. HWs result from large- and smaller-scale processes, including the atmospheric 
circulation and anomalous regional conditions in slowly varying components, such as land-surface, 
SST or sea ice (e.g., Sillmann et al., 2017; Coumou et al., 2018 and references therein). These regional 
conditions can be modulated by internal modes of variability and changes in external forcings 
(Perkins, 2015). In particular, several studies have shown that heat waves are mainly related to 
persistent high-pressure systems (Matsueda et al. 2011, White et al. 2021), and they are linked to 
specific soil moisture conditions (Seneviratne et al. 2006; Alexander et al. 2010). The mechanisms 
behind the tropical nights have been less discussed, but the atmospheric conditions, together with 
air humidity and cloud cover, have been suggested as the main drivers of these EE (Thomas et al. 
2020; Luo et al. 2022).  

This section describes the indices used for HW and TN detection and the datasets and drivers that 
will be employed in Task 3.2 on the use of Artificial Intelligence (AI) and Machine Learning (ML) 
techniques to detect HW and TN. The ML algorithms will be used to select the candidate drivers of 
both HW and TN and to link these drivers with the EE over Europe. 

4.2 Indices for heatwaves and tropical nights detection 

The characterisation of extreme events is usually performed by employing specific indices. These 
indices are particularly useful to quantify the severity, magnitude and duration of the EE compared 
to other episodes. In task 3.2, several indices (Table 7) have been employed to ensure that the 
detection of heat waves and warm nights is performed in a comprehensive way.  
One of the indices used for the evaluation of the heat waves and the corresponding index for the 
tropical nights (HWMI and TNMI, respectively) are illustrated in Figure 5 for the summer (2022). 
These indices provide similar information, but they allow us to investigate different aspects of 
extreme temperature conditions.  
The applicability to specific agriculture or water sectors has been considered (https://climpact-
sci.org/), and these indices have been assessed by the Expert Team on Sector-specific Climate 
Indices (ETSCI, https://www.wmo.int/pages/prog/wcp/ccl/opace/opace4/ET-SCI-4-1.php). 
Technical details involved in their computation follow the recommendations of Crespi et al. (2020).  
 
Table 7 List of the indices employed in the characterisation and detection of the heat waves and warm nights in Task 
3.2. 

Acronym Name Essential climate 
variables 

Description References 

HWMI Heat Wave 
Magnitude 

Index 

Tmax (daily 
maximum 

temperature) 

The maximum heat wave 
magnitude represents the 

strongest heatwave for a given 

Russo et al. (2014); 
Prodhomme et al. 

(2021) 

https://climpact-sci.org/
https://climpact-sci.org/
https://www.wmo.int/pages/prog/wcp/ccl/opace/opace4/ET-SCI-4-1.php
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Acronym Name Essential climate 
variables 

Description References 

season in terms of both 
duration and intensity. 

TNMI Tropical 
Night 

Magnitude 
Index 

T2M (2-meter 
temperature, Sea 

level pressure, 
dewpoint 

The maximum tropical night 
magnitude that represents the 
strongest tropical night period 

(i.e., consecutive days with 
warm night conditions) for a 

given season in terms of both 
duration and intensity. 

Russo et al. (2017); 
Torralba et al. (in 

preparation) 

Tmax_ 
NBDAYSQ9

0 

Number of 
days with 

Tmax above 
the 90th 

percentile 

Tmax The number of daily maximum 
temperatures exceeding the 

smoothed 90th percentile 
within the considered season 

(15MJJA). 

Prodhomme et al. 
(2021) 

Tnight_ 
NBDAYSQ9

0 

Number of 
days with 

Tnight above 
the 90th 

percentile 

T2M, Sea level 
pressure, 
dewpoint 

The number of days with the 
average temperature at night 

(between 23-06 local time) 
exceeding the smoothed 90th 

percentile within the 
considered season (15MJJA). 

Torralba et al. (in 
preparation) 

 

HMD Heat 
Magnitude 

Day 

Tmax (daily 
maximum 2-

meters 
temperature) 

Accumulates heat wave 
magnitude (as in Russo et al. 
2015) for the 3-month period 
before the harvesting season, 

representing heat stress within 
this period. 

Zampieri et al. (2017), 
Toreti et al. (2019a) 

HWS Heat Wave 
Severity 

 Tmax or Tmin 
(daily 

maximum/minimu
m 2-meters 

temperature) 

Accumulated temperature 
exceedance (above the local 
90th percentile) for all heat 

wave days (temperature 
exceeding the 90th percentile) 

over a user-defined interval 
(monthly, seasonal, etc.) 

Perkins-Kirkpatrick & 
Lewis (2020) 

 

ECATR Tropical 
nights index 

per time 
period 

Tmin (daily 
minimum 

temperature) 

The number of tropical nights 
when the daily minimum 
temperature exceeds a 
temperature threshold  

ECATR 

ECAHWDI Heat wave Tmax (daily The http://etccdi.pacificcli
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Acronym Name Essential climate 
variables 

Description References 

duration 
index 

maximum 
temperature), 

TXnorm (the mean 
of Tmax of a given 
climate reference 

period)  

number of days with heat 
waves with respect to mean 

reference period  

mate.org/indices.sht
ml 

Acronym = Abbreviation used for the index, Name = full name of the index, Essential climate variables = variables 
required for the computation of the index,  Description =  short definition of the index, References = Publications where 
the index is used or defined. 

 

 

Figure 5 Heat Wave Magnitude index (HWMI, left panel) and Tropical Night Magnitude index (TNMI, right panel) for 
the extended summer of 2022. These indices have been computed with the ERA5 daily data (from the 15th of May to 
the 31st of August).  

 

4.3 Datasets for heatwaves and tropical nights detection 

4.3.1 ERA5 

In task 3.2, we will use ERA5 as it is a global reanalysis for the HW and TN detection. See 2.3.1. 

4.3.2 ERA 20C 

ERA 20C is ECMWF's first atmospheric reanalysis of the 20th century, from 1900 to 2010. It 
assimilates observations of surface pressure and surface marine winds only (Poli et al 2016). ERA-
20C was produced with IFS version Cy38r1. A coupled Atmosphere/Land-surface/Ocean-waves 
model is used to reanalyse the weather by assimilating surface observations, utilising a 4D-Var data 
assimilation scheme that is comparable to numerical weather prediction, assimilating surface winds 
over the ocean in addition to surface pressure over ocean and land, with variational bias correction 
of surface pressure observations. The ERA-20C products describe the spatio-temporal evolution of 
the atmosphere (on 91 levels in the vertical, between the surface and 0.01 hPa), the land surface 
(on 4 soil layers), and the ocean waves (on 25 frequencies and 12 directions). The assimilation 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 

 

EXTREME EVENTS DETECTION 33 

 

methodology is a 24-hour 4D-Var analysis, with variational bias correction of surface pressure 
observations. The temporal resolution of the daily products is 3 hours. The horizontal resolution is 
approximately 125 km (spectral truncation T159). 
 

4.3.3 20CRv3 

The NOAA-CIRES-DOE Twentieth Century Reanalysis version 3 (20CRV3) is a reanalysis dataset 
providing data for the period 1836/01/01 to 2015/12/31 at 3-hourly frequency (Silvinski et al 2019). 
20CRv3 is run at a resolution of T254 (approximately 75 km at the Equator) with 64 vertical levels 
up to .3mb and 80 individual ensemble members. The surface pressure observations have been 
made available through international cooperation facilitated by the Atmospheric Circulation 
Reconstructions over the Earth (ACRE) initiative and working groups of the Global Climate Observing 
System (GCOS) and World Climate Research Programme (WCRP).  

Table 8 List of observational and reanalysis dataset used in Task 3.2. 

Name Source Handled  
by 

Processed  
by 

Stored  
by 

ETD Used 
by 

ERA5 C3S-CDS CMCC   N/A CMCC June  30, 
2022 

CMCC, JLU  

ERA20C C3S-CDS CMCC N/A CMCC June  30, 
2022 

CMCC, JLU 

20CRv3 NOAA CMCC N/A CMCC June  30, 
2022 

CMCC, JLU 

Name = short name of the dataset, Source = original producer, Handled by = partner doing the download/extraction of 
the dataset over the region of interest, Processed by = partner applying any "model output statistics" if any (downscaling, 
calibration etc.), Stored by = partner distributing the data for the consortium partners (e.g., centralised CLINT repository 
at DKRZ), if need be, ETD = estimated date of availability (from handling/storing partner), Used by = partner using the 
data (case study). 

 

4.3.4 CMIP6 model simulations 

The sample of extreme events available for the training of ML algorithms will be augmented by 
training the algorithms also on climate model data in addition to the reanalysis products. While 
GCMs simulations are affected by biases, their use provides the advantage of being able to rely on 
several hundred or even thousands of years of simulated climate data. Appropriate techniques will 
be put in place to ensure the use of modelled data does not degrade the accuracy of the trained ML 
algorithms. As an example, the algorithms could be trained at first on the model data and then re-
trained on observations/ reanalysis data via transfer learning techniques (Asch et al. 2022, Jacques-
Dumas et al. 2021). 
In this context, CMIP6 climate model simulations will be used to enlarge the input data for the 
training of the ML methods (pre-industrial control runs and/or ensembles of historical simulations). 
Among all the models contributing to the CMIP6 ensemble, two models have been initially selected 
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for testing and evaluation of ML algorithms: CMCC-CM-SR5 and MPI-ESM-MR. Those models are 
based on two different dynamical cores and are therefore expected not to share similar biases 
among them. This list can be expanded during the project by including other standard CMIP6 model 
simulations available at CDS if, during the development of Machine Learning algorithms, it is found 
that a larger training set is needed.  
 
Table 9 List of climate projections datasets used in Task 3.2. 

Name Source Handled 
by 

Processe
d by 

Stored  
by 

ETD Used 
by 

CMCC-CM2-SR5 CMCC CMCC N/A CMCC June  30, 2022 CMCC, Hereon 

MPI-ESM-MR Hereon Hereon Hereon DKRZ June  30, 2022 CMCC, Hereon 

Name = short name of the dataset,  Source = original producer, Handled by = partner doing the download/extraction of 
the dataset over the region of interest, Processed by = partner applying any "model output statistics" if any (downscaling, 
calibration etc.), Stored by = partner distributing the data for the consortium partners (e.g., centralised CLINT repository 
at DKRZ), if need be, ETD = estimated date of availability (from handling/storing partner), Used by= partner using the 
data (case study). 
 

4.3.5 C3S seasonal forecasts 

The current capabilities of the seasonal prediction systems to predict HW and TN have been 
explored in the multi-system framework provided by the Copernicus Climate Change Service (C3S) 
initiative. The ability of the C3S seasonal forecast systems to detect those EE at seasonal timescales 
will be used as a benchmark to quantify the potential added value of the ML methods developed in 
Task 3.2. Particularly the C3S seasonal forecasts produced by different institutions will be employed: 
ECMWF (European Centre for Medium-Range Weather Forecasts), DWD, Météo-France and CMCC 
(Centro Euro-Mediterraneo sui Cambiamenti Climatici). The main specifications of these prediction 
systems are listed in Table 10, but all the systems provide 6-hourly fields spanning six months into 
the future, with a spatial resolution of 1° and global coverage. The number of ensemble members 
(i.e., the different realisations used to sample the seasonal forecast uncertainty) varies among the 
different seasonal forecast systems (See Table 10).  
 
Table 10 List of seasonal forecast datasets used in Task 3.2. 

Name Source Handled 
 by 

Processed 
by 

Stored  
by 

ETD Used  
by  

Meteo France 
System 7 

C3S-CDS CMCC N/A CMCC June  30, 
2022 

CMCC 

DWD System 2.1 C3S-CDS CMCC N/A CMCC June  30, 
2022 

CMCC 
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Name Source Handled 
 by 

Processed 
by 

Stored  
by 

ETD Used  
by  

CMCC SPS3.5 C3S-CDS CMCC N/A CMCC June  30, 
2022 

CMCC 

ECMWF SEAS5 C3S-CDS CMCC N/A CMCC June  30, 
2022 

CMCC 

 
An example of the current level of forecast quality in the seasonal predictions of the HW and TN 
indices is shown in Figure 6.  The CMCC SPS3.5 has high correlation values for both the HWMI and 
the TNMI in southern Europe for the extended summer season. However, low correlation values are 
obtained in northern Europe. 
 

 
Figure 6 Ensemble mean correlation of the CMCC SPS3.5 seasonal prediction system for Heat Wave Magnitude index 
(HWMI, left panel) and Tropical Night Magnitude index (TNMI, right panel) in the 1993-2016 period and in the 15MJJA 
season. The seasonal forecasts were issued on the 1st of May and the observational reference is ERA5.  

 

4.4 Candidate drivers for heatwaves and tropical nights  

The mechanisms leading to daytime HW are usually associated with high-pressure atmospheric 
systems (e.g., blocking, circum-global teleconnection patterns), which favour warm horizontal 
advection, subsidence and diabatic heating (e.g., enhanced shortwave radiation and sensible 
heating (Sousa et al. 2018).  However, TNs are most likely linked to increased cloud cover, humidity, 
downward longwave radiation and/or low-level temperature advection (Thomas et al. 2020; Luo et 
al. 2022). These differences in the processes involved in the occurrence of the two types of EE might 
suggest that different drivers might be required for the ML methods to effectively detect both HW 
and TN.  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/long-wave-radiation
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Based on the literature, the following regional and large-scale phenomena are considered as 
potential drivers of European heatwaves and warm nights: 

● Atmospheric conditions: The involved atmospheric patterns can be diagnosed using 500-
hPa geopotential height and/or sea level pressure fields (Lau and Nath 2012; Loikith and 
Broccoli 2012). The most relevant teleconnection patterns linked to heat waves have been 
the North Atlantic Oscillation (NAO, Kenyon and Hegerl 2008) or the atmospheric Blocking 
(e.g., Matsueda 2011; Schaller et al., 2018, Kornhuber et al., 2019). Favourable heat wave 
conditions can be triggered by tropical-extratropical teleconnections forced by intraseasonal 
variations in tropical convection (e.g., the Madden-Julian Oscillation, MJO; Cassou et al. 
2005). Although atmospheric circulation largely determines the key physical processes (e.g., 
temperature advection, radiative fluxes), other atmospheric fields can help constraining 
regional conditions and the severity of the event (e.g., humidity; Thomas et al. 2020; Luo et 
al. 2022).  

● Slowly varying factors: They account for boundary conditions in other components of the 
climate system that promote interactions and/or feedbacks with the atmosphere, 
potentially amplifying the severity of the event. In particular, the HN and TN links have been 
suggested with the following: 

○ Ocean: North Atlantic sea surface temperatures (SSTs) (Cassou et al. 2005; Duchez et 
al. 2016), The El Niño–Southern Oscillation (ENSO) (Zhu et al. 2015; Wulff et al. 2017), 
Atlantic Multi-decadal Oscillation (AMO) (Della-Marta et al. 2007), Pacific Decadal 
Oscillation (PDO) (Kenyon and Hegerl 2008). 

○ Land: Regional and/or remote soil moisture deficit, surface heat fluxes, warm 
horizontal advection (Quesada et al. 2012, Miralles et al. 2019; Ardilouze et al. 2019; 
Materia et al. 2021).  

○ Sea-ice:  Arctic sea-ice extent (Coumou et al. 2018) 
 

5 EXTREME DROUGHTS 

5.1 Overview  

Drought is a natural phenomenon mostly related to the reduction in the amount of precipitation 
received over an extended period, such as a season or a year (Mishra and Singh, 2010). In contrast 
to aridity, drought is not permanent, although prolonged droughts may propagate through the full 
hydrological cycle, resulting in significant long-term economic, social, and environmental costs 
(Spinoni et al., 2016). In the context of current global climate change, characterised by rising 
temperatures and more extreme precipitation regimes, drought is considered one of the most 
relevant natural disasters, and there is a consensus that the situation will get worse in the coming 
decades (Spinoni et al., 2018). 
Despite drought being a hot topic extensively studied in the literature, there is still no unanimity on 
its definition. Some common definitions of the concept, adapted to the discipline or the sector they 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/geopotential-height
https://www.sciencedirect.com/science/article/pii/S2212094722000342#bib27
https://www.sciencedirect.com/science/article/pii/S2212094722000342#bib34
https://www.sciencedirect.com/science/article/pii/S2212094722000342#bib34
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refer to, are given by (i) The World Meteorological Organization (WMO, 1986), which states 
"drought means a sustained, extended deficiency in precipitation"; (ii) The Food and Agriculture 
Organization (FAO, 1983) of the United Nations that defines a drought hazard as "the percentage of 
years when crops fail from the lack of moisture"; (iii) Palmer (1965) who described a "drought as a 
significant deviation from the normal hydrological conditions of an area". These definitions clearly 
differ for the variables used to define it, namely precipitation, crop yield, and streamflow, and they 
refer to different stages of the development of drought. As a matter of fact, drought is a 
phenomenon that evolves at multiple scales (Vicente-Serrano et al., 2010). The period from the 
arrival of water inputs (as rainfall, snow, river discharges, etc.) to the availability of a given usable 
resource may vary considerably. As a consequence, the time horizon over which the water deficit is 
considered becomes of key importance. 
Depending on the time horizon considered and the hydro-climatic variable used in drought 
characterisation, droughts are generally classified into three categories (Pedro-Monzonís et al., 
2015):  
1. A meteorological drought is defined as a lack of precipitation over a region for a period of time. 

Since a meteorological drought is the primary cause of a drought, while the other types describe 
secondary effects on specific economic compartments, it is often regarded as the key type of 
drought (Spinoni et al., 2016). 

2. An agricultural drought may be defined as a moisture deficit in the root zone affecting crop 
development and declining crop yields. This type of drought, triggered by a meteorological one, 
usually develops in the medium term (3-6 months). 

3. A hydrological drought refers to a lack of water in the hydrological system, manifesting itself in 
abnormally low streamflow in rivers and abnormally low levels in lakes, reservoirs, and 
groundwater. Hydrological droughts, which occur after several months of low precipitation and 
deficient soil moisture, can cover extensive areas and last for months to years.  

There is also another approach to drought analysis, namely through the concept of operational 
drought, which refers to a period with supply anomalies. A dry period may, in fact, be caused by a 
lack of water resources or, especially in highly regulated contexts, an exceedance of demand due to 
inadequate management of the water exploitation system (Pedro-Monzonís et al., 2015). An 
operational (or socio-economic) drought is associated with the condition of Water Scarcity, defined 
as a situation where insufficient water resources are available to satisfy long-term average 
requirements and, similarly, impacts that can manifest months or years after the event ends. 
This chapter report describes the traditional indices used for drought detection, along with the 
datasets that will be used in Task 3.3 for the computation of such indices at the European scale as 
well as in the CLINT Climate Change Hotspots. Lastly, the report includes a preliminary set of 
candidate drivers for drought detection and prediction that will be processed by the Machine 
Learning algorithms developed in WP2 to design Artificial Intelligence-enhanced drought indices. 

5.2 Indices for drought detection 

Drought indices are quantitative measures that characterise drought in terms of intensity, onset, 
termination, duration, and severity by assimilating data from one or several variables into a single 
numerical value. Operationally, drought indices can be applied for drought detection and real-time 
monitoring, drought evaluation, correlation of drought severity with drought impacts, drought 
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forecasting, and, finally, allowing the declaration of drought levels which instigate drought risk 
management measures (Zargar et al., 2011). 
Just as there is no single definition of drought, no single index can account for and be applied to all 
types of droughts, climate regimes, and sectors affected (Svoboda et al., 2016). More than 150 
drought indices have been developed by several generations of researchers during the 20th century 
(Zargar et al., 2011). The selection of an appropriate drought index must be driven by the suitability 
of the index for the considered drought type; data availability; temporal and spatial scale of the 
analysis; statistical consistency (Steinemann et al., 2005). Therefore, we distinguish the indices that 
will be used for detecting droughts at the European scale (Table 11) from those locally adopted in 
the CLINT Climate Change Hotspots (Table 12). The latter have been identified from the direct 
interactions with the local end-users (for details, see Deliverable D6.1 - Local Climate Services). 
CLINT aims at advancing traditional drought detection by defining AI-enhanced, impact-based 
drought indices that link the observed impacts of extreme droughts (e.g., reduction of electricity 
production or crop failures) with the candidate drivers of the event, including climatic, 
meteorological and hydrological variables over different spatial and temporal scales. 
 
Table 11 List of the indices for drought detection at the European scale. 

Acronym Name Essential 
climate 

variables 

Description References 

SPI Standardised 
Precipitation 
Index 

Precipitation SPI represents the number of 
standard deviations the cumulative 
precipitation deviates from the 
average of a standardised normal 
distribution. 

Hayes et al. 
(1999); McKee et 
al. (1993) 

SPEI Standardised 
Precipitation 
and 
Evapotranspi
ration Index  

Precipitation 
and Potential 
Evapotranspirati
on 
(Temperature) 

Similar to SPI, SPEI represents the 
deviations from the average of a 
standardised distribution but 
replaces the precipitation data with 
the difference between precipitation 
and potential evapotranspiration. 
SPEI tends to be more effective than 
SPI in arid climates, where 
evapotranspiration has a key role in 
depleting soil moisture. 

Beguería et al. 
(2010); Vicente-
Serrano et al. 
(2010) 

SRI Standardised 
Runoff Index 
 

Streamflow Similar to SPI, SRI represents the 
deviations from the average of a 
standardised distribution but 
replaces the precipitation data with 
the streamflow ones. SRI aims to 
capture the hydrologic processes 

Shukla and 
Wood (2008);  
Vicente-Serrano 
et al. (2011) 
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Acronym Name Essential 
climate 

variables 

Description References 

that determine seasonal lags in the 
influence of climate on streamflow. 

SSI Standardised 
Soil moisture 
Index 

Soil moisture Similar to SPI, SSI represents the 
deviations from the average of a 
standardised distribution but 
replaces the precipitation data with 
the soil moisture ones. Compared to 
SPI, SSI generally indicates a more 
reliable drought persistence, while it 
is less effective in capturing drought 
onset 

Hao and 
Aghakouchak 
(2013), 

 
 

Table 12 List of the indices for drought detection in the CLINT Climate Change Hotspots. 

Hotspot Name Essential climate 
 variables 

Description 

Zambezi 
Watercourse 

Low 
streamflow 

Streamflow The Zambezi Watercourse Commission detects 
extreme droughts by looking at low-water levels 
in rivers and lakes impacting irrigated 
agriculture and hydropower generation. 

Douro River 
Basin 

Prolonged 
drought 
index; 
scarcity 
index 

Streamflow and 
Precipitation; reservoir 
levels and supply 
deficits in 
socioeconomic demands 

The Douro River Basin Authority detects 
prolonged droughts by looking at precipitation 
deficits and low-water levels in rivers and 
scarcity situations by estimating the different 
levels of supply deficits in irrigated agriculture 
based on the near-real-time reservoir levels. 

Rijnland Standardize
d 
Precipitatio
n Index, 
Precipitatio
n deficit, 
Low 
streamflow 

Precipitation, 
Evapotranspiration, 
Streamflow 

Rijnland water board detects drought events by 
looking at precipitation deficit in the catchment 
and at Rhine discharges at Lobith, where the 
Rhine enters the Netherlands. 

Aa en Maas Low 
groundwate

Groundwater level and 
discharge 

Aa and Maas water board detects drought 
events by looking at precipitation deficit in the 
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Hotspot Name Essential climate 
 variables 

Description 

r levels and 
discharge 

catchment, groundwater tables and Muese 
discharges. 

Lake Como 
Basin 

Low lake 
inflow  

Streamflow Consorzio dell'Adda (i.e., the institutional 
operator of Lake Como) detects extreme 
droughts when the monthly net inflows to the 
lake are lower than the tenth percentile of 
historical values. 

 

5.2.1 European droughts 

Droughts at the European scale are detected by using standardised indices (see Table 11). The 
Standardised Precipitation Index at a 1-month accumulation period (SPI-1, see top row of Figure 7) 
is often used for the detection of meteorological droughts, the Standardised Precipitation and 
Evapotranspiration Index at 3-month accumulation period (SPEI-3, see the middle row of Figure 7) 
for agricultural droughts, and the Standardised Runoff Index at 6-month accumulation period (SRI-
6, see the bottom row in Figure 7) for hydrological droughts. These indices are computed using data 
from HydroGFD2.0 and E-HYPE model simulations (see next section) over the time period 1993-
2018.  
The analysis of drought occurrence (left column of Figure 7) shows that the regions that experienced 
the highest number of drought events are Southern England, Northern France, and Northern Italy, 
along with Southern Spain and Ukraine but only in terms of SPEI-3. In terms of drought duration 
(right column of Figure 7), the areas that experienced the longest droughts of any accumulation 
period are instead the Baltic Sea region, Normandy, and Southern Italy. 
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Figure 7 Occurrence (left column) and mean duration (right column) of drought events at the European scale. The top 
row shows the SPI-1 (1-month accumulation period), the middle row the SPEI-3 (3-month accumulation period), and 
the bottom row the SRI-6 (6-month accumulation period). 

 

5.2.2 Zambezi watercourse 

The Zambezi Watercourse Commission monitors drought events by looking at low-water levels in 
rivers and lakes. Given the availability of streamflow observations for the main four sub-basins of 
the watercourse, namely Upper Zambezi (Victoria Falls station), Kafue River (Kafue Hook Bridge 
station), Luangwa River (Great East Road Bridge station), and Shire River (Mangochi station) that 
were collected during the DAFNE research project (http://dafne-project.eu/), and the lack of 
observed levels in water reservoirs considered sensitive data collected by hydropower companies, 
we detect historical droughts when the monthly streamflow data are below the 25th percentile of 
the historical observations in that month. 

http://dafne-project.eu/


 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 

 

EXTREME EVENTS DETECTION 42 

 

The top panel of Figure 8 illustrates the trajectory of monthly streamflow for the Upper Zambezi 
over the period 1986-2005. The middle panel shows the anomaly of the flow with respect to the 
25th percentile thresholds, with the negative values (red) identifying drought events. The lower the 
value, the more intense the drought event. Lastly, the bottom panel shows the occurrence of 
drought events that are represented by vertical lines, where thick lines mark long events.  
The results in Figure 8 show the summers of 1992-1994-1995-1996 as the most intense drought 
events, with the period 1994-1996 representing a prolonged, multi-annual drought event. These 
findings confirm the data reported in ZAMCON (2015). 
 

 
Figure 8 Drought events in Upper Zambezi River (Victoria Falls station) according to the definition adopted by the 
Zambezi Watercourse Commission. Top: monthly historical observations; Middle: anomaly of monthly flow with 
respect to the 25th percentile (Q25) of the historical values in the same month; Bottom: occurrence of drought events. 

 

Figure 9 compares the streamflow data in the four sub-basins (top panel) and the corresponding 
occurrence of drought events (bottom panel). Results show that the Upper Zambezi and Kafue 
Rivers tend to have registered similar drought events, likely because of their spatial proximity. The 
droughts detected on the Shire River exhibit some differences but confirmed the multi-annual event 
between 1992 and 1996. Conversely, the droughts detected on the Luangwa River have a more 
diverse pattern, with shorter and more frequent events. 
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Figure 9 Drought events in the four sub-basins of the Zambezi Watercourse according to the definition adopted by the 
Zambezi Watercourse Commission. Top: monthly historical observations; Bottom: occurrence of drought events. 

 

5.2.3 Douro River Basin  

The prolonged drought index (Figure 10) aims at monitoring hydrometeorological droughts, and it 
combines the following variables: (i) 6-month cumulative inflows in Barrios de Luna and the inflow 
to Villameca; (ii) 6-month cumulative discharge in selected gauge stations in natural flow regime; 
(iii) 9-month cumulative rainfall in selected rain meters. The index is calculated with historical 
datasets of rainfall and streamflow, using the periods 1980-2012 and 2012-2017 for the 
computation and validation of the index, respectively. While the rainfall datasets are observations 
provided by the Spanish National Meteorological Agency, the streamflows are simulated using an 
impact rainfall-runoff model and, when available, corrected with observations. All data series are 
normalised and aggregated in a weighted way to produce the prolonged drought index. Rainfall 
variables are assigned less weight (40%) than streamflow variables (60%). A single threshold value 
of 0.3 is defined to determine the occurrence of prolonged drought. As seen in Figure 10, the index 
detects well the dry spells in the system, going under 0.3 for the driest years. The longest, but not 
the most intense drought, is recorded for the period 1990-1993. The most intense droughts are 
registered during the last decade, during the periods 2007-2009, 2012 and 2017-2018. 
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Figure 10 Prolonged drought index evolution in Orbigo system (1980-2017). 

 
The scarcity index (Figure 11) aims at reflecting a temporary problem in meeting water demands, 
not necessarily caused by hydrometeorological droughts. For this reason, it takes into consideration 
the levels in Barrios de Luna and Villameca Reservoirs, as well as the monthly existing water 
demands in the Orbigo system. The levels in the reservoirs are observations for the period 1980-
2017. The main water demands are domestic (including industrial), environmental and agricultural. 
For each reservoir, a supply-demand balance is computed at the monthly scale for the considered 
period (1980-2017). Then, based on these historical balances, and for every month of the year (e.g., 
January), three reservoir levels are defined as thresholds to distinguish three different water scarcity 
states, namely moderate, severe and grave scarcity. These water scarcity states correspond to three 
different levels of drought risk, namely pre-alert, alert, and emergency. These thresholds are 
normalised and aggregated in a weighted way to conform to the scarcity index. Barrios de Luna 
Reservoir is assigned a weight of 0.9 due to its highest regulatory capacity. The scarcity index is very 
dynamic (see Figure 11), transiting different states within a single year. The years with the most 
intense water scarcity (emergency level) are 1985-1987, 1992, 1995, 2002, and 2017.  
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Figure 11 Scarcity index evolution in Orbigo system (1980-2017). 

 

5.2.4 Rijnland 

The water board of Rijnland monitors the occurrence of drought events based on a specific user-
based definition, which accounts for both precipitation and surface water shortage. More 
specifically, the water board defines a drought to be onset when the surface water observed at 
Lobith station (where the Rhine enters the country) is below 1300 m3/s and when, at the same time, 
the cumulative precipitation deficit is above 150 mm. The precipitation deficit is defined as the 
difference between the potential Makkink evapotranspiration and the precipitation, hence an 
increase in the precipitation deficit is a sign of (meteorological) water scarcity. As meteorological 
droughts occur most likely in the summer season, the cumulative precipitation deficit is computed 
every year only from 1st April to 30th September.  
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Figure 12 Drought events occurred in Rijnland according to the definition adopted by the water board. Top: daily 
discharge observations recorded at Lobith station, where the Rhine enters the Netherlands. Areas in red indicate days 
with flow below the threshold of 1300 m3/s. Centre: cumulative precipitation deficit computed from ERA5 reanalysis 
data, each year from the beginning of April to the end of September. Areas in red indicate days with precipitation 
deficit above the threshold of 150 mm. Bottom: occurrence of drought events in Rijnland. An event starts when the 
cumulative precipitation deficit is above 150 mm, and at the same time, observed flows in the Rhine are below 1300 
m3/s. 

 
Figure 12 shows the occurrence of drought events from January 1910 to August 2022, based on 
historical records and according to the definition adopted by the water board. The upper box shows 
the historical flows recorded at Lobith station, distinguishing the values between those above the 
minimum threshold (blue) and those below the threshold (red). The graph has been realised using 
the daily flow time series provided by KNMI for the period 1910-2022, and for the period 2021-2022 
by averaging the hourly observations recorded at the same station and provided by the Rijnland 
water board. 
The middle box shows the cumulative precipitation deficit (PDef), as computed each year from the 
beginning of April to the end of September. In the figure, following the same convention adopted 
by the water board, when the ongoing deficit reaches negative values, the graph is automatically 
set to zero and starts showing again data when the ongoing deficit reaches positive values. The 
analysis is realised by using the daily time series of cumulative precipitation deficit provided by KNMI 
for the period January 1910- August 2022. This time series has been built by using the daily average 
precipitation and daily average Makkink evapotranspiration data coming from a set of 13 well-
defined stations, and it is representative of the whole country.  
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The bottom box shows the occurrence of drought events, as defined by the water authority. Vertical 
red lines indicating that a drought is in place are issued when both the conditions on surface water 
and precipitation shortage are met. The thicker the lines, the longer the duration of drought. It is 
worth noting that the box provides information only related to the duration of an event, while it 
does not give information regarding its severity. By observing this last box, it can be noted that 
drought events in the last 30 years occurred with a higher frequency with respect to any other 
similar period in the past, with two of the longest droughts occurring in 2018 and 2020. Other long-
lasting events were those of 1921, 1949 and 1976, which are also considered the longest events at 
the national level. Finally, it should be noted that data from the summer of 2022 were not 
completely available, hence no conclusion regarding its duration could be made. 
Since 2020 KNMI, the meteorological institute of the Netherlands started computing the 
Standardised Precipitation Index for 1 month (SPI-1) for the whole country for monitoring purposes. 
However, this indicator has not been adopted yet by Rijnland to define drought events. Figure 13 
presents an overview of the SPI-1 index computed from January 1980 to December 2021, by using 
the reanalysis data of ERA5. The reanalysis data have been spatially averaged within the region of 
Rijnland. To be consistent with Figure 12, only SPI-1 values from April to September of each year are 
reported. In Figure 13, values in red mean that a drought is an onset, while values in blue state that 
the considered month was wetter than normal. As it can be noticed by comparing Figure 12 and 
Figure 13, using SPI-1 to detect drought results in detecting more events than by using the user-
based definition. 

 
Figure 13 Drought events occurred in Rijnland according to the SPI-1 values computed using ERA5 reanalysis data. 
Values obtained in the period October-March are omitted to facilitate the comparison with the user-based definition. 

 

5.2.5 Aa en Maas 

A complex multi-year drought occurred in the management area of regional water authority Aa en 
Maas in recent years. The complexity is reflected by drought indices expressing both meteorological 
and hydrological drought. Figure 14 shows the drought indices for the climatological mean and the 
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years based on local observations. The indices are shown for the growing season in the Netherlands, 
which is the period between April and October. The precipitation deficit reflects the development 
of the meteorological drought and is defined as the cumulative sum of the daily precipitation sum 
minus the daily reference evapotranspiration measured at the Volkel station of the Royal Dutch 
Meteorological Institute (KNMI). The groundwater levels are visualised relative to the Dutch datum 
(NAP). The figure shows the groundwater level measures at location ANNA007. The discharge of the 
Maas river is measured at measurement location Lith. The discharge series are only available up to 
the year 2019.  
All indices show that the years 2018, 2019, 2020 and 2022 were much drier than the climatological 
mean. Secondly, it is remarkable that the drought develops each year differently. For example, the 
peak of the 2018 drought is in August, while the peak of the 2022 drought is observed in September. 
Thirdly, the effect of a drought in a previous year is clearly visible for the groundwater level drought 
and discharge indices, while not in the meteorological drought (which is reset on April 1st by 
definition). 
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Figure 14 Historical trajectories of drought indices (precipitation deficit, groundwater levels and Maas river 
discharges) for the management area of regional water authority Aa en Maas in the Netherlands. 

 

5.2.6 Lake Como basin  

The authority operating Lake Como (i.e., Consorzio dell'Adda) detects drought events when the 
monthly net inflows to the lake are below the 10th percentile of the historical observations in that 
month. The daily net inflows are reconstructed by Consorzio dell'Adda from measures of lake levels 
and releases from January 1946 to December 2019. The top panel of Figure 15 illustrates the 
trajectory of monthly inflows obtained by aggregating the daily data provided by Consorzio 
dell'Adda. The middle panel shows the anomaly of the net inflows with respect to the 10th percentile 
thresholds, with the negative values (red) identifying drought events. The lower the value, the more 
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intense the drought event. Lastly, the bottom panel shows the occurrence of drought events that 
are represented by vertical lines where thick lines mark long events.  
The results in Figure 15 show the summers of 1976-2005-2006 as the most intense drought events. 
Moreover, the bottom panel of the figure illustrates how the period 2003-2007 was characterised 
by frequent drought events, as discussed in several studies (e.g., Anghileri et al., 2013; Giuliani et 
al., 2020). 
  

 
Figure 15 Drought events occurred in Lake Como according to the definition adopted by the lake operator. Top: 
monthly historical observations; Middle: anomaly of monthly inflow with respect to the 10th percentile (Q10) of the 
historical values in the same month; Bottom: occurrence of drought events. 

 

5.3 Datasets for drought detection  

The computation of drought indices in the CLINT Climate Change Hotspots will be mostly based on 
local observations. Besides, a number of global/continental datasets will be used in Task T3.3 for 
the analysis of extreme droughts over the European domain. 

5.3.1 HydroGFD2.0 

In Task T3.3, we will use the Hydrological Global Forcing Data (HydroGFD2.0; Berg et al., 2018) as a 
dataset of precipitation and temperature for the detection of extreme droughts over the European 
domain. HydroGFD is a merged data set of historical precipitation and temperature from 
meteorological reanalysis and global observations. The reanalysis system from ECMWF uses 
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atmospheric and surface observations to reproduce the observed weather and climate as closely as 
possible on a global scale. However, the reanalysis product has a bias that prevents its direct use in 
hydrological models, and consequently, HydroGFD is carrying out bias adjustments to remedy such 
issues.  
With HydroGFD2.0, the baseline climatology is first calculated for the period 1981-2009, combining 
satellite and station-based observations. GPCCv7 (Schneider et al., 2014), CPC-Unified (Chen et al., 
2008) and CRUts4.0 data set from the Climate Research Unit (CRU; Harris and Jones, 2017) are used 
for adjusting precipitation amount and number of wet days, whilst CRUts4.0 and CPC-Temp 
(CPCtemp, 2017) products are used for temperature adjustments. Absolute monthly mean data are 
then calculated by adding anomalies from different data sets to the climatology. Common for all 
variables are the resolution of 0.5 degrees (about 50 km) on a regular global grid and the time period 
1961 until present using reanalysis systems ERA40 (1961-1978) and ERA-Interim (1979 until 
present). Bias adjustments are only performed over land areas included in the observational data, 
and oceans default to the original reanalysis data.  
Bias adjustment is performed separately for every single month with monthly mean precipitation, 
number of wet days, and temperature. This leads to a data set of daily values of precipitation and 
daily mean, minimum and maximum temperature.  

5.3.2 Historical Simulations of E-HYPE 

HYPE (HYdrological Predictions for the Environment) is a continuous semi-distributed process‐based 
model, which simulates components of the water cycle (i.e., snow accumulation and melting, 
evapotranspiration, soil moisture, streamflow generation, groundwater recharge, and routing 
through rivers and lakes) at a daily time step (Lindström et al., 2010). Meteorological variables of 
daily mean precipitation and temperature derived from the HydroGFD product v2.0 were used to 
drive the hydrological model for the period 1993–2018. 
E-HYPE reproduces streamflow and water balance over the Pan-European region with ~35,400 
catchments. Its parameters were calibrated based on a set of 115 catchments representing the 
diversity of land use and soil characteristics, as well as human impacts. The model was validated in 
about 550 catchments for which streamflow observations are available. The performance of E‐HYPE 
in validation in terms of streamflow reaches a median Nash‐Sutcliffe Efficiency of 0.53 over Europe. 
Details about the model performance can be found in Hundecha et al. (2016). 
The streamflow and soil moisture outputs from historical simulation of the E-HYPE will be used for 
the computation of SRI and SSI indices over the European domain during the time period 1993-2018. 
Importantly, this dataset is consistent with the HydroGFD2.0 climatic forcing used for computing SPI 
and SPEI indices. 
 

5.3.3 E-HYPE seasonal hydrometeorological service 

The ability of the E-HYPE seasonal hydrometeorological service in detecting and predicting extreme 
droughts will be used as a benchmark to quantify the potential added value of the AI-enhanced 
methods developed in Task T3.3 in collaboration with Tasks T2.1 and T2.4. Notably, the ECMWF 
SEAS5 and CMCC seasonal precipitation and mean temperature forecasts are bias adjusted using 
the Distribution-Based Scaling (parametric quantile mapping) method (Yang et al., 2010) prior to 

https://hess.copernicus.org/articles/22/989/2018/#bib1.bibx30
https://hess.copernicus.org/articles/22/989/2018/#bib1.bibx30
https://essd.copernicus.org/articles/13/1531/2021/#bib1.bibx9
https://essd.copernicus.org/articles/13/1531/2021/#bib1.bibx9
https://hess.copernicus.org/articles/22/989/2018/#bib1.bibx17
https://hess.copernicus.org/articles/22/989/2018/#bib1.bibx17
https://essd.copernicus.org/articles/13/1531/2021/#bib1.bibx17
https://essd.copernicus.org/articles/13/1531/2021/#bib1.bibx17
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being introduced as forcing input in the E-HYPE hydrological model, using HydroGFD2.0 data (see 
Section 3.1) as a reference for the bias adjustment.  
Forecasts are provided at sub-basin resolution (polygon with an average size of 215 km2) and grid 
resolution (5 km x 5 km grid) over the time period 1993-2015, with the model initialised at the 
beginning of each month. The hydrological forecasts forced by ECMWF SEAS5 (~ 7-month lead time) 
and CMCC (~ 6 -month lead time) consist of 25 and 40 ensemble members, respectively (see Table 
13).  
 
Table 13 List of seasonal forecast datasets used in Task 3.3. 

Name Source Handled 
 by 

Processed by Stored  
by 

Used  
by  

ECMWF SEAS5 C3S-CDS SMHI SMHI SMHI SMHI, POLIMI 

CMCC SPS3.5 C3S-CDS CMCC, SMHI SMHI SMHI SMHI, POLIMI 

E-HYPE 
simulations 

SMHI SMHI SMHI SMHI SMHI, POLIMI 

5.4 Candidate drivers for extreme drought detection  

Based on the literature, the following local and large-scale phenomena are considered as potential 
drivers for extreme drought detection (and potentially prediction): 

● Hydrologic conditions: They represent local conditions' influence on local water availability. 
Depending on the characteristics of the region under investigation, it could be useful to 
consider snow-related variables (e.g., Staudinger et al., 2014), such as snow cover, snow 
height, snow water equivalent, as well as high temperatures that increase the fraction of 
precipitation falling as rain instead of snow and advance the timing of spring snowmelt 
(Douvielle et al., 2021); water volume stored in lakes and artificial reservoirs (e.g., Haro et 
al., 2014); groundwater level (e.g., Bloomfield and Marchant, 2013); atmospheric 
evaporative demand that affects evapotranspiration and soil moisture (Vicente-Serrano et 
al., 2020). 

● Atmospheric conditions:  The state of the Northern Hemisphere polar vortex can influence 
the position of the jet streams, the position of the storm tracks, and the atmospheric 
circulation at the surface. Persistent anomalies of the polar vortex can lead to anomalous 
precipitation patterns over several months, in particular during wintertime (Ayarzagüena et 
al., 2018; Domeisen and Butler, 2020). Blocking conditions can represent key atmospheric 
factors in the development of large-scale heat waves and droughts, which trigger soil-
moisture temperature feedbacks (Toreti et al., 2019a) 

● Teleconnection and climatic patterns: They generate interactions and/or feedbacks with 
other components of the climate system, potentially amplifying the severity of the event. In 
particular, the literature suggests extreme droughts could be linked with: 
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○ El Nino Southern Oscillation (e.g., Vicente-Serrano et al., 2011) 
○ North Atlantic Oscillation (e.g., Tsanis and Tapoglou, 2019) 
○ Sea Surface Temperature (e.g., Forootan et al., 2020; Garrido-Perez et al., 2022)  

 

6 COMPOUND EVENTS AND CONCURRENT EXTREMES 

6.1 Overview 

Quantifying the probability of future extreme events is important for adaptation planning, for 
instance, in the agricultural sector, for fisheries, river transport as well as for energy supply 
(Zscheischler and Fischer 2020). Given that future predictions indicate a rise in the frequency of 
many types of extreme events (IPCC 2022), the latter becomes increasingly important. While human 
and natural systems have a certain resilience against single extreme events, they might be unable 
to sustain multiple extreme events as their impacts tend to amplify in a non-linear relationship 
(Zscheischler et al. 2018; Zscheichler et al. 2020). Furthermore, it is crucial to accurately examine 
the association or connections between these types of events because the risk and return periods 
of extreme events might be considerably underestimated when one assumes independence of 
these occurrences or simply investigates a single extreme event (Wahl et al. 2015; Zscheischler and 
Seneviratne 2017). 

Compound events are frequently referred to in the literature as a combination of extreme events 
and the concomitant (possibly non-extreme) phenomena of these types of events that contribute 
to the socio-economic damage of this event. To be more precise, Zscheischler et al. 2018 define a 
compound event as: 

“The combination of multiple drivers and/or hazards that contributes to societal or environmental 
risk.” 

Typologies have been developed to further categorize the dependence structure of compound 
events (Zscheischler et al. 2020; Bevacqua et al. 2021). The definition above highlights the 
multivariate nature of these types of events, but it should be recognized that the involved events 
do not necessarily have to be extreme events. 

Toreti et al. 2019b described a subset of compound events named concurrent extreme events, 
where the emphasis is on the dependencies of extreme events. They define a concurrent extreme 
event as 

“Extremes of different types occurring within a specific temporal lag, 
either in different locations or at the same one, as well as by extremes of the same type occurring 

in two different locations within a specific time period.” 

To ensure a coherent risk assessment of high-risk events such as compound events, multiple drivers 
should be considered that play a synergistic and reinforcing role. The increasing frequency, severity 
and extent of these impacts have also increased scientific interest in the events that lead to these 
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impacts, compound events and concurrent extremes (for a review, see, for instance, Leonard et al. 
2014; Hao et al. 2018; Zscheischler et al. 2018; Raymond et al. 2020; Zscheischler et al. 2020; Zhang 
et al. 2021). To our knowledge, however, the use of artificial intelligence (AI) and ML has been yet 
relatively underrepresented in the analysis of compound events, and CLINT aims at filling this gap 
by developing AI- and ML-based techniques together with hybrid approaches (a combination of the 
former with well-known statistical methods) for the detection, causality, and attribution study of 
compound events and concurrent extremes. 

This chapter introduces the detection methods for the analysis of compound events and concurrent 
extremes, as well as the datasets and drivers that will be utilized for that purpose in Task 3.4. 

6.2 Detection of compound events and concurrent extremes 

6.2.1 Compound events 

Within Task 3.4.1, the following types of compound events related to important impacts in the 
water, energy and food sectors will be analyzed: 

a) Warm and relatively wet late winters followed by dry and warm springs with severe impacts 
on agriculture. 

b) Dry winters followed by hot summers, which accumulate pressure on the agricultural and 
the energy sectors with direct impacts on the hydropower capacities during the increased 
demand period. 

c) Wet and warm springs with impacts on water management, increased flood risk due to 
precipitation excess and early melting season. 

Compound events, without necessarily being extreme, have significant socioeconomic impacts, and 
hence their study should combine their impacts and the climatological phenomenon (Zscheischler 
et al. 2018). The analysis of compound events under the CLINT framework concentrates on impact 
indicators on the three sectors, water, energy and food, considered within work package 6, with the 
goal of identifying the relevant drivers of those impacts using AI/ML methodologies. The assumption 
is that since compound events are, by definition, associated with the most severe impacts, the AI 
method will discover their pattern through the impacts used as the basis for defining the compound 
events above. 

The dependencies among these drivers will then be examined using traditional multivariate 
statistics, such as Markov and Bayesian networks (e.g., Hastie et al. 2017; Sperotto et al. 2017), vine-
copulas (e.g., Hao et al. 2018; Czado and Nagler 2022) or “synergies” of the two techniques (e.g., 
Elidan 2013; Couasnon et al. 2018). In order to further emphasize the significance of evaluating the 
connectivity among the drivers, return periods will be constructed under the assumptions of 
independence and dependence, as it is frequently found that return periods can significantly 
decrease when an extreme multivariate framework (with dependent drivers) is employed (e.g., 
Zscheischler and Seneviratne 2017). 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

 

 

EXTREME EVENTS DETECTION 55 

 

6.2.2 Concurrent extremes 

The analysis within CLINT will focus on the connectivity of large-scale droughts and heatwave events 
at the global scale. The large-scale extreme events are defined following Toreti et al. (2019b): Firstly, 
for given regions of interest, heatwaves and droughts will be identified on the grid scale using 
statistical extreme event detection approaches (e.g., through threshold exceedances of indices). 
Subsequently, the time points are collected at which a certain number of grid points (e.g., 20 %) 
within a considered region fulfil the given criterion that classifies the time points as occurrences of 
large-scale extreme events. Hence, for heatwave and drought events, a set of time points is 
obtained for specific regions, which are then modelled as a marked point process (see, e.g., Daley 
2003; Daley and Vere-Jones 2008). The interdependencies of these events can then be evaluated 
using the marked inhomogeneous J-Function (Cronie and van Lieshout 2016), which can determine 
whether the obtained time points exhibit clustering, inhibition, or independence. The latter also 
allows for a non-constant occurrence of these events over the considered time interval and is, 
therefore, able to take the non-stationarity of the climate into account. By analysing the above time 
occurrences depending on the phase of a teleconnection state under consideration (e.g., El Nino 
and La Nina for ENSO), links to teleconnections (such as ENSO, NAO) can also be employed 
As previously stated, the detection of the drought and heatwave events at the grid scale will be 
accomplished following Tasks 3.2 and 3.3 by using heatwave and drought indices such as the HMD 
and the HWS, the SPI and the SPEI (see Tables 7 and 11) or AI-enhanced versions of the later 
developed within Tasks 3.2 and 3.3. By applying a cluster analysis like k-means (e.g., Hastie et al. 
2017) or extreme values theory-based approaches (Bernard et al. 2013; Bador et al. 2015) to the 
indices, it will be possible to pinpoint the areas with similar drought and heatwave patterns, which 
will then serve as the regions of interest. 
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Table 14 List of the indices for heatwaves and droughts detection at European & global scale for concurrent extremes 
in Task 3.4. 

Acronym Name Essential 
climate 
variables 

Description References 

SPI Standardized 
Precipitation 
Index 

Precipitation  SPI represents the number 
of standard deviations the 
cumulative precipitation 
deviates from the average of 
a standardized normal 
distribution. 

McKee et al. (1993); 
Hayes et al. (1999) 

SPEI Standardized 
Precipitation 
and 
Evapotranspirati
on Index  

Precipitation 
and Potential 
Evapotranspira
tion 

SPEI represents the 
deviations from the average 
of a standardized 
distribution but replaces the 
precipitation data with the 
difference between 
precipitation and potential 
evapotranspiration. SPEI is 
also appropriate for arid 
climates, where 
evapotranspiration has a key 
role in depleting soil 
moisture. 

Beguería et al. 
(2010); Vicente-
Serrano et al. (2010); 
Beguería et al. 2014 

HMD Heat Magnitude 
Day 

Tmax (daily 
maximum 2-
meters 
temperature) 

Accumulates heat wave 
magnitude (as in Russo et al. 
2015) for the 3-month 
period before the harvesting 
season, representing heat 
stress within this period. 

Zampieri et al. 
(2017); Toreti et al. 
(2019b) 
 

HWS Heat Wave 
Severity 

Tmax or Tmin 
(daily 
maximum/mini
mum 2-meters 
temperature) 

Accumulated temperature 
exceedance (above the local 
90th percentile) for all heat 
wave days (temperature 
exceeding the 90th 
percentile) over a user-
defined interval  (monthly, 
seasonal, etc. 

Perkins-Kirkpatrick 
and Lewis (2020) 

Acronym = Abbreviation used for the index, Name = full name of the index, Essential climate variables = variables 
required for the computation of the index, Description = short definition of the index, References = Publications where 
the index is used and/or defined. 
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6.3 Datasets for compound events and concurrent extremes  

The datasets used for the study of compound events and concurrent extremes in CLINT comprise 
reanalysis data with high spatial and temporal resolution and the longest possible temporal 
coverage, climate model outputs, surrogate data required for the concurrent extremes, as well as 
impact data for the water, energy and food security nexus sectors. 

6.3.1 Climate data for compound events and concurrent extremes  

6.3.1.1 ERA5 
See 2.3.1.   

6.3.1.2 ERA-20C 
See 4.3.2.   

6.3.1.3 20CRv3 
See 4.3.3.   

6.3.1.4 CMIP6 and PMIP4 

The training of the AI algorithms can be further augmented by using global bias-corrected for the 
concurrent extremes and European bias-corrected and downscaled for the compound events and 
climate model simulations from CMIP6. CMIP’s objective is to better understand past, present and 
future climate change arising from natural (unforced) variability or in response to changes in 
radiative forcing (Eyring et al. 2016). Within Task 3.4, the analysis is going to focus on historical 
simulations for the models listed in Table 15.  

Table 15 List of CMIP6 model simulations used in Task 3.4. 

Name Source Handled by Processed 
by 

Stored  
by 

ETD Used 
by 

CESM2 ESGF JLU JLU JLU August 31, 
2022 

JLU 

CNRM-CM6-1-HR  ESGF JLU JLU JLU August 31, 
2022 

JLU 

EC-Earth3 ESGF JLU JLU JLU August 31, 
2022 

JLU 

GFDL-ESM4 ESGF JLU JLU JLU August 31, 
2022 

JLU 

HadGEM3-GC31-
MM 

ESGF JLU JLU JLU August 31, 
2022 

JLU 

MPI-ESM1-2-HR ESGF JLU JLU JLU August 31, 
2022 

JLU 
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Name Source Handled by Processed 
by 

Stored  
by 

ETD Used 
by 

NorESM2-MM ESGF JLU JLU JLU August 31, 
2022 

JLU 

Name = short name of the dataset, Source = original producer, Handled by = partner doing the download/extraction of 
the dataset over the region of interest, Processed by = partner applying any “model output statistics” if any 
(downscaling, calibration etc.), Stored by = partner distributing the data for the consortium partners (e.g., centralised 
CLINT repository at DKRZ), if need be, ETD = estimated date of availability (from handling/storing partner), Used by = 
partner using the data (case study). 
 

Task 3.4 will also use longer model simulations from CMIP6 and the Paleoclimate Modelling 
Intercomparison Project phase 4 (PMIP4). The model simulations (Table 16) are externally forced 
following the protocol by Jungclaus et al. (2017). The forcings between 500 BC and 1 AD are 
according to the Bader et al. (2020) simulation (i.e. the Holocene simulation).  

 

Table 16 List of PMIP4/CMIP6 simulations used in Task 3.4. 

Name Source Handled 
by 

Processed 
by 

Stored  
by 

ETD Used 
by 

MPI-ESM-LR-P Hereon Hereon JLU JLU August 31, 2022 JLU 

MPI-ESM-LR 
Mythos (500 BCE - 
1850 CE) 

Hereon/JLU JLU JLU JLU August 31, 2022 JLU 

MPI-ESM-LR 2k ESGF MPI-M JLU JLU August 31, 2022 JLU 

Name = short name of the dataset, Source = original producer, Handled by = partner doing the download/extraction of 
the dataset over the region of interest, Processed by = partner applying any “model output statistics” if any 
(downscaling, calibration etc.), Stored by = partner distributing the data for the consortium partners (e.g., centralised 
CLINT repository at DKRZ), if need be, ETD = estimated date of availability (from handling/storing partner), Used by = 
partner using the data (case study). 

6.3.2 Concurrent extremes data 

6.3.2.1 Surrogate data  
The inhomogeneous J-Function will be utilized to examine the connectivities of large-scale drought 
and heatwave events for the analysis of concurrent extremes. The J-Function, as previously stated, 
can categorize these connectivities into three types of dependence structures: clustering, inhibition, 
and independence (see, e.g., Baddeley et al. 2016). However, the decision as to which class a specific 
J-function belongs to is still determined by the user and is thus exposed to subjectivity. The main 
objective for Task 3.4.2 within CLINT is thus to develop an AI-based automated interpretation tool 
for the J-Function that can classify a given J-Function to a dependency structure from above and 
estimate the change point in dependence. For this, Monte Carlo simulations will be used to simulate 
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data sets which mimic these three types of dependence structures. Then for each simulated data 
set, the dependence structure can be labelled such that the problem becomes a classification 
problem and an AI model can be trained. 

Point process models for which the J-Function has the desired features are going to be used, and 
the simulation setup of van Lieshout (2011) and Cronie and van Lieshout (2015) is going to be 
adopted. They show that the J-Function has the desired properties by using a log-gaussian cox 
process model for clustering, an inhomogeneous point process for independence, and a thinned 
hardcore process for inhibition (for a description of the processes, see, for instance, González et al. 
2016 and the references within). Furthermore, non-stationary intensity functions (see, for instance, 
Diggle 2014) will be employed, as they are more likely to occur in climatic data sets (Toreti et al. 
2019a; Toreti et al. 2019b). For each simulated data set, the J-Functions are then estimated 
following van Lieshout 2011, Cronie and van Lieshout 2016 and Moradi et al. 2019 together with a 
perturbation method developed in Toreti et al. 2019b.   

6.3.3 Compound events data  

As previously stated, data sets identifying the impact of compound events on the food, energy, and 
water sectors will be used for Task 3.4.1 and will be adopted from MS15. The data sets will be 
described in the following sections.   

6.3.3.1 Food - ECroPS, FAOSTAT, Eurostat 

ECroPs 

Crop yield simulations using the ECroPS dynamical process-based crop model (Toreti et al. 2019c) 
will be utilized to assess the impact on the food sector. The ECroPS modelling framework was 
created to address the high computational demand of high-resolution regional climate model 
simulations and is tailored to run in MPI environments. The ECroPS crop simulation model is based 
on the WOFOST crop simulation model (Wit et al. 2019), but with new important parameterization 
methods, which are the response to elevated CO2 concentrations and the impact of heat stress on 
flowering. 
The core of ECroPS consists of a mechanistic crop growth model that explains crop growth in terms 
of underlying processes like photosynthesis and respiration, as well as how these processes are 
influenced by environmental variables. Furthermore, the impact of highly relevant climate extremes 
is simulated, including heat stress and droughts. Modules in ECroPS include phenological 
development, light interception, gross CO2 assimilation, growth and maintenance respiration, dry 
matter partitioning, source and sink limited leaf area development, soil water balance and soil 
nutrition balance. The crop model is parameterized to allow for regional heterogeneity in the crop 
model parameters across Europe, thus taking into account differing spatial variety distributions for 
the major crops (Ceglar et al. 2019). The latter is based on a pan-European spatial calibration of 
several crop model parameters related to variety prevalence in various European growing regions. 
Finally, ECroPS distinguishes three levels of crop production: potential production (determined by 
crop variety, radiation and temperature), water-restricted production (water availability limits 
potential production) and nutrient-limited production (in which nutrient availability limits water-
limited production).  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/maintenance-respiration
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/dry-matter-partitioning
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-water-balance
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FAOSTAT 

The United Nations established the Food and Agriculture Organization (FAO; https://www.fao.org/) 
as a specialized organization with the aim of attaining global food security and ensuring access to 
sufficient and quality food. FAO is active in 130 countries around the world and has 195 members. 
FAOSTAT provides free access to food and agricultural data for 245 countries - including the 
European domain - from 1961 to the present. The data is mainly obtained through questionnaires 
submitted to members on a regular basis. The data includes statistics on agricultural production, 
food security and nutrition, food value chain, as well as climate change, among other domains. 

Eurostat 

Eurostat (https://ec.europa.eu/eurostat) is the statistical office of the European Union, with the aim 
of providing high-quality statistics and data on Europe. The statistics are produced in cooperation 
with the national statistical institutes and other national authorities in the EU Member States, 
known as the European Statistical System (ESS). The statistical authorities of the European Economic 
Area (EEcA) and Switzerland are also part of the ESS. In recent decades, new indicators and statistics 
that reflect changes in EU policies have been introduced, enhancing the initial aim of monitoring the 
EU’s Common Agricultural Policy (CAP) main objectives (e.g., Hill 2012). Agricultural statistics in 
Eurostat provide information on the topics of farms’ structure, the economic accounts for 
agriculture, prices and prices’ indices, agricultural production and organic farming, as well as 
agriculture and the environment. 
 
CLINT will use the above-described data sources to study the impacts of compound events on the 
food sector, and adequate impact indicators will be adapted from MS15. The analysis will further 
follow MS4 and support WP6 objectives and will focus on climate impacts of the three main crops 
grown in Europe: winter soft wheat, grain maize and winter barley. Additionally, AGRI4CAS’s data 
portal (https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx) will be used to acquire the 
agrometeorological variety zones for the main crops in Europe (Ceglar et al. 2019). 

6.3.3.2 Water – E-Hype 
The high-resolution pan-European water model E-HYPE (Donnelly et al. 2016; Hundecha et al. 2016) 
calculates hydrological variables on a daily time-step and calculates water balance, hydrological 
variable dynamics, and daily discharge for continental Europe. It is maintained and operated by 
SMHI, a governmental organization under the Ministry of Environment. It can be used for a variety 
of purposes, including hydrological forecasting, environmental flow management, infrastructure 
development planning, and assessing the impact of climate change (Wallman et al. 2011). Input data 
includes Global Monitoring for Environment and Security (GMES) satellite products, global data sets 
(e.g., topographic, land use, soil type, precipitation and temperature data), meteorological data, 
climate projections, policy scenarios, and local data. Many hydrological variables, such as water 
balance, flow rates and depths (when rating curves or hydrographic data are available) in all major 
streams and rivers in Europe, soil moisture level, lake/reservoir depths and levels, snow depths, 
snow water equivalent and regional snow coverage are produced at high resolution by the model. 
Furthermore, statistics for the predicted and observed data can be provided as regional statistics 
and individual sites.   
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6.3.3.3 Energy - PRIMES  

The Price-induced market equilibrium system PRIMES model, developed by E3Modelling, a spin-off 
of the E3MLab at the National Technical University of Athens (NTUA), can simulate medium- and 
long-term (up to 2070) projections in five-year steps (MIDAS @JRC website 2021). It is applicable to 
all European Union member states, European Free Trade Association (EFTA) nations (except 
Lichtenstein), and candidate countries. 

The essential feature of the model is its combination of behavioural modelling (based on a 
microeconomic foundation) and engineering aspects, which covers all energy sectors and markets 
and can handle numerous policy objectives (e.g., Greenhouse Gas, GHG emission reductions, energy 
efficiency, renewable energy targets) (PRIMES 2018). Furthermore, it provides a pan-European 
simulation of internal markets for electricity and gas. It has been used to conduct impact 
assessments for the European Commission, including the EU Long-Term Strategy, as well as to 
develop the "Reference outlook for EU energy, transport, and GHG emission trends to 2050." 
The input of the model consists of Eurostat and European Environment Agency (EEA) data (e.g., 
energy balance sheets, energy processes, macroeconomic and sectoral activity data), technological 
databases, power plant inventory, Renewable energy sources (RES) capacities, potential and 
availability, network infrastructure and other databases; see MIDAS @ JRC website 2021 for further 
information. The output of the PRIMES model contains detailed energy balances of the energy 
system, as well as accompanying CO2 emissions for each country or the EU as a whole. Together 
with the Greenhouse Gas - Air Pollution Interaction and Synergies (GAINS) and Global Biosphere 
Management Model (GLOBIOM) models, it is also able to provide comprehensive GHG balances for 
each country and the EU as a whole (MIDAS @JRC website 2021).  

Table 17 List of surrogate and sectoral data used in Task 3.4. 

Name Source Handled  
by 

Processed  
by 

Stored  
by 

ETD Used 
by 

Surrogate 
Data 

JLU JLU N/A JLU August 31, 
2022 

JLU, UAH 

E-HYPE SMHI SMHI  N/A SMHI August 31, 
2022 

JLU, POLIMI 

ECroPS JRC JRC N/A JLU August 31, 
2022 

JLU, POLIMI 

PRIMES E3M E3M N/A E3M August 31, 
2022 

JLU, POLIMI 

Name = short name of the dataset, Source = original producer, Handled by = partner doing the download/extraction of 
the dataset over the region of interest, Processed by = partner applying any “model output statistics” if any 
(downscaling, calibration etc.), Stored by = partner distributing the data for the consortium partners (e.g., centralised 
CLINT repository at DKRZ), if need be, ETD = estimated date of availability (from handling/storing partner), Used by = 
partner using the data (case study). 
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6.4 Candidate drivers for compound events and concurrent extremes  

Compound weather and climate events describe combinations of multiple climate drivers and/or 
hazards that contribute to societal or environmental risk. These events arise from complex 
interactions between various physical processes across multiple spatial and temporal scales. This 
work aims at revealing the drivers of the hazards and the physical processes by which weather- and 
climate-related hazards combine to improve their detection, predictability, causality and attribution 
through the assessment of the impacts in the sectors of water, energy and food. The climate 
phenomena are characterised by deviations from mean conditions without being extreme in the 
statistical sense. 

Warm and dry conditions are often linked through land-atmospheric feedbacks (Miralles et al. 
2019).  In a recent review, Zhang et al. (2021) identified persistent blocking highs, subtropical highs, 
atmospheric stagnation events, and patterns of planetary heat waves as drivers of warm and dry 
conditions. For example, stagnation events cause a lack of convection and movement of air masses 
(Horton et al. 2014; Zou et al. 2020) and blocking highs increase temperature and 
evapotranspiration while suppressing precipitation (Dong et al. 2018; Schumacher et al. 2019). 
These conditions can be further intensified by preconditions such as low soil moisture through soil 
moisture-atmosphere interaction (Berg et al. 2015), dry soil and plants, which reduce 
evapotranspiration (Seneviratne et al. 2006), and downwind drought conditions, whereby advection 
of air masses can cause abrupt increases in air temperature and soil desiccation (Schumacher et al. 
2019). Other studies have found that concurrent heatwaves in the Northern Hemisphere can be 
linked to amplified Rossby wave patterns (Kornhuber et al. 2020), whereas warm and dry events in 
Europe can be related to a Rossby wave train propagating from the United States to Russia (Ionita 
et al. 2021). Warm and dry events can also be related to slow varying factors, as teleconnection 
patterns like ENSO, which was for instance shown in South Africa (Hao et al. 2019), South America 
(Cai et al. 2020) and the USA (Hoerling et al. 2013). ENSO and the Indian Ocean Dipole (IOD) have 
also been shown to have an effect on these types of events in Australia (Reddy et al. 2022). Over 
western North America during the boreal summer, these types of events have been shown to be 
positively influenced by the PDO, whereas associations of these types of events with the NAO were 
relatively weak (Mukherjee et al. 2020). Additionally, it has been demonstrated that strongly 
negative PDO phases and positive Atlantic Multidecadal Oscillation (AMO) phases favour warm and 
dry events in the southwest of the United States (Chylek et al. 2014). Concerning future projections, 
it is found that, with global warming, the frequency of warm and dry events is expected to rise 
(Zscheischler and Seneviratne 2017; Alizadeh et al. 2020; Vogel et al. 2020; Meng et al. 2022). For 
instance, it was shown that record-breaking summers like the one that occurred in Central Europe 
in 2018 can become the norm until the middle of the twenty-first century (Toreti et al. 2019a) and 
could not have occurred without human influence (Vogel et al. 2019).  

Warm and wet events are often modulated when temperature rises over open water bodies, 
increasing surface humidity (Zhang et al. 2021). On land, however, this effect may be limited by the 
lack of soil moisture (Fischer and Knutti 2013). A recent review of Zhang et al. 2021 identifies the 
following drivers of warm and humid events: Irrigation, external forcing such as greenhouse gases 
and volcanic eruptions and urbanization. Other studies have linked warm, humid conditions to 
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persisting blocking patterns, reduced cloud cover, and the advection of warm air, which can 
originate in tropical areas (Katsafados et al. 2014; Freychet et al. 2017; Russo et al. 2017). Although 
there appears to be fewer studies on these types of occurrences than on warm and dry ones, the 
frequency of warm and humid events is expected to rise (Russo et al. 2017; Wang et al. 2021; Meng 
et al. 2022) highlighting the need of studying these types of events. 
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