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About CLINT 

The main objective of CLINT is the development of an Artificial Intelligence framework composed of 
Machine Learning techniques and algorithms to process big climate datasets for improving Climate 
Science in the detection, causation, and attribution of Extreme Events (EEs), namely tropical 
cyclones, heatwaves and warm nights, droughts, and floods. The CLINT AI framework will also cover 
the quantification of the EE impacts on a variety of socio-economic sectors under historical, 
forecasted, and projected climate conditions and across different spatial scales (from European to 
local), ultimately developing innovative and sectorial AI-enhanced Climate Services. Finally, these 
services will be operationalized into Web Processing Services, according to the most advanced open 
data and software standards by Climate Services Information Systems, and into a commercial 
Demonstrator to facilitate the uptake of project results by public and private entities for research 
and Climate Services development. 

More information: https://climateintelligence.eu/ 
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risk. Neither the CLINT consortium nor any of its members, their officers, employees or agents shall 
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sustained by any person as a result of the use, in any manner or form, of any knowledge, information 
or data contained in this document, or due to any inaccuracy, omission or error therein contained.  
The European Commission shall not in any way be liable or responsible for the use of any such 
knowledge, information or data, or of the consequences thereof.  
This document does not represent the opinion of the European Union, and the European Union is 
not responsible for any use that might be made of it.  
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EXECUTIVE SUMMARY 

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that leverages the information 

contained in data to inductively address tasks. In particular, ML algorithms consider a set of data, 

the training set, to learn patterns that can be exploited to add information or make predictions given 

new unseen test data. Therefore, ML algorithms learn from observations and optimize a set of 

parameters to improve their performance as measured by predefined metrics.  

ML techniques are more and more frequently applied in a variety of fields (e.g., medicine, biology, 

Earth science, social media), where they exploit the large amount of data available to inductively 

extract or interpret complex patterns in the data that are subsequently employed to generalize to 

new unseen data. Moreover, a variety of ML algorithms exists to address different problems (e.g., 

clustering to identify subgroups of data, supervised learning to predict a target value) and to 

consider different types of data (e.g., images, text and sequences, time series). 

 

The CLINT project aims to develop an ML-enhanced framework to address detection, causation, and 

attribution of climatic Extreme Events (EE). The focus is on tropical cyclones, droughts, heatwaves 

and warm nights, compound events and concurrent extremes, which are ensembles of critical 

climatic events. Specifically, WP2 aims to identify and develop ML techniques to handle the large 

amount of available spatio-temporal climate data. The final purpose is to provide suitable 

algorithms that perform well on the different applications addressed in CLINT. The methodological 

workflow followed in WP2 is to analyse the state-of-the-art techniques available in the literature 

and eventually develop new methods to address specific needs. For this reason, this first deliverable 

is focused on state-of-the-art analysis, both focusing on methods and applications. 

 

After a brief introduction to Machine Learning and on the EE addressed in CLINT, the document 

introduces from a methodological perspective the most relevant subfield of ML identified to address 

detection, causation, and attribution of extremes. Then, the focus is on the analysis of the state-of-

the-art ML applications to address each of the three problems. In particular, a different chapter is 

dedicated to each EE, which has its own peculiarities and is addressed in a different way in the 

literature.  

Finally, methodological challenges and improvement opportunities are discussed to conclude the 

review. 

KEYWORDS 

Machine Learning; Feature Selection; Supervised Learning; Deep Learning; Causal Inference; 

Detection; Causation; Attribution; Extreme events  
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1 INTRODUCTION 

1.1 Machine Learning Overview 

Machine Learning (ML) is a branch of computer science and a subfield of Artificial Intelligence (AI), 
which aims to extract information and relevant patterns from data that can be generalized to gather 
information on new unseen samples and exploit them to make decisions. ML is composed of three 
main subfields: supervised learning, unsupervised learning, and reinforcement learning (a detailed 
analysis of supervised, unsupervised, and reinforcement learning can be found in (Bishop & 
Nasrabadi, 2006), (Zaki, Meira Jr, & Meira, 2014), (Sutton & Barto, 2018)). 

Given a set of input features 𝑥𝑖 and related target outputs 𝑦𝑖, the goal of supervised learning is to 
estimate the unknown model that is able to reconstruct the output from the inputs in a way that it 
is also able to estimate the output of a set of new unseen inputs, called the test set. Supervised 
learning can be divided into three main subfields: 

• Classification, where the target is one of K discrete classes, and the goal is to assign each 
input to a class. 

• Regression, where the target is a continuous variable, and the goal is to learn a mapping 
from the input that produces a prediction as close as possible to the target. 

• Probability Estimation, where the goal is to associate to each input a probability distribution 
over a set of possible events. 

 

Figure 1-1: an example of classification and regression, the first tries to predict the group a feature belongs to, while the 
second a real-valued output. (Credits for image (Matanga, 2017)) 

In the unsupervised learning scenario, the only available information is a set of unlabelled input 
features 𝑥𝑖 and the goal is to learn an efficient (e.g., compact) representation of the input. This is 
usually done in two ways, depending on the information of interest that should be extracted from 
the data. The first option is represented by clustering techniques, whose goal is to group data in 
order to maximize the similarity of data within the same group and minimize the similarity between 
different groups. The other standard unsupervised approach is dimensionality reduction, which 
focuses on projecting data into a lower dimensional space, preserving the structure among data 
while reducing their dimension, which is useful for computational complexity, memory usage, and 
algorithm performances.  
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Figure 1-2: an example of unsupervised clustering and dimensionality reduction, which respectively allow to group 
input data into clusters of similar data or to project them into lower dimensional spaces. (Credits for image (Beck & 
Kurz, 2020)) 

Finally, reinforcement learning is the ML approach to solve sequential decision-making problems, 
which aims to find the optimal distribution of actions to take in each possible state in order to 
maximize the cumulative reward (usually modelling the problem as a Markov Decision Process).  

 

Figure 1-3: scheme of the interaction between agent and environment in a reinforcement learning setting. (Credits for 
image (Galatzer-Levy, Ruggles, & Chen, 2018)) 

 

1.2 Motivation and Outline 

The CLINT project aims to address the problems of detection, causation, and attribution of EE, 
enhancing traditional methods with ML. For this reason, WP2 is focused on providing state-of-the-
art techniques, together with the design of novel algorithms, to address these problems. In 
particular, the objectives of WP2 are to develop: 

● advanced identification of relevant features (feature extraction) algorithms for EE detection; 

● advanced data-driven causal inference algorithms for EE causation analysis; 

● advanced neural computation algorithms for EE attribution; 

● advanced data-driven models for EE forecasting; 

● advanced spatial predictive models for reconstructing past EE. 

 
As a first step, this document aims to revise the state-of-the-art techniques applied in the Literature 

for the detection, causation, and attribution of the EEs addressed in CLINT both from a 
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methodological and an applicative perspective. In particular, the ML subfields identified as relevant 

to the tasks of interest will be presented. Then, the focus will be on revising some recent existing 

ML applications for each EE under analysis. 

 

The following table offers an overview of the number of applications that are presented in this 

report for the detection, causation, and attribution of the four categories of EE addressed in CLINT. 

From the table it is immediately possible to identify that there is a robust literature addressing the 

detection of droughts and tropical cyclones with ML, with a few works also related to their 

attribution and causation. Moreover, a few works in the literature address heatwaves (and warm 

nights) with ML, and only a few recent works try to address compound events and concurrent 

extremes with ML. 

Table 1-1: number of applications analysed in this report for the detection, causation, and attribution with ML of each 
EE addressed in CLINT. 

Number of references 

 Droughts Tropical Cyclones Heatwaves Compound Events 

Detection 23 41 6 6 

Causation 6 6 3 0 

Attribution 6 6 3 0 

 

1.3 Outline 

The deliverable is structured into seven chapters: 

● Chapter 1 (current) provides an overview of machine learning methods and introduces the 

structure of the document. 

● Chapter 2 analyses the main subfields of ML identified as relevant for EE detection, causation 

and attribution. 

● Chapter 3 presents relevant works and methods representing the state-of-the-art of 

detection, causation and attribution of droughts with ML. 

● Chapter 4 presents relevant works and methods representing the state-of-the-art of 

detection, causation and attribution of Tropical Cyclones with ML. 

● Chapter 5 presents relevant works and methods representing the state-of-the-art of 

detection, causation and attribution of Heatwaves and Warm Nights with ML. 

● Chapter 6 presents relevant works and methods representing the state-of-the-art of 

detection, causation and attribution of Compound Events and Concurrent Extremes with ML. 

● Chapter 7 concludes the document with final considerations. 
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2 CHALLENGES AND METHODS: AN ML PERSPECTIVE  

2.1 Chapter Overview 

In order to enhance standard approaches for the detection, causation and attribution of EE with ML 
techniques, the first prerequisite is to identify the subfields of ML most related to these three 
problems and the commonalities and peculiarities of each EE under analysis. 
 
The main peculiarity of the available datasets is their spatio-temporal structure with fine granularity, 
which means that they are historical series of highly correlated variables, whose correlation 
diminishes with separation. For this reason, dimensionality reduction techniques can provide an 
efficient data-driven way to aggregate variables that are close in space and share a large amount of 
information, reducing the dimension of the dataset so that the performance of the ML models and 
the space and time complexity required are improved. 
 
Detection aims to identify the drivers of an EE. Therefore, given a set of candidate features, the 
most straightforward way to identify the most impactful drivers with a data-driven approach is to 
make use of feature selection techniques. Then, to better investigate if the candidate drivers are 
meaningful to predict the EE, supervised learning techniques are the general solution that is needed. 
 
Attribution, which aims to identify the impact of anthropogenic climate change on EE, can benefit 
from feature selection and supervised learning. The former can be adapted to identify whether the 
most relevant variables are related to human activities. Supervised learning is then applied to train 
and compare models with data produced by climate models with and without anthropogenic 
climate trends to conclude whether an observed EE pattern can be attributed to climate change.  
 
Finally, the identification of causal relationships within a set of variables can be addressed with 
causal inference, in particular with the subfield of causal discovery. Since the data available are 
usually time series, specific algorithms related to sequences can be adopted. 
 
In the following table, the above-mentioned techniques are summarised, with their impact on 
detection, causation and attribution of EE. In the following sections of this chapter, each of the 
mentioned subfields of ML will be introduced, resulting in a methodological overview of the state-
of-the-art methods for each subfield identified as significant for the three tasks. 
 

Table 2-1: overview of the identified ML subfields and their importance for EE detection, causation, and attribution. 

Detection 

Dimensionality reduction 
● Aggregate fine-grained spatial features in 

a dynamical data-driven way 
● No need to manually extract 

aggregations of variables 

Feature selection 
● Identify relevant variables  

● Identify non-redundant variables 
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Detection 

● Faster computations and less risk of 
overfitting of ML models 

● Faster computations and less risk of 
overfitting if many non-relevant input 
features are removed 

Supervised learning  

● Detect an EE through the most relevant 
drivers 

● Quantify the performance of the 
prediction to confirm that the identified 
variables are drivers of the considered EE 

● Automatically extract relevant features 
(with some techniques such as 
convolutional neural networks) 

Causal Inference 

• See causation 

Attribution 

Dimensionality reduction 
● Same advantages of detection 
● More complex to apply since it is usually 

necessary to keep separated the 
variables related to human influence  

Feature selection 
● Identify if anthropogenic driver variables 

are relevant and non-redundant candidate 
drivers of the EE under analysis 

Supervised learning  
● Evaluate the improvement of prediction 

performance of the models with 
anthropogenic features to find statistical 
evidence of their impact on the EE 

Causal Inference 
● See causation 

Causation 

Dimensionality reduction 
● Still applicable to reduce the 

dimensionality of features 

Feature selection 
● Applicable as pre-processing step aimed to 

reduce the set of candidate causal features 

Supervised learning  

● Applicable with causal discovery 
techniques 

Causal Inference 

● Classical causal analysis with interventions 
is not applicable, need to rely on 
observational causal inference 

● Causal discovery identified as the core 
component, designed to identify the causal 
link among variables  

2.2 Dimensionality Reduction 

Dimensionality reduction (DR) is a subfield of ML usually considered as a preprocessing technique, 
applied to the features before feeding a supervised learning approach with them. DR is particularly 
useful when high-dimensional data are available, which should be reduced to obtain more 
manageable features, i.e., less prone to overfitting and curse of dimensionality, two of the most 
common issues in ML.  
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Specifically, DR consists in projecting the data into a lower-dimensional space, trying to preserve as 
much as possible their high-dimensional structure.  More rigorously, DR can be seen as a function 

ϕ: ℝN×D → ℝ N×d, mapping the original dataset with D features into a reduced dataset with d<<D 
features, obtained by combining the original features through the transformation 𝜙. 
The goal of this projection is therefore to reduce the (huge) dimensionality of the original dataset 
while keeping as much information as possible in the reduced dataset, which is usually done by 
preserving a distance (e.g., Euclidean, geodesic) or the probability of a point to have the same 
neighbours after the projection  ( (Zaki, Meira Jr, & Meira, 2014) contribute  a broader introduction 
with more rigorous computations of classical approaches). 
 
DR is particularly important for Earth sciences ML approaches in general, since climatic spatio-
temporal data usually consists of thousands of values of a variable for different locations on Earth 
(e.g., gridded Sea Surface Temperature data with 0.25 degrees granularity), where each one can be 
considered as a different feature. In this context, the dimension must be reduced since, otherwise, 
the number of features can be much larger than the number of samples available (e.g., one sample 
per day for the last century). DR methods allow to reduce the dimension keeping the information 
of each original feature through a projection, at the cost of impairing the interpretability of the 
reduced features.  In the next section, Feature Selection will be presented, which has the opposite 
tradeoff: it preserves interpretability, but it discards many of the original features. 
 
DR approaches can be divided into two macro categories: unsupervised and supervised. The first 
ones focus on projecting the data, reducing the dimension without considering the subsequent 
supervised task, but only the preservation of the structure among data. The supervised techniques, 
on the other hand, aim to obtain a projection that tries to keep the structure among the data and 
to obtain a reduced set of features that can get the best performance on the prediction of the target. 
Moreover, it is possible to distinguish between linear and non-linear projections for each of the two 
types of methods: the first ones are simpler to interpret, while the others can learn a more complex 
manifold. In the next two subsections, the main approaches of these families are revised. 
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Figure 2-1: unsupervised and supervised dimensionality reduction. The first projects data to preserve their structure as 
much as possible while the second maximizes the separation between samples of different classes. (Credits for image 
(Scott & Crone, 2021)) 

 

2.2.1 Unsupervised Dimensionality Reduction 

Classical dimensionality reduction methods can be considered unsupervised learning techniques 
that generally do not consider the target, but focus on projecting the dataset through the 
minimization of a given cost function. 
 
The most popular unsupervised linear dimensionality reduction technique is Principal Components 
Analysis (PCA) (Pearson, 1901) (Hotelling, 1933), a linear method that embeds the data into a linear 
subspace of dimension d, describing as much as possible the variance in the original dataset. 
Specifically, PCA is based on projecting the data in orthogonal directions minimizing the mean-
squared error, whose solution can be proved to be equivalent to projecting onto the eigenvectors 
of the covariance matrix of the dataset. The dimensionality reduction is, therefore, performed by 
selecting the first d projections (principal components), which are the projections through the d 
eigenvectors associated with the d largest eigenvalues. Moreover, thanks to the orthogonality of 
these vectors, the amount of variance preserved is equal to the sum of variances of each reduced 
feature (which is the sum of the corresponding eigenvalues). 
 
One of the main difficulties of applying PCA in real problems is that it performs linear combinations 
of possibly all the D features, usually with different coefficients, hindering the interpretability of 
each principal component and suffering from the curse of dimensionality. To overcome this issue, 
some variants have been introduced, like sparse variable PCA (svPCA) (Ulfarsson & Solo, 2011), 
which regularize the loss through a term that forces most of the weights of the projection to be 
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zero. This mitigates the interpretability issue, but it possibly leads to neglecting many features for 
the projection, whose informativity would be lost. 
 
A number of variants exist to overcome the different issues of PCA (e.g., out-of-sample 
generalization, linearity, sensitivity to outliers), to extend its applicability or to approach the 
problem from a different perspective. Some relevant approaches based on PCA are introduced in 
the following, while an extensive overview can be found in (Sorzano, Vargas, & Montano, 2014). 
Incremental PCA (Artac, Jogan, & Leonardis, 2002) can update the projection weights online and is 
particularly useful for streaming data. Singular value decomposition (SVD) (Golub & Reinsch, 1971) 
leads to the same result as PCA from an algebraic perspective through matrix decomposition. It 
decomposes the data matrix as the product of three matrices and from them, it is possible to 
compute the principal components faster. It is also possible to perform a non-linear PCA projection 
(Girolami & Fyfe, 1997), considering a general function rather than a linear projection and still 
minimizing the least squares error. This procedure allows projecting onto a more complex manifold, 
with a cost in terms of computational complexity and interpretability. 
Another technique related to PCA is Factor Analysis (FA) (Thurstone, 1931), which is a generative 
approach. It assumes that the features are generated from a smaller set of latent variables, called 
factors, and tries to identify them by looking at the covariance matrix. In particular, standard FA 
assumes that each feature is a (linear) combination of the factors with Gaussian noise. Both PCA 
and Factor Analysis can reduce through rotations the number of features that are combined for 
each reduced component to improve the interpretability, but their coefficients can still be different 
and hard to interpret. 
Finally, Independent Component Analysis (Hyvarinen, 1999) is an information theory-based 
approach that looks for independent components (not only uncorrelated as PCA) that are not 
constrained to be orthogonal. It is also a generative model, whose objective is to find a matrix such 
that the components are as independent as possible, and each feature is a (linear) combination of 
these components. This method is more focused on splitting different signals mixed between 
features rather than reducing their dimensionality, which can be done as a subsequent step with 
feature selection. This step would be simplified since the new features are independent. 
A broader overview of linear dimensionality reduction techniques can be found in (Cunningham & 
Ghahramani, 2015). 
 
In contrast to the linear nature of PCA, many non-linear approaches exist, following the idea that 
data can be projected onto non-linear manifolds. It is possible to distinguish between convex 
techniques, where the solution space is convex and is guaranteed to reach a global optimum, and 
non-convex techniques. An extensive overview of these two families of methods can be found in 
(Van Der Maaten, Postma, Van den Herik, & others, 2009) and in the following some of the most 
relevant approaches are discussed. 
The approaches that optimize a convex objective function usually identify the projection coefficients 
through a generalized eigenproblem. Some of them try to preserve the global similarity of data. 
Among these, Isomap (Tenenbaum, Silva, & Langford, 2000) preserves pairwise geodesic distance 
among samples, rather than the Euclidean distance preserved by PCA. Kernel PCA (Shawe-Taylor, 
Cristianini, & others, 2004) reformulates PCA by performing standard PCA on the kernel matrix, 
providing a nonlinear mapping of the original dataset. MVU (Weinberger, Sha, & Saul, 2004) is a 
variation of Kernel PCA that also learns the kernel matrix through the definition of a neighbourhood 
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graph on the data, similar to Isomap. Then, it maximizes the Euclidean distance as PCA under the 
constraint that the distances in the neighbourhood graph do not change, preserving the local 
geometry between samples. Also, Kernel Entropy Component Analysis (Jenssen, 2009) generalizes 
classical PCA. It is an information-theoretic extension of PCA that, rather than maximizing the 
variance explained by the reduced features, attempts to maximize their entropy, estimating the 
distribution probability of the original features with a kernel function. Finally, Diffusion Maps (Lafon 
& Lee, 2006) considers again graphs that have edges representing the distance between each pair 
of the samples, rather than only having edges with neighbour samples as done by Isomap. The 
objective here is to better preserve the distance between the data after the projection. 
Other approaches optimize a convex objective function focusing on local similarity of data. LLE 
(Roweis & Saul, 2000), similarly to Isomap, constructs a graph representation of the samples. 
However, it only tries to preserve local properties by writing each sample as a combination of its 
nearest neighbours, assuming locally linear manifolds. Also, Laplacian Eigenmaps (LE) (Belkin & 
Niyogi, 2001) try to preserve local properties among data minimizing the weighted distance 
between each sample and its k nearest neighbours by exploiting the Laplacian of the graph. Finally, 
LTSA (Zhang & Zha, 2004) considers the local tangent space similarly to LLE, but it looks for the 
projection that allows to reconstruct the same local tangent space to a sample that can be found in 
the original huge dimensional feature space. 
Finally, other non-linear methods optimize a non-convex objective function with different purposes. 
Sammon Mapping (Sammon, 1969) focuses on rescaling the Euclidean distance-based cost function 
of PCA by assigning weights inversely proportional to the distance, with the purpose of giving equal 
importance to the preservation of distance between samples that are close or not. Also, more 
complex structures like neural networks can be adopted for projecting the features: Multilayer 
Autoencoders (Hinton & Salakhutdinov, 2006), at the end of the encoder phase, provide a lower 
dimensional feature vector. 
Finally, non-convex approaches can be adopted to align mixtures of models, as done in LLC (Teh & 
Roweis, 2002). This method consists in computing a mixture of linear models on the data and then 
aggregating them to obtain the final lower dimensional projection. 
 

2.2.2 Supervised Dimensionality Reduction 

Supervised dimensionality reduction is a less-known but powerful approach. It is a less general 
approach, since it directly encodes the optimization of the learning of a target variable. This makes 
it suitable when the main goal is to perform classification or regression rather than learning an 
unsupervised data projection into a lower dimensional space. The methods of this subfield are 
usually based on classical unsupervised dimensionality reduction, adding the regression or 
classification loss in the optimization phase. In this way, the reduced dataset is the specific 
projection that balances the maximization of the performance of the considered supervised 
problem and the preservation of the structure among data. This is usually done in classification 
settings, minimizing the distance within the same class and maximizing the distance between 
different classes in the same fashion as Linear Discriminant Analysis (Fisher, 1936). The other 
possible approach is to directly integrate the loss function for classification or regression. Following 
the taxonomy presented in (Chao, Luo, & Ding, 2019), where it is possible to find a broader overview 
of supervised DR methods, these approaches can be divided into PCA-based, NMF-based (mostly 
linear), and manifold-based (mostly non-linear). 
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A well-known PCA-based algorithm is Supervised PCA. The most straightforward approach of this 
kind has been proposed by (Bair, Hastie, Paul, & Tibshirani, 2006). It is a heuristic approach that 
applies classical PCA only to the subset of features having large correlation with the target. A more 
advanced approach can be found in (Barshan, Ghodsi, Azimifar, & Jahromi, 2011), where the original 
dataset is orthogonally projected onto a space where the features are uncorrelated, simultaneously 
maximizing the dependency between the reduced dataset and the target by exploiting Hilbert–
Schmidt independence criterion. 
Many variants of Supervised PCA exist, e.g., to make it a non-linear projection or to make it able to 
handle missing values (Yu, Yu, Tresp, Kriegel, & Wu, 2006).  
 
NMF-based algorithms have better interpretability than PCA-based, but they focus on the non-
negativity property of features, which is not a general property of problems and restricts their 
applicability to a subset of settings. These methods factorize the dataset into two non-negative 
matrices, with the idea of approximating the data matrix with the product of two non-negative 
matrices through the maximization of the Frobenius loss function or the KL divergence. Two groups 
of NMF-based methods exist: Supervised NMF and discriminative NMF. Supervised NMF consists in 
directly including the loss function in the learning of the two matrices, as in (Jing, Zhang, & Ng, 2012) 
through the optimization of three terms: the first is related to the best approximation of the original 
matrix through the Frobenius norm, the second one focuses on minimizing the prediction loss and 
the third one maximizes the difference of the projected data belonging to different classes. 
Discriminative NMF, on the other hand, is applied by (Lu, et al., 2016). The main idea is, similarly to 
LDA, to improve the predictability maximizing the distance between classes while minimizing the 
distance within the same class, together with minimizing the KL divergence between the original 
matrix and its approximated decomposition. 
Finally, manifold-based methods perform non-linear projections, usually applying a supervised 
variation of an unsupervised non-linear approach, with higher accuracy on the final supervised 
predictions with higher computational costs. Starting from unsupervised Isomap, (Ribeiro, Vieira, & 
Carvalho das Neves, 2008) include the maximization of the dissimilarity between samples of 
different classes and the minimization of dissimilarity within the same class. Also (Zhang, et al., 
2018) propose a supervised version of Isomap, by projecting the data of the same class on the same 
manifold and trying to maximize the distance between manifolds. In (Zhang S.-q. , 2009) a 
supervised variation of LLE is considered, focusing on preserving local structures, rather than global 
ones as Isomap. It is based again on the LDA idea of encoding the maximization of dissimilarity 
between classes together with the preservation of the capability of LLE to express a sample as a 
linear combination of its neighbours. Finally, (Raducanu & Dornaika, 2012) proposes a supervised 
version of LE where again the LDA idea of minimizing the margin between data of different classes 
and maximizing it for samples of the same class. 
 

2.3 Feature Selection 

Feature Selection (FS) is a subfield of ML usually considered a preprocessing technique, that can be 
applied after or in place of DR, before performing a supervised learning task. FS is complementary 
to DR, and it is fundamental in the presence of high-dimensional data that should be reduced to 
prevent overfitting and curse of dimensionality. Exactly as DR, FS consists in reducing the dimension 
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of the data from a high dimension D to a lower dimension d<<D, which is done with FS by discarding 
a set of variables and retaining without transforming a limited number of d features, choosing the 
most relevant and non-redundant ones. In this way, the advantage of FS is that the interpretability 
of the reduced features is preserved, since they are a subset of the original ones, while the main 
disadvantage is that a set of features is completely discarded, which can be a loss of information.  
More specifically, the first objective of FS is to identify the relevant features, which are the ones 
that determine the conditional distribution of the target, given the others. Moreover, FS aims to 
select only the set of non-redundant features. This means that this set is minimal, as no subset 
would contain the same information on the target. An extensive introduction of the concept of FS 
and an overview of classical FS approaches can be found in (Guyon & Elisseeff, 2003). 
 
As already discussed for DR, FS is particularly important for applying ML on Earth sciences, which 
usually deal with spatio-temporal datasets with thousands of features representing values of a 
variable at different locations on the Earth. Moreover, with many FS approaches it is possible to 
estimate the amount of information that a certain meteorological variable measured at a certain 
location has about a target EE. This property can be particularly useful if the final task is the 
detection of the main drivers, or the attribution of observed pattern to human influence.  
 
FS approaches can be divided into three categories - wrapper, embedded, and filter - depending on 
the procedure they follow to select features (Chandrashekar2014). In particular, wrapper FS 
techniques are focused on the prediction performance of a learning model, and they aim to select 
the subset of features that has the best validation performance. For this reason, these approaches 
lead to a good performance of the subsequent supervised approach if it is performed with the same 
learning algorithm, but they have poor generalization capability and they should be run again at 
each change supervised technique. Moreover, it is impossible to perform an evaluation of each 
subset in practice since it would require evaluating a combinatorial number of subsets. For this 
reason, a greedy search is usually applied forward or backwards. This search sequentially adds or 
removes features, eventually improved by considering more advanced heuristic criteria. Wrapper 
methods will not be discussed in more detail due to their computational complexity and lack of 
generalizability, which make them impractical for Earth sciences applications. The interested reader 
can find a more detailed description of wrapper methods in (Kohavi & John, 1997).  
 
Filter methods, on the other hand, usually select features in a model-free fashion, i.e., without 
considering a specific supervised learning approach but ranking the features depending on some 
criterion of relevance and non-redundancy. Therefore, these methods are applied before the 
learning phase, so, compared to wrapper methods, they are more general approaches that must 
only be run once. However, they are less optimized for the specific application, which may lead to 
poorer performance when applied with a specific model. Due to the reduced computational 
complexity of their application and the clear importance score that they provide, filter methods are 
often considered the best choice with huge dimensional datasets, and they will be extensively 
described in the next section.  
 
Finally, embedded FS approaches directly embed the FS phase inside the supervised training phase 
of a learning algorithm, trying to combine the computational efficiency of filter methods with the 
specificity of wrappers. They can be performed by adding a regularization term to the training cost 



 

 

CLINT - CLIMATE INTELLIGENCE 
Extreme events detection, attribution and adaptation 

design using machine learning 
EU H2020 Project Grant #101003876 

 

REVIEW OF MACHINE LEARNING ALGORITHMS FOR CLIMATE SCIENCE 

 

function that forces the coefficients related to many features to be zero, so that the learning is only 
performed focusing on the most relevant features. However, these methods are very specific to 
some learning algorithms, and they do not clearly identify the general relevant drivers. For this 
reason, they will not be treated in this deliverable, where the main purpose is to identify techniques 
which are able to detect the candidate drivers of an EE, and this selection should not depend on the 
choice of the learning algorithm. 
 

 

Figure 2-2: filter, wrapper and embedded FS methods. The first ones are performed once before and independently from 
the learning algorithm, the second ones are performed together with the learning method, while the third ones are part 
of the learning algorithm itself. (Credits for image (Xie, Li, Zhou, He, & Zhu, 2020)) 

 

2.3.1 Filter Feature Selection 

In the following, some of the main state-of-the-art filter FS methods will be presented, following the 
taxonomy by (Li, et al., 2017) and assuming the samples to be independent and identically 
distributed. In this setting, it is possible to identify four main categories of filter methods: similarity-
based, information theoretical based, sparse learning based and statistical based.  
 
Similarity based methods. These methods assess the importance of a feature based on its ability to 
preserve the overall data similarity. In general, this can be done in an unsupervised fashion, 
considering a similarity between each pair of samples, or in a supervised way, deriving the similarity 
from the labels.  
Laplacian score (He, Cai, & Niyogi, 2005) is a traditional unsupervised approach that focuses on local 

neighbours, considering the following similarity function 𝑆(𝑖, 𝑗) = 𝑒−
‖𝑥𝑖−𝑥𝑗‖

2

2

𝑡  if 𝑥𝑖 is one of the 
nearest neighbours of 𝑥𝑗, 0 otherwise. Then, the Laplacian score is defined for each feature as a 

measure of the feature's locality-preserving power, which consists of maximizing the sum of 
differences between each pair of features multiplied by their similarity score. In this algorithm, the 
d best features are selected by evaluating all the scores individually, without considering the 
minimization of the relevance, which may lead to a selection of variables that share a lot of 
information. SPEC algorithm (Zhao & Liu, 2007) can be considered a variant of the Laplacian score 
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method. It is still based on the idea of giving importance to a feature depending on its ability to 
preserve local data similarity, but this is done both for supervised and unsupervised settings. It 
associates a similarity measure between samples which is positive only if they belong to the same 
class and null otherwise. Also, the score proposed by SPEC is a generalization of the Laplacian score. 
It introduces hyperparameters in the computations to leverage the relative importance between 
features. 
On the other hand, the Fisher score (Duda, Hart, & others, 2006) is a supervised method that selects 
features that maximise the similarity among features within the same class and minimise the 
similarity between samples of different classes. Also, the Fisher score can be seen as a supervised 
variation of the Laplacian score, which considers all the samples of a class as neighbours. Another 
supervised approach, ReliefF (Robnik-Šikonja & Kononenko, 2003), focuses on the opposite task of 
Laplacian-type scores, since it aims to identify the features that can separate samples from different 
classes, rather than focusing on the ones that maximize the similarity within the same class.  
In general, for all the introduced approaches, it is possible to conclude that they are useful to identify 
the most promising features, they are fast to compute, and they do not rely on any specific learning 
algorithm. On the other hand, they do not focus on feature redundancy and on the interaction 
between features, therefore they should be considered together with one of the approaches 
discussed in the rest of the section.  
 
Information-theoretical based methods. This family of FS methods considers different measures 
from the field of information theory to evaluate the relevance and non-redundancy of the selected 
features. Since these algorithms are able to exploit the information of the target, quantify the 
shared amount of information and evaluate a subset of features altogether, they are among the 
most promising filter methods, although the estimators of information-theoretical measures are 
usually difficult to compute and need a large number of samples to be reliable.  
The classical idea behind these approaches is to maximize the amount of information shared 
between a feature and the target, or the amount of additional information on the knowledge of the 
target that one feature adds with respect to the already selected features, meanwhile minimizing 
the information shared between the feature under analysis and the already selected ones.  
One of the first methods of this category is Mutual Information Maximization (Lewis, 1992), which 
only focuses on selecting the features that share the maximum amount of information with the 
target, ignoring the minimization of redundancy. The redundancy is addressed by mutual 
information feature selection (Peng, Long, & Ding, 2005). It selects the features with large mutual 
information between feature and target and small mutual information between features.  More 
advanced techniques, such as conditional infomax feature extraction (Lin & Tang, 2006), joint 
mutual information (Brown, Pocock, Zhao, & Luján, 2012), and conditional mutual information 
maximization (Fleuret, 2004) introduce conditional mutual information to take into account, 
together with the maximization of information shared between feature and target, the minimization 
of the difference between the mutual information between the feature under analysis and the 
already selected ones and their conditional mutual information given the target. With this term, the 
information that two selected features share which is not relevant for the target is minimized, 
minimizing, therefore, the redundancy. A more recent approach (Beraha, Metelli, Papini, Tirinzoni, 
& Restelli, 2019) proposes forward and backward methods that maximize the conditional mutual 
information between the feature under analysis and the target, given the already selected ones. In 
this way, the paper produces theoretical guarantees of the amount of information that is lost in 
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performing the reduction, proving the intuition that there is a trade-off between the amount of 
information lost and the desired reduction of the number of features.  
In conclusion, there are a lot of different formulations of (conditional) mutual information FS 
approaches, which are theoretically able to balance high relevance and low redundancy, and whose 
main disadvantages are the difficulty of the estimation of the considered quantities and the 
necessity to include the target in the analysis, and therefore without the possibility to perform the 
methods in an unsupervised fashion. 
 
Sparse learning-based methods. This family of filter methods is similar to embedding FS. Indeed, 
these methods aim to regularize the learning of a supervised algorithm by imposing the coefficients 
associated with many variables to be null. In particular, they usually add a regularization term on 
the loss of a supervised learning technique, which is usually the 𝑙𝑝 norm or the 𝑙𝑝,𝑞 norm of the 

coefficients. The filter approach of these techniques is the addition of this term to any supervised 
or clustering algorithm, without the need that the method has been originally designed with an 
embedded feature selection. Different methods are available in the literature (Hara & Maehara, 
2017), (Peng & Fan, 2017), (Nie, Huang, Cai, & Ding, 2010) but they all suffer from a lack of 
generalization and computational costs, therefore they will not be discussed further in this review. 
 
Statistical based methods. This category of FS approaches can usually be seen as an initial filtering 
technique that is applied before other more advanced techniques among the ones discussed before. 
In particular, they compute some statistical quantities to identify the variables that should not be 
considered. For example, the most straightforward statistical approach is to compute the variance 
of each feature and remove the ones that have small variability, assuming that these would not be 
able to discriminate between samples of different classes. Also, independence tests (e.g., Chi-
Square score (Liu & Setiono, 1995)) can be exploited to evaluate if a feature is independent of the 
target and subsequently remove it from the candidate's relevant features.  
 

2.4 Supervised Learning 

Supervised learning is the final step to address the detection, attribution and forecast of an EE, 
where there is a set of variables, possibly aggregated through DR or filtered with FS, and an ML 
model is designed to produce an output which predicts one or more characteristics of the EE. 
The most straightforward supervised learning approach is linear regression (Montgomery, Peck, & 
Vining, 2021). It linearly combines the input variables and identifies the set of coefficients that 
minimize the mean squared error between the predicted values and the observed ones. Then, the 
performance of the model is evaluated through its ability to predict the target given new samples 
as input. The main limitation of this approach is the strong assumption of linearity, which can be 
relaxed considering the non-linear transformation of the input variables as features. This, however, 
should be done manually and is still limited. For this reason, many non-linear supervised learning 
approaches exist and they enlarge the hypothesis space by considering more complex possible 
models. Among these, Decision Trees (Quinlan, 1986) use a tree-like model to identify groups of 
samples with similar input features and similar output, Support Vector Machines (Cortes & Vapnik, 
1995) try to identify boundaries in the feature space that maximally separate different samples, K-
nearest Neighbors (Fix & Hodges, 1989) focus on the target value of the most similar samples to 
predict the value of the label of the sample under analysis. 
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More advanced techniques are based on an ensemble of models (Sagi & Rokach, 2018), which can 
be useful to reduce the bias (boosting) or the variance (bagging) that a single model may suffer from. 
To reduce the variance of a supervised learning method, bootstrap technique (Breiman, Bagging 
predictors, 1996) can be exploited to produce different datasets from a unique one through 
sampling with replacement. Then, a model is trained on each of them, and the final output is a 
balance of the outputs (e.g., the mean or the median of the predictions). Random Forest algorithm 
(Breiman, Random forests, 2001) is one of the most famous boosting methods. Random Forest 
considers an ensemble of decision trees, eventually training each with a different dataset obtained 
through bootstrap. To further reduce the correlation between different trees, which results in a 
reduction of variance, each decision node of the tree is based only on a subset of features, and this 
subset randomly varies across different trees. Extremely Randomized Trees (Geurts, Ernst, & 
Wehenkel, 2006) is a variation of Random Forests that additionally can perform the split on a node 
randomly, further reducing the variance. Boosting techniques, on the other hand, are focused on 
reducing the possible bias of a single model. The most famous approach of this kind is AdaBoost 
(Freund & Schapire, 1997), which aims to reduce the bias through the assignment of different 
weights to the samples, giving more importance to the samples that have been misclassified 
previously. Gradient Boosting (Breiman, Arcing the edge, 1997), (Friedman, 2002), on the other 
hand, is based on the idea of learning a cascade of predictors, where each of them is learning the 
residual of the previous one. An improvement of Gradient Boosting is eXtreme Gradient Boosting 
(XGBoost) (Chen & Guestrin, 2016), a software library that encodes a version of Gradient Boosting 
with many technical modifications that help to regularize its behaviour and improve the predictive 
performances. 
For a broader overview of classical supervised learning techniques see (Bishop & Nasrabadi, 2006). 
 

 

Figure 2-3: supervised learning with model ensembles. Bagging considers different weak learners focusing on the 
reduction of variance, boosting sequentially focuses on misclassified samples to reduce bias. (Credits for image (Seccia, 
et al., 2021)) 

 

2.4.1 Deep Learning 

Meteorological quantities that are usually considered candidate drivers for the occurrence of an EE 
are spatially and temporally distributed. For this reason, the need for more complex models able to 
take into account the sequential nature of data and their proximity arises.  
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Artificial Neural Networks (ANN) (Pouyanfar, et al., 2018) are state-of-the-art techniques applied in 
many fields to address structured problems, such as text mining or image classification, and they 
are able to extract features in a fully data-driven way at the cost of performing complex 
combinations of features that make it difficult to understand the importance of the input features 
on the prediction and therefore to interpret the results and the extracted features. The main idea 
of ANNs is to sequentially apply basic non-linear transformations that altogether form a complex 
network able to represent complex non-linear functions from the input features to the target 
prediction.  
Feedforward Neural Networks (FFNN) (see (Schmidhuber, 2015) for a detailed overview) are the 
simplest form of ANNs, which are designed for unstructured data. The input data are fed to the first 
layer nodes and the information is propagated forwardly until the nodes of the output layer are 
reached. Then, the difference in the prediction with respect to the observed value of the target is 
computed, and the weights of each node are updated following the classical backpropagation phase. 
One of the most important parameters to tune, together with the number of nodes and layers, is 
the activation function, which is the one that makes non-linear the transformations at each node of 
each layer.  
Another category of ANNs is Recurrent Neural Networks (Rumelhart, Hinton, & Williams, 1986), 
which are specifically designed for sequential data and time series. The main idea behind RNNs is 
that the information associated with some nodes is propagated to the next iteration of the network, 
enhancing the network with a memory signal from past samples to predict the present value of the 
target. A more advanced RNN-based technique is Long short-term memory (LSTM) (Hochreiter & 
Schmidhuber, 1997), which is particularly focused on propagating the memory signal in order to 
keep important information from the past for many subsequent iterations. Another advanced 
approach is gated recurrent units (GRU) (Cho, Van Merriënboer, Bahdanau, & Bengio, 2014). It is a 
variation of LSTM with fewer hyperparameters and some changes in the structure of the network, 
that make it faster and reduce the memory cost.  
Convolutional Neural Networks (CNN) (LeCun, Bottou, Bengio, & Haffner, 1998), on the other hand, 
are ANNs specifically designed to take into account the spatial dependencies of data. In particular, 
they are usually applied to images and have also been extensively applied to spatially distributed 
climate data, as will be discussed in the next chapters. The main idea of CNNs is to perform local 
aggregations of variables that are closed in space and to propagate this information through many 
layers, in order to finally extract a set of relevant features that can be exploited to perform the final 
prediction.  
More recently, generative deep learning approaches have also been explored. One of the most 
applied categories of these methods are generative adversarial networks (GANs) (Goodfellow, et 
al., 2020). The basic concept of GANs is that, given a training set, the model is able to generate new 
data with the same distribution as the original set. The model obtains good performance when 
another model, called discriminator, is not able to distinguish between a real sample and a sample 
generated by the model.  
 
In a standard application of ANNs, the output layer consists of a single output node that encodes 
the prediction of a single scalar target. More advanced techniques allow for multiple outputs, and 
they will be discussed in the next subsection. 
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Figure 2-4: four common neural network structures. Feedforward deep NN connect layers and nodes in a forward way, 
convolutional NN extract features considering spatial adjacencies, autoencoders reconstruct the input after encoding it 
into a lower dimensional space and can be used for dimensionality reduction, recurrent NN take into account the 
sequential nature of data with the propagation of a hidden state. (Credits for image (Lo, Gui, Honda, & Davis, 2019)) 

 

2.4.2 Multi-Task Learning 

Traditional ML methods are composed of a model which is optimized through a training dataset to 
predict a single scalar value. In some situations, it would be advantageous to consider multiple 
prediction tasks within the same model, so that the learning algorithm does not specialize on a single 
task. This reduces the risk of overfitting and makes the model more robust when new unseen data 
are considered. This intuition is reminiscent of the idea that a human's knowledge of different 
related tasks is simultaneously exploited to take decisions and predict future values for each of 
them. This ML approach is called Multi-Task Learning (MTL) (Caruana, 1997). The main concept of 
MTL is the sharing of information between tasks that can usually be achieved in two ways. One is 
feature sharing, which consists in identifying the set of features simultaneously relevant to each of 
the considered tasks. The second is parameter sharing, that is the sharing of (some) model 
parameters between different tasks. In the following, the main concepts related to these two 
approaches are discussed, the interested reader may refer to (Zhang & Yang, 2021) for an extensive 
review of MTL with more technical details. 
 
In feature-based MTL, the main objective is to identify a powerful feature representation that can 
boost the overall performance of each individual task. The simplest method of this kind is to identify 
a subset of relevant shared features in a pre-processing step, through feature selection approaches 
that consider as target the vector of all the considered tasks.  
Another way of performing feature based MTL can be through feature extraction. An intuitive 
approach of this kind is an ANN that takes as input a set of shared selected features and performs 
some transformations in the first layers, for example convolutional transformations to images, 
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obtaining a set of extracted features. Then, some task-specific layers produce the output of each 
task, which may be boosted by the shared extracted features.  
 
On the other hand, parameter-based MTL is based on the idea of sharing model parameters during 
the training phase to tune parameters capable of generalizing among different tasks, reducing 
overfitting. Task clustering approach (Thrun & O'Sullivan, 1996) is one of the most common 
parameter-based MTL approaches. It relies on the idea of identifying clusters of very similar tasks 
and then tuning a model, for example, an FFNN, with common nodes in the first layers and nodes 
in the final layers specific to each cluster.  
 
In conclusion, MTL can be seen as a generalization of classical single task supervised learning, which 
is particularly useful for applications that share a lot of information, such as the evaluation of an EE 
for adjacent regions, or when the target are different EEs in the same region. Therefore, it is a 
particularly relevant option for applying supervised learning methods in this project. 
 

 

Figure 2-5: difference between single task and multi-task supervised learning. The first independently considers data to 
learn specific models, the latter shares features and models to leverage the information sharing. (Credits for image (Shao, 
Ren, Wang, Jin, & Hu, 2016)) 

 

2.5 Causality 

Classical ML methods focus on the amount of information shared between the input features and 
the target, minimizing a certain expected prediction loss. This setting is designed to identify the 
function of the features, among the ones in the hypothesis space of the model, which leads to the 
most accurate prediction on new unseen data. In general, these methods do not inspect the causal 
relationship between the feature and the target, with the risk of considering some features that 
simply have spurious correlations with the target as relevant. Inspecting the cause-effect 
relationship between variables is particularly important for Earth applications, since there are 
complex interconnected physical processes that lead to the occurrence of an Extreme Event. The 
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identification of some driver as the real cause of an event would be an important added value to 
the simple correlation. Moreover, the prediction of an ML model based only on features that are 
indeed the physical cause of the event may lead to a more robust prediction. For these reasons, 
causal inference is an important tool to inspect the relationship between features and target and it 
will be introduced in the next subsection. Moreover, since the data usually considered for Earth 
science applications are observations and it is not possible to perform controlled experiments, an 
entire subsection will be devoted to causal discovery for observational data, which is the subfield of 
causal inference that tries to discover, with just the data analysis, the causal relationship between 
variables. 
 

2.5.1 Causal Inference 

Causal Inference is based on the idea that correlation does not imply causation. The observed 
association between two variables (e.g., correlation) usually results from the combination of two 
components: a causal association and a confounding association (due, for example, to a common 
causal variable, which has not been observed, called latent confounder).  
 

 

Figure 2-6: total association can be both due to a causal association, to a confounding association or to a mixture 
between causal and confounding relationships. 

 
In causal studies, the most common causal quantity is the individual treatment effect (ITE), defined 
as 𝑌𝑖|𝑑𝑜(𝑇 = 1) − 𝑌𝑖|𝑑𝑜(𝑇 = 0) = 𝑌𝑖(1) − 𝑌𝑖(0). The ITE represents the difference between the 
values that a variable of interest 𝑌𝑖, associated with the individual i, assumes whether a binary 
treatment T is performed on the specific individual (𝑑𝑜(𝑇 = 1)) or not (𝑑𝑜(𝑇 = 0)). As an example, 
T may represent the occurrence of a Tropical Cyclone and Y the amount of precipitation in a region. 
In this case it may be interesting to detect if, under the same conditions and on the same region i, 
having a TC or not changes the value 𝑌𝑖 of the amount of precipitation.  
 
More in general, given a population of individuals, the quantity of interest becomes the average 
treatment effect (ATE), defined as 𝐸[𝑌(1)] − 𝐸[𝑌(0)]. The ATE represents the expected value of 
the effect of T over the entire population under analysis. Recalling the example above, this may 
represent the expected value of the effect over different regions on precipitations due to the 
presence of a TC. This quantity is, however, different from the difference of the expected value of 
the variable Y given the observation of T, 𝐸[𝑌|𝑇 = 1] − 𝐸[𝑌|𝑇 = 0], since the two observed 
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populations may not be equally distributed. Indeed, in the example introduced above, the 
subpopulation with T=0 may contain different heterogeneous regions than the one with T=1. 
Moreover, the correct causal quantity of the ATE can not be directly computed from samples, since 
for each individual i, only T=0 or T=1 can be observed. This is the fundamental problem of causal 
inference.  
 
In controlled experiments interventions are possible and the value of T can be prescribed. Therefore, 
the ATE can be estimated with Randomized Control Trial (RCT) technique. It consists in randomly 
splitting a population into two groups: in the first one it is prescribed T=1 and in the second one T=0. 
In this way, if the population is sufficiently large, the distribution of the two groups is the same with 
high probability. On the other hand, when no experiments are possible and only observational data 
are available, confounders should be controlled to infer the causal relationships. This is usually the 
case with Earth science applications, since it is not possible to intervene to make a climatic event 
happen. In this setting, the classical workflow consists in identifying the causal quantity of interest 
(e.g., the ATE), then identifying a statistical quantity that is equal to the causal quantity of interest, 
and finally estimating this statistical quantity from data. The easiest way to identify the ATE with a 
statistical quantity is to evaluate the conditional expected value with respect to all the possible 
values of the remaining features W and assuming that there are no latent confounders. In this way 

it holds that: 𝐸[𝑌(1) − 𝑌(0)] = 𝐸𝑤[𝐸[𝑌|𝑇 = 1, 𝑤] − 𝐸[𝑌|𝑇 = 0, 𝑤]] and it is finally possible to 

estimate the right-hand side of the equivalence with data.  
 
Many subfields of causal inference exist that explore different facets of the identification and 
identification steps, such as potential outcomes, causal models, unobserved confounders, 
instrumental variables, causal discovery from observations or interventions, transfer learning and 
counterfactuals. In (Pearl & others, 2000), (Peters, Janzing, & Schölkopf, 2017) it is possible to find 
an extensive overview of causal inference. An important aspect of these approaches is that the 
causal unidirectional link between feature and target is assumed to exist, and the problem is only 
to quantify the strength of this link. This assumption is not realistic in EE applications, where the 
knowledge of the causal relationship and its direction is usually the objective of the causal analysis. 
For this reason, in the following subsection the focus will be redirected to causal discovery for 
observational data, which aims to identify the causal structure between observational variables. 
 

2.5.2 Causal Discovery 

Classical causal discovery (Eberhardt, 2017), (Glymour, Zhang, & Spirtes, 2019) aims to identify a 
causal graph among a set of variables, considering four main assumptions: Markov assumption, 
faithfulness, causal sufficiency and acyclicity. According to the first two assumptions, two variables 
are independent on a causal graph, conditioned on a set of other variables, if and only if their 
distributions are conditional independent. Causal sufficiency assumes that there are no unobserved 
confounders and acyclicity does not allow the presence of cycles in the graph.  
 
The PC (Peter and Clark) algorithm (Spirtes P. , et al., 2000) is the first and most famous algorithm 
designed to identify the causal graph from observations with the four mentioned assumptions. 
Starting from a complete undirected graph, it exploits (conditional) independence tests to remove 
connections (edges) between variables that are not causally related, and it considers some 
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orientation rules to identify as much causal directions as possible. In particular, the outcome of the 
algorithm is a partially directed graph (PDG), where only some edges are oriented. The set of all the 
directed acyclic graph that are in accordance with the identified PDG form the Markov equivalence 
class. This equivalence class is the outcome of the PC algorithm, i.e., the output is a set of possible 
causal graphs that contains the correct causal graph with high probability. 
 
Many variations of the PC algorithm exist. These non-parametric algorithms aim to add more 
orientation rules to reduce the number of undirected edges or speed up the computations. Other 
non-parametric techniques consider the relaxation of the four assumptions of PC algorithm, such as 
FCI algorithm (Spirtes P. , Glymour, Scheines, & Heckerman, 2000), which allows the presence of 
unobserved latent confounders, or the CCD (Richardson, 2013) algorithm, that removes the 
acyclicity assumption. Moreover, some model-based techniques exist that improve the algorithms' 
orientation rules by assuming structural causal models (SCM). In particular, a well-known result 
states that if each variable can be expressed as a linear combination of its causes with an additive 
Gaussian noise, then the PC algorithm is complete, and it is not possible to identify the direction of 
the undirected edges. On the contrary, if the SCM is linear with additive non-Gaussian noise or it is 
non-linear, then the acyclic directed causal graph can be identified under some technical 
assumptions.  
 
In order to apply causal discovery to Earth Sciences, a lot of challenges arise with respect to classical 
approaches. The most important differences are related to the spatio-temporal nature of data, 
which involves autocorrelation, time lags, and spatial scales. Moreover, in a complex physical 
system, the assumption of causal sufficiency is a rather strict requirement and approaches that 
allow the presence of latent confounders are more realistic. A complete overview of the challenges 
of causality for Earth science applications can be found in (Runge, et al., 2019). Most of the 
approaches adopted in this setting are causal discovery methods for time series after the extraction 
and aggregation of the variables of interest so that the spatial structure is no longer considered 
during the causal discovery phase.  
 
The classical causal discovery approach for time series is Granger Causality, which defines causality 
as the impact that the historical series of a variable has on the prediction of another one. Although 
this approach is intuitive and can be easily applied in different contexts, it may suffer from the curse 
of dimensionality, and it may not correctly evaluate the impact of a variable when many variables 
that may also be autocorrelated, are considered. For this reason, the PCMCI algorithm (Runge, 
Nowack, Kretschmer, Flaxman, & Sejdinovic, 2019) evaluates the impact of a variable on another 
considering only a subset of candidate causes. This leads to a better control of effects due to the 
high dimensionality and autocorrelation. An improved version to identify causal effects for time 
series with Granger causality is given by the GRresPC algorithm (Moneta, Chlaß, Entner, & Hoyer, 
2011). This algorithm also considers contemporary causal effects between variables that may arise 
when the time lag of the effect is smaller than the considered time steps. This approach applies 
classical Granger causality to past data to identify their Granger-causal impact on the future and 
then it applies the PC algorithm to the prediction residuals of the present, to identify contemporary 
causal relationships. As already discussed for classical Granger causality and PCMCI, the PCMCI+ 
algorithm (Gerhardus & Runge, 2020) is an extension of PCMCI algorithm that allows for 
contemporary causal relations that is more able than GRresPC algorithm to handle high dimensional 
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data and autocorrelations. Finally, the SVAR-FCI algorithm is a time-series variation of the FCI 
algorithm that allows both for contemporaneous causal relations and unobserved latent 
confounders, which further extends the GRresPC algorithm to latent confounders. Similarly, the 
LPCMCI algorithm (Runge, 2020) performs the same extension to the PCMCI+ algorithm. 
 
Other definitions of causality, or measures to define the causal relationships between variables, 
have been introduced in the literature. From information theory, transfer entropy (Schreiber, 2000) 
and directed information (Massey & others, 1990) are two asymmetric quantities designed to 
quantify the amount of causal information from one series to another. In particular, transfer entropy 
quantifies the amount of information that the last l value of a candidate causal variable shares with 
a target variable, conditioning on the last l values of the target itself. Similarly, the directed 
information quantifies the amount of information shared between all the historical values of a 
candidate causal variable and the actual value of the target, conditioning on all the historical values 
of the target itself. Moreover, the final directed information at time N is the sum of the amount of 
this conditional mutual information at each timestep. These two quantities are clearly related, as 
shown in (Liu & Aviyente, 2012) and they can be considered as causal counterparts of the classical 
quantities of conditional entropy and conditional mutual information.  
 
Another way to address causality is through invariance. Indeed, considering, for example, a law from 
physics, invariance should hold in different heterogeneous environments, while spurious 
correlations vary with context. Therefore, the causal idea behind invariance is that if a variable 
causes the target, it is invariant when the distribution changes. In (Arjovsky, Bottou, Gulrajani, & 
Lopez-Paz, 2019) this idea is exploited by performing supervised learning over different training 
heterogeneous environments, guaranteeing optimality also for unseen environments, if the SCM 
between the invariant features and the target does not change. The proposed algorithm consists of 
a projection onto an invariant space and, subsequently, a unique supervised learning optimization 
that is valid in each environment. Another way to address causality as invariance is proposed by 
(Bühlmann, 2020). Here, all the invariant subsets of features are first considered. Their intersection 
is then a conservative set of invariant causal features, since it is proved that the set of causal 
variables must be invariant, while the opposite case may not hold. 
 
Finally, recent approaches exist to better characterize problems with latent confounders (e.g., 
(Chen, Cai, Zhang, & Hao, 2021)) or to integrate causality in advanced machine learning techniques 
(e.g., (Varando, Fernández-Torres, & Camps-Valls, 2021)). 
 

3 MACHINE LEARNING FOR DROUGHTS 

3.1 Overview 

Droughts are extreme events consisting of prolonged periods of water supply deficit (Pedro-
Monzonıś, Solera, Ferrer, Estrela, & Paredes-Arquiola, 2015). The identification of the main drivers 
of these extreme events may be particularly difficult in highly regulated water systems where 
natural and anthropogenic dynamics and interventions coexist (Zaniolo, Giuliani, & Castelletti, 
2019).  
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Droughts are usually identified through traditional meteorological, agricultural and hydrological 
indices (Spinoni, et al., 2019) (e.g., SPI, Standardized Precipitation Index (McKee, Doesken, Kleist, & 
others, 1993); SPEI, Standardized Precipitation and Evapotranspiration Index (Vicente-Serrano, 
Beguerıá, & López-Moreno, 2010)). However, they may fail in the detection of the impact of a 
drought event, especially with highly regulated water systems, where the effects of meteorological 
droughts may be mitigated for months by efficient management of water systems without incurring 
in water shortage (Zaniolo M. , Giuliani, Castelletti, & Pulido-Velazquez, 2018). For this reason, in 
recent years, several studies have suggested that satellite data can be a valid alternative to classical 
indices identifying droughts (e.g., NDVI index (Tucker, 1979)).  
 
Machine Learning approaches are a valid alternative to traditional drought indices for the design of 
data-driven drought indices. Indeed, feature selection and supervised learning approaches may lead 
to the identification of the main meteorological drivers (e.g., temperature, precipitation, lake water 
levels) and they may provide a model that, combining their values, is able to detect the presence 
and/or the intensity of a drought event. Moreover, causal inference methods can provide a causal 
interpretation of the identified drivers and attribution approaches can give information about the 
anthropological influence. 
 

3.2 Detection and Forecast 

Several approaches based on Random Forests (RF) have been performed in the literature for 
drought detection and forecast. The main advantages of these model ensemble techniques are the 
reduction of variance and the embedded feature importance that they perform during the training 
phase.  
In particular, in (Rhee & Im, 2017) RF and Extremely Randomized Trees (ERT), a variation of RF with 
more randomness aimed to further reduce variance, are applied using SPI and SPEI indices of Korean 
regions as target and using precipitation, land surface temperature, NDVI and air temperature at 
different temporal aggregation and scale as input variables.  
In (Park, Im, Jang, & Rhee, 2016), sixteen variables from MODIS and TRMM satellite sensors are used 
to detect drought conditions in different regions of the USA, considering SPI index and crop yields 
data as targets for meteorological and agricultural droughts, respectively. In this study, RF and two 
variants (boosted regression trees and Cubist tool) are applied, and RF obtains the best validation 
performance. The focus of this work is also on the detection of the main predictors identified by the 
RF approach, which can be the main drivers of the drought event. In particular, land surface-related 
variables (e.g., Land Surface Temperature and Evapotranspiration) are identified as the main drivers 
for short-term meteorological drought, while vegetation-related variables (e.g., Normalized 
Difference Vegetation Index (NDVI)) are the most important variables identified by RF for long-term 
meteorological droughts. 
A study on agricultural droughts hazard in the south-east region of Queensland, Australia, can be 
found in (Rahmati, et al., 2020). In this work, RF are applied together with other tree-based 
supervised learning approaches: classification and regression trees and boosted regression trees. 
Moreover, the results are shown in comparison with other supervised learning methods: 
multivariate adaptive regression splines and support vector machines (SVM). The RF model yields 
the best performance. Specifically, the relative departure of soil moisture (RDSM) is considered as 
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target and eight environmental factors are considered as independent variables: elevation, slope, 
topographic wetness index (TWI), soil depth, clay content, sand content, plant available water 
holding capacity (PAWC), and mean annual precipitation. Considering the feature importance 
provided by the RF model, PAWC, mean annual precipitation, and clay fraction are the three main 
drivers of droughts identified by this approach.  
Another application of RF in South-Eastern Australia is (Feng, Wang, Li Liu, & Yu, 2019), which tries 
to determine if satellite data related to drought factors can be applied to detect agricultural 
droughts. In this application, the SPEI index is again considered as a target, while thirty remotely 
sensed drought factors are considered as features (e.g., precipitation and the already mentioned 
NDVI index). They are obtained from satellite data from MODIS and TRMM. RF, SVM and Artificial 
Neural Networks (ANN) are considered as regression models, but RF again achieves the best test 
performance. Moreover, the VSURF method has been applied as a feature selection approach to 
identify the candidate drivers before the application of the supervised models. From the feature 
importance calculated by the RF method, the three-month average precipitation is detected as the 
most important feature. 
In (Hobeichi, Abramowitz, Evans, & Ukkola, 2022), RF are used to construct a new drought indicator 
connecting historical droughts’ impacts with a number of drought-related climate features. The new 
index is shown to have better detection capabilities than commonly used drought indicators. 
Besides, the RF-based index is fully automated, provides information at the grid scale, and can be 
used for forecasting droughts with up to 3-month lead time. 
In close connection with droughts, (Sutanto, van der Weert, Wanders, Blauhut, & Van Lanen, 2019) 
applies RF to predict not only the meteorological and agricultural drought condition, but the impact 
of droughts, exploiting SPI and SPEI indices as features and some specific impact indices as a target.  
 
Another category of model ensemble techniques applied in the literature are boosting methods 
(e.g., XGBoost), which focus on the reduction of bias, iteratively learning models by giving different 
weights to each sample, inversely proportional to the prediction error that they produce.  
In (Zhang R. , Chen, Xu, & Ou, 2019), a classification task is performed in Shaanxi province, China. 
Three levels of drought conditions (moderate, severe, and extreme) are classified depending on the 
SPEI index. ANN and XGBoost are considered as learning methods. Meteorological data (pressure, 
temperature, humidity, wind speed, precipitation, sunshine duration) and climate indices related to 
ocean oscillations are considered as features. A feature selection based on the VIF score is first 
applied, and then XGBoost is shown to achieve the best performance for this task. 
In (Mokhtar, et al., 2021) the estimation of the SPEI index for the Tibetan Plateau (China) is 
addressed. Climate variables are used for the prediction: precipitation amount, temperature, solar 
radiation, sunshine hours, wind speed and relative humidity. Two model ensembles (RF, XGBoost) 
and two methods based on ANN (Convolutional Neural Networks and Long-term short memory) 
have been applied and XGBoost is shown to obtain the best performance for the prediction 
considering all input variables, although all four models show interesting results depending on the 
choice of subsets of input variables. 
In (Zhang, Abu Salem, Hayes, & Tadesse, 2020), XGBoost is used to predict multi-category drought 
impacts based on Standardized Precipitation Indexes with different time aggregations. The analysis 
includes the application of the Synthetic Minority Oversampling Technique (SMOTE) and Random 
Undersampling on the training datasets in order to balance the class distribution.   
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Approaches based on Support Vector Machines (SVM) are also often adopted in the literature, 
especially in classification settings. These methods are particularly effective in high-dimensional 
spaces, since they can also be trained when the number of features is smaller than the number of 
samples.  
SVM, Artificial Neural Networks and K-Nearest Neighbors classification methods are used by (Khan, 
et al., 2020) to detect three drought conditions in different cropping seasons for Pakistan: moderate, 
severe, and extreme. These classes have been identified from SPEI index and the candidate features 
used are reanalysis data. Specifically, after the application of Recursive Feature Elimination Feature 
Selection, three drivers have been detected: relative humidity, temperature and wind speed. 
Validation results identify SVM as the best-performing method in this application. 
In (Roodposhti, Safarrad, & Shahabi, 2017), data from both synoptic stations and satellite data 
(MODIS) are combined to derive a drought sensitivity map (DSM) for vegetation of the Iranian 
province of Kermanshah. In particular, monthly precipitations from 13 different Iranian 
Meteorological Organization stations are considered to extract the SPEI index, together with the EVI 
index, which is used as a satellite-derived drought index. These two indicators of the soil conditions 
are considered as the input variables of two One-Class SVM, which produce a drought sensitivity 
map based on the classification of pixels into 5 categories. 
 
In recent years, Artificial Neural Networks (ANN) and Deep Learning in general have also been 
successfully applied for the detection and forecasting of droughts. These methods, with respect to 
classical approaches, have the advantage of having a larger hypothesis space, therefore they can 
learn more complex patterns between data, and they usually do not require preprocessing steps 
like feature extraction. 
In (Belayneh & Adamowski, 2013) the average SPI index evaluated over one and three months is 
used to predict its next values through ANN and SVM for regression (SVR). The region considered 
for this study is the Awash River Basin, Ethiopia, and the ANN obtains the best regression 
performance both in terms of MSE and R-squared. An extension of these results can be found in 
(Belayneh, Adamowski, & Khalil, 2016), where ANN and SVR approaches are combined with a 
preprocessing approach based on wavelet analysis. The test results indicate that the coupled model 
with wavelet analysis and neural network model is the best performing. Furthermore, (Belayneh A. 
, Adamowski, Khalil, & Ozga-Zielinski, 2014) address the same autoregression problem in the long-
term (six and twelve months) and again the ANN approach enhanced by the preprocessing approach 
based on wavelet analysis is the best performing method, outperforming also classical ARIMA 
models for time-series prediction. Finally, (Belayneh A. , Adamowski, Khalil, & Quilty, 2016) consider 
both short- and long-term predictions of the SPI index with ANN and SVR, enhanced by wavelet 
analysis-based preprocessing as before. Moreover, Bootstrap and Boosting are applied both on ANN 
and on SVR in order to reduce the variance or the bias of the models, respectively. The best-
performing method for this problem is the wavelet boosting ANN. 
In (Felsche & Ludwig, 2021), different ANN models are applied to predict drought occurrence in 
Lisbon and Munich with a one-month lead-time based on SPI. The most influential predictors are 
extracted among a set of several local atmospheric and land-related variables, together with large-
scale climate indices, by using linear correlation analysis. The results showed that the most effective 
model is an ANN with many hidden layers, with the addition of dropout layers to avoid overfitting. 
The SHapley Additive ExPlanations (SHAP) algorithm has been used to investigate the contribution 
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of each input variable to the overall predictive power of the ANN, revealing the influence of large-
scale climate variables in predicting droughts.   
A different method based on neural networks has been applied by (Deo & Şahin, 2015). Specifically, 
in this work, Extreme Learning Machines (ELM) are applied for the prediction of the Effective 
Drought Index (EDI) in eastern Australia. ELMs are ANN with randomly chosen weights. They are 
extremely fast since they do not perform backpropagation, and they do not update the weights of 
each node, but they only compute a generalized inverse to update the coefficients of the output 
layer. In this study, the considered features are five parameters describing the spatio-temporal 
characteristics of the data (year, month, latitude, longitude and elevation) and eight meteorological 
variables (precipitation, air temperature, maximum and minimum air temperature, and four large-
scale indices). In this setting, the monthly EDI is detected with ELM and classical ANN. The first 
outperforms the latter in terms of MSE and R-squared. A drawback of the application of this kind of 
networks is the lack of interpretability, so there is no clear identification of the main drivers. 
Also (Li, et al., 2021) considers ELM, together with RF and SVM for regression to predict the SPEI 
index for the Colorado, Danube, Orange, and Pearl River basins with the antecedent SST fluctuation 
pattern (ASFP) as feature. The result shows that the ELM is the best-performing method among the 
three models applied. 
(Dikshit, Pradhan, & Alamri, 2020) address the problem of detecting the SPEI index at different 
timescales for the region of New South Wales (NSW), Australia. Thirteen features are used as input, 
both related to meteorological data (precipitation, temperature, evapotranspiration, cloud cover, 
sea surface temperature) and climatic indices. ANN and SVM for regression are performed as 
supervised learning methods. ANN outperforms SVM in terms of MSE and R-squared. Moreover, the 
importance of features obtained from the ANN identifies that the sea surface temperature and the 
indices related to ocean oscillations are not relevant drivers for the drought event considered. 
A different drought index, the Palmer Drought Severity Index, is predicted in (Tufaner & Özbeyaz, 
2020) for the Adiyaman province, within the Middle Euphrates Section of the Southeastern Anatolia 
Region. Considered features are the monthly average of temperature, pressure, wind speed, relative 
humidity, rainfall, and some meteorological variables such as potential evapotranspiration, 
available water capacity and runoff. Four different regression algorithms are applied in this work 
(Linear regression, ANN, SVM, and Decision Trees), and ANN results to be the best-performing 
method. 
A more advanced deep learning approach can be found in (Wu, Yin, He, & Li, 2022). In the paper, 
LSTMs are considered to detect and predict the three-month SPI index with atmospheric variables, 
combining dynamical models with ML and showing a significant improvement in the prediction, 
especially when the lead time exceeds one month. 
Finally, (Zaniolo M. , Giuliani, Castelletti, & Pulido-Velazquez, 2018) introduce the FRamework for 
Index-based Drought Analysis (FRIDA) that uses an ELM-based wrapper for performing a feature 
selection in order to automatically construct a drought index representing a surrogate of the 
drought conditions of a river basin. The FRIDA index is computed by combining all the relevant 
available information from a set of candidate hydrometeorological observations and it is applied to 
the case study of the Jucar river basin (Spain), where it is shown to outperform a traditional index 
in representing the drought condition. 
 
Other methods and drought indices can be found in the literature to address problems related to 
droughts. In (Aghelpour, Mohammadi, Biazar, Kisi, & Sourmirinezhad, 2020), different supervised 
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learning approaches are applied. They focus on multivariate drought indices, which try to summarize 
different types of droughts that may happen simultaneously. The considered targets are the joint 
deficit index (JDI) and the multivariate standardized precipitation index (MSPI). Precipitation, 
temperature and the previous values of the considered indices are the features under analysis. The 
study is conducted in the widest climatic zone of Iran and the ML methods applied are group method 
of data handling (GMDH), generalized regression neural network (GRNN), least squared support 
vector machine (LSSVM), adaptive neuro-fuzzy inference system (ANFIS) and ANFIS optimized with 
three heuristic optimization algorithms. A feature selection technique based on entropy is also 
applied to filter the non-relevant features, which allows to conclude that precipitation and 
temperature are important drivers for this problem. Among the considered models, GMDH 
application obtains the best performance and in general the models obtain a better prediction of 
the MSPI index than the JDI index. 
 

3.3 Causation 

Causal inference and causal discovery methods can add value to the detection of droughts described 
in the previous section. Indeed, once the main candidate drivers of a drought event are identified, 
it would be relevant to understand if the features identified by the ML models can be labelled as 
causes of the extreme event or they are simply correlated with it. Many causal discovery approaches 
have been designed in recent years, although applications on complex, realistic problems like 
droughts are only a few. 
One of the most famous causal discovery approaches for time series is Granger Causality, which is 
applied by (Gupta & Jain, 2021) to provide a causal interpretation of the connection between 
droughts and ENSO in India. SPI and SPEI indices were considered to represent drought conditions 
and four climatic indices were chosen to represent climatic conditions (southern oscillation index, 
northern oscillation index, NINO3 and NINO3.4 sea surface temperature indices) at different time 
scales (3,6,9 and 12 months). Granger causality was applied both with a linear and a nonlinear 
approach. Firstly, a linear regression and an ANN were trained considering all lagged values of the 
two drought indices to predict the value of current month. Then, the same models were trained 
considering also the lagged values of the climate indices as input features and the improvement of 
the prediction results quantifies the causal relationship between ENSO and drought conditions. In 
particular, most of the climatic indices showed a similar connection with the two drought indices, 
with the ANN-based approach identifying a larger area with significant causal effect with respect to 
the linear approach. Moreover, the impact of climatic indices was found to be larger with SPEI than 
the only precipitation-based index SPI.  
In (Varando, Fernández-Torres, & Camps-Valls, 2021), Granger Causality is used as an additional 
criterion for training an autoencoder neural network to learn latent feature representations that 
are Granger-cause of the target index. The approach is demonstrated by analyzing the relationship 
between ENSO and vegetation greenness represented via the normalized difference vegetation 
index (NDVI), an index that is often used as a proxy to quantify the impacts of drought and plant 
stress. 
Also (Noorbakhsh, Connaughton, & Rodrigues, 2020) focuses on inspecting the causal relationship 
between ENSO (identified by the Sea Surface Temperature (SST)) and drought conditions, finding 
that the cold SSTs in the previous year influence the occurrence of droughts in Ethiopia, as expected. 
In particular, droughts are represented as a univariate time series with monthly data considering 
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SPI index. Rotated Principal Component Analysis, on the other hand, is applied on the global SST 
dataset, obtaining 76 aggregated time series as features. As causal discovery method, PCMCI has 
been selected, which is a variation of Granger causality and the PC algorithm, specifically designed 
for applications on the Earth Sciences. The two strongest links identified by the method are an 
autocorrelation causal relationship of the SPI index with its one-month lagged value and a causal 
link between the 12-months lagged second principal component of the SST, whose strongest 
contribution comes from the ENSO region of the Pacific Ocean, and the SPI. 
In a recent work (Shi, Zhao, Liu, Cai, & Zhou, 2022), Convergent Cross Mapping (CCM) method, an 
alternative to Granger causality based on dynamical systems, is applied for causal discovery on 
droughts for the Pearl River Basin in China. In particular, the interest of this study is to identify if 
there is a causal relationship between the meteorological and the hydrological drought condition. 
The SPI index is again considered as a meteorological drought index, while SRI is chosen to represent 
hydrological droughts. This work shows that there is a causal relationship between lagged 
meteorological droughts and hydrological droughts, as expected (scarcity of precipitation in the past 
causes scarcity of water in the future), having an almost constant impact from 1 to 6-month lag.  
In (Rajsekhar, Singh, & Mishra, 2015) causal discovery is applied to droughts with an approach based 
on information theory quantities. In particular, Transfer Entropy is considered to evaluate the 
(possibly non-linear) causal effect in a way similar to Granger causality (i.e., measuring the additional 
information provided by the possible cause with respect to the autoregression) with a measure from 
information theory similar to (conditional) mutual information, but asymmetric. The study area 
considered is Texas, in the United States, where the Multivariate Drought Index (MDI) is computed 
as representative of droughts. Precipitation, runoff, soil moisture and evapotranspiration are 
considered as possible causes of the extreme event. From the results, it is possible to conclude that 
in the west of Texas, for the years 2015-2099, it is expected that precipitation will mostly cause 
droughts, together with runoff, evapotranspiration will also contribute with less strength and soil 
moisture will not be much relevant. 
A climatic event related to droughts in India are summer monsoons, since a significant variation of 
their values from the average can lead to floods or droughts. In (Saha, Soni, Finley, & Monteleoni) 
causal discovery is applied to identify the regions of the Pacific Ocean influencing the Indian summer 
monsoons. Specifically, PCMCI algorithm is applied to identify the causal link between Sea Surface 
Temperature (SST) and Indian monsoons. The Pacific Ocean was divided into 24 areas and the 
average SST was computed for each of them, while average precipitation was computed for the 
entire India and for its four regions. These 29 variables were considered as the nodes of a causal 
graph and different regions of the ocean were identified as cause of monsoons for the different 
regions of India, allowing to conclude that precipitation is affected by many areas of the Pacific 
Ocean and not only by the areas that define the Nino index. Then, an RF model was applied 
considering the 3, 5, 8 and 10 regions of the Ocean identified as most significant for each region of 
India, with a test error below 10% for each one of them. In contrast, considering the NINO 3.4 index 
as it is traditionally done, results in a worse test performance.  
 

3.4 Attribution 

Attribution of human impact, climate change and global warming for droughts with machine 
learning has been addressed in a few papers, therefore, there are a lot of possibilities to extend the 
scientific knowledge on attribution both from a methodological and an applicative perspective. 
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In particular, feature selection for the identification of the main drivers allows to identify the 
candidate drivers of a drought event, and domain knowledge can attribute the obtained results to 
climate change. In (Richman & Leslie, 2018) several variables are studied to detect the drivers of the 
Cape Town droughts, focusing on a particularly impactful event in 2015-2017. The considered 
features include the Southern Annular Mode, Atlantic Meridional Mode, Indian Ocean Dipole, an 
Integrated Southern Hemisphere temperature index and several El Niño indices. Different feature 
selection techniques are applied to identify the impact of each candidate driver on the precipitation 
of the considered region, based on linear correlation in a forward and backward greedy search, 
genetic search algorithms, or wrapper techniques, which consider one of the mentioned techniques 
in a wrapper way, together with SVM. From the cross-validation results, it is possible to identify 
some attributes that emerge among most methods, other attributes that may be drivers since they 
are detected by some techniques, and attributes that are not selected by any method and that can 
be discarded. A peculiar result is that El Niño SST-based index and the El Niño atmospheric index 
(Southern Oscillation Index) are identified as ineffective in the prediction of precipitation, although 
they are traditionally assumed to be relevant variables. This is addressed as alarming, since the 
decreased predictive capacity of ENSO phases, which is usually the basis for seasonal forecasts, is a 
clear signal of climate change. (Richman & Leslie, 2020) analyze temperature and precipitation data 
from Perth, Australia, considering the Cape-Town drought analysis as a preliminary study. The 
candidate drivers considered are global temperature, sea surface temperature and a set of climate 
indices (Dipole Mode Index, Southern Oscillation Index, Niño 3, Niño 4, Pacific Decadal Oscillation, 
Antarctic Oscillation, Atlantic Meridional Oscillation, North Pacific Index, Interdecadal Pacific 
Oscillation) and their cross products. Preliminary statistical analysis (e.g., permutation test) was 
performed to show the clearly increasing pattern of temperature and the decreasing pattern of 
precipitation, as already found for Cape Town. Then, after the application of different feature 
selection techniques based on correlation or wrapper methods, linear regression, ANN, RF and SVM 
were applied, with the linear model and SVM found to perform better. ANN often had large 
prediction errors, which suggests relationships among the selected attributes and climate change, 
since ANN are known to have poor performance when there is a trend in the data. 
Also (Hartigan, MacNamara, & Leslie, 2020) analyse precipitation and temperature trends for 
Canberra, Australia, finding a mean temperature increase and a stable annual precipitation due to 
a summer precipitation increase balanced by an autumn precipitation decrease. Wavelet analysis 
was then performed, showing ENSO influence on precipitation and temperature in Canberra, with 
less impact since 2000. Moreover, linear regression and SVM for regression were applied both as 
wrapper feature selection methods for attribution and for prediction, using as targets the maximum 
temperature and the mean precipitation. The identified relevant attributes for precipitation are 
ENSO, the southern annular mode, Indian Ocean Dipole and Tasman Sea SST anomalies. For the 
maximum temperature, Indian Ocean Dipole and global warming attributes are selected, showing a 
relevant trend due to climate change. In continuation with this study, (Hartigan, MacNamara, Leslie, 
& Speer, 2020) found, with permutation testing and other statistical analysis, a decreasing trend for 
annual precipitation across the Sidney catchment area, with significant reduction in summer and 
autumn. Then, wavelet analysis confirmed that the ENSO influence on precipitation has greatly 
weakened from the 2000s, suggesting the increased impact of climate change. Finally, considering 
as features the Atlantic Meridional Oscillation, the Dipole Mode Index (DMI), the global sea surface 
temperature anomalies, the global temperature anomalies, Niño3.4, the Tripole Index for the 
Interdecadal Pacific Oscillation, the Southern Annular Mode, the Southern Oscillation Index and the 
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Tasman Sea surface temperature anomalies, together with their two-way interactions, linear 
regression, SVM for regression and RF were applied for wrapper feature selection and prediction. 
SVM obtained the best score, with Niño3.4 and the interaction between DMI and TSST as selected 
attributes, representing respectively the influence of ENSO and global warming. 
In (Shi, et al., 2020) the human impact was evaluated in a region of China where policies of ecological 
restoration have been applied since the 1980s. The dynamic characteristics of vegetation were 
addressed in terms of satellite data with NDVI as target, applying RF to identify feature importance. 
Nine meteorological factors were considered, with the average temperature, minimum 
temperature, maximum temperature and average relative humidity that have been identified as the 
most relevant. The combined effect of these variables contributes less to NDVI prediction than 
human activities. Human activity was identified as the most important attribute to the growth of 
NDVI index, with an increase of more than 40% from 1990 to 2015, allowing to conclude that the 
applied policies have been relevant.  
A study related to attribution is (Prodhan, et al., 2022), where droughts were studied in South Asia. 
This work aimed to evaluate the future drought projections, assuming that they will be affected by 
climate change, global warming and increasing food demand. Five climate models were considered, 
taking into account a high greenhouse gas emission scenario, and three crop models were used to 
evaluate the future yield loss risk for rice, wheat and maize. Starting from these models, the SPEI 
index was considered as an input feature for identifying droughts and the yield loss risk index (YLRI) 
was adopted as target for identifying the yield loss risk. An ensemble ML technique was chosen: RF 
and Gradient Boosting were applied together, with an ANN that considered their output to produce 
the final prediction. The good fit of the climate model considering high emissions and climate change 
on the historical data underlines the reliability of a model that considers progressive increasing 
temperature for South Asia, with a projected level of SPEI index suggesting more duration and less 
intensification of droughts. The ML model showed good validation performance on historical data 
and predicts an increase of YLRI for the next years, with the largest risk associated with rice crops.  

4 MACHINE LEARNING FOR TROPICAL CYCLONES 

4.1 Overview 

Tropical cyclones (TC) are some of the most devasting extreme events, causing extensive damage 
along their path either through flooding (caused by the torrential rainfall of the TCs themselves or 
by the storm surge they cause in coastal areas) or through the sheer force of their winds, which can 
reach upwards of 90 m/s (Chen, Giese, & Chen, 2020).   
TC genesis, intensity, and trajectory are usually predicted with low accuracy by traditional dynamical 
models due to the complexity of the underlying physical processes and the coarse resolution of most 
models, which are unable to resolve the fine-grained wind fields that spin up tropical cyclones 
(Emanuel, 2018). For this reason, ML data-driven methods can be an added value to the knowledge 
and prediction of these events.  
Following the taxonomy introduced in a recent literature review on the application of ML to tropical 
cyclones analysis (Chen, Zhang, & Wang, 2020), it is possible to identify two ways in which ML is 
applied to study TCs. First, fully data-driven ML models can be applied for genesis, track, intensity, 
and disastrous impact forecast or detection. Second, ML can be exploited to improve existing 
numerical models by automatically pre-processing data, tuning model parameters, or post-
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processing the results. As highlighted in the review, the literature on ML methods applied to TC 
analysis is still young, and there remain several open challenges and opportunities.  
(Chen, Zhang, & Wang, 2020) focus on applications involving classical ML methods (e.g., decision 
trees, logistic regression, support vector machines), ensemble methods (e.g., random forests, 
Boosting), and deep learning approaches (feedforward and convolutional neural networks). An 
overview of these applications is reported here, together with more recent results.  
 

4.2 Detection and Forecast 

This section is divided into five subsections, each describing the state of the art of applications of 
ML on a different aspect of tropical cyclones. Depending on the problem and the type of data (e.g., 
reanalysis or satellite, categorical or continuous), different ML models are most suitable for the 
detection and forecast of a specific subproblem. 

4.2.1 TC Genesis 

Forecasting the genesis of TCs typically consists in identifying a set of precursor variables that allow 
a skilful estimate of the probability that a TC may occur at a certain point in time and space, which 
can be seen as a classification problem.   
Using non-ML methods, domain experts have identified key precursors, which have proved to be 
good predictors of TC genesis in both reanalysis and simulated data: the Coriolis parameter, low-
level relative vorticity, vertical wind shear, mid-troposphere relative humidity, ocean thermal 
energy, and the difference between the equivalent potential temperatures at the surface and at 500 
hPa (Gray, 1998). However, the predictor variables may change depending on whether the lead time 
for the forecast is short (1-3 days) or long (months), leading to the distinction between short- and 
long-term TC genesis forecasting.   
  
For short-term TC genesis forecasting, (Wijnands, Qian, & Kuleshov, 2016) identify, through feature 
selection based on mutual information and the Peter-Clark algorithm for directed acyclic graphs, 
potential vorticity (600 hPa), relative vorticity (925 hPa), and vertical wind shear (200–700 hPa) as 
the main drivers of TC genesis with 12-72 hours lead time, which are confirmed to be relevant by 
the satisfactory performance of a linear model. Similarly, (Zhang, Fu, Peng, & Li, 2015) used a 
decision tree and identified that maximum 800-hPa relative vorticity, sea surface temperature, 
precipitation rate, divergence averaged between 1000- and 500-hPa levels, and 300-hPa air 
temperature anomaly were the five main drivers of TC in the western North Pacific. In the same 
region, (Matsuoka, Nakano, Sugiyama, & Uchida, 2018) applied deep CNNs to simulated outgoing 
longwave radiation data to detect TCs. Differently from previous approaches, with CNNs there is no 
need to identify the drivers of the event, since the network automatically performs the feature 
extraction, usually with an improvement of performances at the cost of reduced interpretability.   
 

More recently, (Pillay & Fitchett, 2021) used random forests to determine which large-scale 
atmospheric fields explain why some storms evolve into TCs and some do not, focusing on the 
Southern Hemisphere. Their analysis found that SST, air temperature, geopotential height, vertical 
wind shear, and relative humidity account for a large amount of the variability in the formation of 
TCs, and that SST was the single best predictor of whether a pre-existing storm will evolve into a 
TC.   
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Similarly, (Zhang, et al., 2019) used decision trees, k-nearest neighbours, ANNs, SVMs, AdaBoost and 
RF to determine whether pre-existing mesoscale convective systems (MCSs) would evolve into TC, 
concluding that AdaBoost is the best-performing method for short-term TC genesis forecast over 
the tropics and identifying low-level vorticity and genesis potential index as the most relevant input 
features.   
Satellite data are also considered in some studies. (Park M.-S. , Kim, Lee, Im, & Park, 2016) extracted 
eight dynamic and hydrologic indices from wind and rainfall satellite images, applying a decision 
tree for detecting the TC, identifying circulation symmetry and intensity as the main drivers. (Kim, 
Park, Im, Park, & Lee, 2019) extended this study also considering RF and SVM, showing that SVM is 
the most performing algorithm for this problem.  
  
As for long-term TC genesis forecasting, (Richman & Leslie, 2012) considered 108 predictors and 
used a wrapper feature selection method and an SVM for regression, reaching better results than a 
baseline linear model. This method is then refined in a subsequent work (Richman, Leslie, Ramsay, 
& Klotzbach, 2017). Beyond SVM-based methods, (Nath, Kotal, & Kundu, 2016) proposed an ANN to 
address the problem of determining the number of seasonal TC in the North Indian Ocean during 
the post-monsoon season, identifying geopotential height at 500 hPa, relative humidity at 500 hPa, 
sea-level pressure, and zonal wind at 700 hPa and 200 hPa for the preceding month (September) as 
the main drivers.   
More recently, (Sun, Xie, Shah, & Shen, 2021) addressed the problem of predicting the number of 
TC in a season over the Atlantic basin, considering regional and global monthly features such as 
Pacific SST-related climate indices, El Nino Southern Oscillation (ENSO) related indices, and 
atmospheric and teleconnection indices, for a total of 34 features.  To identify the most relevant 
ones, a clustering method was applied on the available features and the variable that is the most 
correlated with the target was selected in each cluster as a candidate driver. Then, Lasso regression 
was applied, and the results were shown to be comparable to a classical forecast and to be better 
when a subregion of the entire basin is considered.  
Finally, (Asthana, Krim, Sun, Roheda, & Xie, 2021) addressed long-term TC prediction with ML, 
specifically applying CNNs to extract relevant features in order to predict the number of TC 
generations over the North Atlantic basin, with relevant performance results, at the cost of losing 
interpretability due to the complexity of the chosen model.  
 

4.2.2 TC Track 

TC tracking consists of predicting the future movement of a TC by considering the characteristics of 
the TC, of the general atmospheric circulation, and of the land/ocean (e.g., presence of mountains 
or cold ocean water) over which it passes. In the literature, feedforward and recurrent neural 
networks have shown promising results, together with advanced deep learning techniques like 
ConvLSTM, combining convolutional and recurrent neural networks or generative models like GANs. 
(Chen, Zhang, & Wang, 2020) review many applications of ML for TC tracking, dividing them into 
path prediction, predictors mining, and similarity search. These applications are mainly related to 
forecasting, since they typically do not try to identify the drivers that generate the TC, but rather 
forecast the trajectory of the TC depending on its characteristics and the conditions of the 
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environment. Therefore, as these tasks are beyond the scope of CLINT, only a brief overview of the 
use of ML for this problem will be presented here.  
In particular, path prediction has been addressed by (Ali, Kishtawal, & Jain, 2007) and (Wang, Zhang, 
& Fu, 2011) with feedforward neural networks, with good performance for up to 24 hours. (Moradi 
Kordmahalleh, Gorji Sefidmazgi, & Homaifar, 2016) and (Alemany, Beltran, Perez, & Ganzfried, 
2019) applied recurrent neural networks to the problem to better consider the time component, 
obtaining better performances on longer lead times (up to 120 hours of forecast). To consider both 
space and time components, (Kim, et al., 2019) consider ConvLSTM neural networks. A more 
advanced approach, (Rüttgers, Lee, & You, 2018) and (Rüttgers, Lee, Jeon, & You, 2019), applies 
Generative Adversarial Networks to generate an accurate image of the future location of a TC given 
a satellite image of its past location.  
A more recent work (Tan, Chen, & Wang, 2021) addresses TC tracking with an ensemble method, 
Gradient Boosting Decision Tree, which is shown to produce satisfactory results that outperform a 
standard numerical model (CLIPER) in the TC tracks in the Western North Pacific.  
Predictors mining is more related to detection, since it aims to use ML to identify predictors that can 
be used by the trajectory forecasting models. This topic is not much addressed in the literature, 
since most of the TC tracking methods are based on path prediction. In (Zhang, Leung, & Chan, 2013) 
an approach with decision trees can be found, but there is room to apply some more advanced 
feature selection approaches, similar to what is done for TC genesis.  
Finally, another approach to TC tracking is similarity search, which consists of developing search 
algorithms to identify similar historical cases to forecast the evolution of the TC under analysis. 
(Wang, Han, Lin, Shen, & Zhang, 2018) uses a neural network to perform the search, whereas usually 
clustering methods are applied to form clusters of TCs with similar characteristics. As non-
exhaustive examples, (Kim & Seo, 2016) apply self-organising maps, while (Camargo, Robertson, 
Barnston, & Ghil, 2008) and (Ramsay, Camargo, & Kim, 2012) consider the path together with its 
shape and location to generate the clusters.  
 

4.2.3 TC Intensity 

In TC genesis, the main interest is identifying the probability that a TC will occur in a certain region, 
and it is usually framed as a classification problem. TC intensity estimation, on the other hand, is 
mainly tackled with regression methods. In this case, the goal is to predict the intensity of the TC, 
usually quantified as the maximum wind speed at a certain instant of time. As for TC tracking, the 
main application of ML focuses on predicting the next states of the TC based on the current and 
previous conditions. Since the principal type of data for this task are satellite images, the most 
widely adopted approaches are based on CNNs, which take as input the satellite image of a TC and 
try to predict a subsequent state of the TC, in terms of intensity and, potentially, also position. As it 
is a sequential problem, approaches also involving RNNs and LSTMs have been applied. As these 
data-driven approaches are mostly focused on satellite images and neural networks, the focus of 
the approaches is not usually on detection but on forecasting.  
In (Chen, Zhang, & Wang, 2020) different intensity forecasting methods are reported. First, intensity 
estimation, which is strictly related to detection, is addressed: it focuses on identifying the main 
features of the current TC satellite image which can explain its intensity. This is different from 
detecting the main meteorological drivers that generate a TC and it can be seen more as a feature 
extraction data-driven approach directly applied to images of TCs. For this reason, approaches based 
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on CNNs, which can automatically extract important features from satellite images, are the most 
applied. In particular, (Pradhan, Aygun, Maskey, Ramachandran, & Cecil, 2017) use a CNN to classify 
images of TCs into intensity classes. Their focus is on the inner representation of the CNN, seen as a 
feature extraction method to identify the characteristics of the TC. (Wimmers, Velden, & Cossuth, 
2019) performed also framed TC intensity estimation as a classification task, using CNNs on satellite 
TC images, focusing on identifying which features are the most relevant and from which satellite 
they came from. More recent applications combine CNNs to extract the relevant characteristics of 
the TC from images with LSTMs and RNNs to keep track of the sequential nature of the evolution of 
the TC in time, as in (Lee, Im, Cha, Park, & Sim, 2019).   
More recently, (Kar & Banerjee, 2021) address the problem of forecasting the intensity of TCs over 
the Bay of Bengal using satellite images. In particular, they propose a novel feature extraction 
method and the chosen features are used as inputs to five different intensity classifiers: naïve bayes, 
an SVM, a logistic model tree, a random tree and a random forest, with the random forest being the 
best performing approach. Also (Kim, Moon, Won, Kang, & Kang, 2021) address the problem of TC 
intensity forecast as a classification task, identifying the probability that a TC reaches a maximum 
intensity greater than 70 knots during its lifetime. Using a decision tree, they identify that the main 
drivers for TC intensification are the ocean thermal structures, the TC’s past trajectory, and the 
latitude of the TC’s current position.  
Differently from intensity estimation, intensity prediction focuses on predicting the evolution of the 
intensity of the TC, potentially relying on the characteristics extracted in the estimation phase. Due 
to the sequential nature of this problem in time, recent approaches are based on RNNs (Pan, Xu, & 
Shi, 2019) or RNNs combined with CNNs (Chen, et al., 2019).   
A problem related to TC intensity is intensity change prediction, which usually consists in a 
classification problem estimating the probability that the TC will get more or less intense. Examples 
of applications of ML on this task can be found again in (Chen, Zhang, & Wang, 2020) and they will 
not be addressed here since they are outside the scope of this report.  
 

4.2.4 TC Weather and Disastrous Impact 

Following the taxonomy of (Chen, Zhang, & Wang, 2020), the last purely data-driven family of ML 
approaches available in the literature for TCs is the forecast of severe rainfalls, storm surges, and 
wind fields, which are largely influenced by the occurrence of a TC. Since in this report we focus on 
TCs exclusively, these lines of research will only be briefly mentioned. In particular, ANNs, RFs and 
SVMs for regression are the methods usually applied to forecast the precipitation or storm surge 
height, while for wind fields recent approaches focus on CNN.  
 

4.2.5 TC Numerical Models Improvement 

To conclude this section based on the review from (Chen, Zhang, & Wang, 2020) and enriched by 
more recent applications of ML for TCs, this paragraph introduces a group of applications that apply 
ML to enhance numerical models of meteorology rather than constructing fully data-driven 
approaches for detection and forecast.  
This can be done as a pre-processing step, applying ML to identify meaningful initial conditions for 
the numerical model. Although there exist some preliminary results based on giving a numerical 
model information on whether an area is identified as a TC region (Lee, Hall, Stewart, & Govett, 
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2018), there are no relevant applications in the literature for this task, since it is challenging to 
identify a proper supervised problem which can allow an ML method to learn good initial 
conditions.  
Another way of applying ML to improve numerical models is to use ML algorithms to tune the 
hyperparameters of numerical models. This approach is much more studied, with some approaches 
that focus on learning the distribution and variability of the variables involved (Loridan, Crompton, 
& Dubossarsky, 2017) or parametrising the variables (typically as neural networks) (Jiang, Xu, & Wei, 
2018).   
A more recent work, (Baki, Chinta, Balaji, & Srinivasan, 2021), focus on hyperparameter tuning of 
the WRF model, which consists of more than 100 variables and simultaneously models the physics 
and the evolution of multiple meteorological quantities. Sensitivity analysis and the MARS method 
are used, which can be seen as a non-linear generalisation of multivariate linear regression. Ten TCs 
from the Bay of Bengal that happened in the previous ten years have been simulated and different 
meteorological variables have been analysed (wind speed, temperature, surface pressure, total 
precipitation, planetary boundary layer height, outgoing longwave radiation flux, downward 
shortwave radiation flux, and downward longwave radiation flux). Simulations have been then 
compared to observational data and the simulations based on the hyperparameters tuned with ML 
have been shown to outperform the simulations based on classical values of the parameters.  
  
Finally, ML can be applied in the post-processing phase of a numerical model, elaborating the 
outputs to produce a more accurate result. Typical applications are studies based on the numerical 
model outputs for genesis, track, and intensity forecast and detection. Using the numerical models 
as simulators, ML methods take as input their outputs to perform the prediction tasks introduced 
in previous sections. Many successful results exist for this approach (Matsuoka, Nakano, Sugiyama, 
& Uchida, 2018), (Racah, et al., 2017), (Kim, et al., 2019). The main drawback of these applications 
is the bias introduced in considering numerical simulations rather than observational data, which 
should be inspected more in-depth from a theoretical perspective.    
 

4.3 Causation 

As presented in the previous paragraph, different meteorological drivers have been detected in 
many studies and a variety of input features from reanalysis data and satellite images have been 
considered to model the genesis, track and intensity of TCs. Causal inference and causal discovery 
methods can add value to the detection of candidate drivers, since they are able to identify if a 
candidate driver may cause the target, or if their relationship is just a correlation due to the fact 
that they have a similar response to external factors or they are caused by the same confounder.  
Causality has been studied extensively in the last years from a theoretical perspective, but few 
methods were applied to TCs.  
Granger causality is the most well-known causal approach for observational data, and it has been 
applied to TCs with statistical tests already in (Elsner, 2007), where a model with Atlantic SST as 
common cause of global mean near-surface air temperature (GT) and TC activity is compared with 
a model with GT causing Atlantic SST, which in turn causes TC activity. The results identify the 
possibility of a causal relationship between Atlantic SST and GT, with a causal direction from GT to 
SST, suggesting the validity of the second model.  
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(Dong, Lian, & Zhang, 2019) also consider Granger causality together with recurrent neural networks 
(GRUs in particular) to predict TC tracks. GRUs have been applied considering the causal 
meteorological variables identified as features (the maximum sustained wind speed is the one with 
the maximum causal relationship with the location of the TC) and results show good performance 
with respect to traditional deep learning methods in predicting the location of the TC.  
In (Bai, Zhang, Bao, San Liang, & Guo, 2018), Information Flow, a concept based on information 
theory similar to transfer entropy and directed information, is used to derive that ENSO and Pacific 
decadal oscillation are the two most relevant causes of TC genesis position in the Atlantic basin. 
Moreover, for the Western area also the western Pacific subtropical high has a relevant causal 
effect, while in the Eastern region the monsoon trough has an impactful causal effect.  
Also (Zhang, Ma, Li, Chen, & Bai, 2022) consider information flow for identifying causal relationships. 
The focus of their work is on TC genesis frequency in the Australian region, and the causal analysis 
allows them to conclude that the Atlantic meridional mode, Atlantic multidecadal oscillation, and 
north tropical Atlantic Sea surface temperature anomalies are all candidate causes of TC genesis 
frequency in this region, providing also a significant improvement of performance of predictors that 
consider them.  
Similarly, (Pfleiderer, Schleussner, Geiger, & Kretschmer, 2020) work on the forecast of TC activity 
in late spring for the summer season, quantified as accumulated cyclone energy (ACE). The PCMCI 
algorithm is applied, and it is found that warm SST in the Atlantic and La Niña conditions in May are 
candidate causes of an active hurricane season, which is predicted with a satisfactory performance 
considering the selected candidate causes.  
Finally, in (Bertrand, Pfleiderer, Kretschmer, Geiger, & Schleussner, 2019) causal discovery methods 
are applied. They conclude that Atlantic SST and mean sea level pressure over the Pacific have a 
causal relationship with the number of TCs expected in a season over the Atlantic basin.  
 

4.4 Attribution 

In this section we address two different aspects of attribution: the impact of anthropogenic climate 
change on TC and the impact of TC on human society. Attribution of TCs to human impact and 
climate change can make people aware of the possibility that changing their behaviour can modify 
the disastrous impact of TCs and, on the other hand, estimating the impact that TCs have on the 
economy or health provides an insight into the relevance that it has in real life.  
Attribution of TCs genesis or intensity to human activity and climate change is a topic addressed in 
the literature with classical numerical models (Wehner, Zarzycki, & Patricola, 2019), (Knutson, et al., 
2019), (Reed, Stansfield, Wehner, & Zarzycki, 2020). However, to date there are no publications 
addressing the problem with ML, leaving space to design ML-based applications and methods to 
address this aspect.  
On the other hand, some studies exist that attribute the impact of TC to some specific societal 
problems.  
(Nethery, et al., 2020) use ML methods to identify health impacts of TC in the United States. In 
particular, mortalities in the Medicare population, respiratory disease hospitalisations, chronic 
obstructive pulmonary disease hospitalisations, and cardiovascular disease hospitalisations in the 
Medicare fee-for-service population are considered. Moreover, temporally detailed track and 
feature data for each Atlantic-basin TC have been considered to characterise the TCs. Bayesian 
methods are selected as ML approaches. First, for each health outcome, causal inference sub-
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models are used to estimate the excess health events attributable to historic TCs. Then, a predictive 
model for each health outcome is designed in order to attribute the relationship between the 
county-specific TC health effects and the features of the TC and county, with the purpose of 
characterising how these features modify the impact of the TC on health in a specific county. As a 
main result, respiratory hospitalisation is identified as the most TC-attributable health problem, with 
maximum windspeed being a strong predictor of the TC impact on this kind of health risk.   
Another important aspect addressed by ML in (Wendler-Bosco & Nicholson, 2022) is the destructive 
impact of TCs in the United States, with a particular focus on the economic consequences. Eight ML 
approaches (such as RFs and SVMs) were considered in this study, with features characterising as 
target the TCs and storm damage ratio, which is the ratio between immediate storm damages (in 
terms of dollars) and annual gross domestic product. Tree-based methods perform best in this 
setting, and some main features are identified, such as the storm size and the speed of the TC 
movement being important for the prediction, while maximum wind speed is found not to be 
relevant, despite the fact that it is usually considered a key identifying feature of a TC.  
Finally, an application of ML to evaluate the impact of events related to TCs on ecosystems can be 
found in (Zhang X. , et al., 2021), which identifies through an RF the typhoon Lekima impact on 
Chinese forests, computing with small uncertainty the proportion of damage.  

5 MACHINE LEARNING FOR HEATWAVES AND WARM NIGHTS 

5.1 Overview 

Heatwaves are extreme events, usually defined as prolonged periods of maximum or average daily 
temperature significantly higher than the average (Russo, Sillmann, & Fischer, 2015). These events 
broadly impact many social, economic and environmental systems, including elderly health, 
animals, ecosystems, etc. (Stillman, 2019). For example, in agriculture, prolonged periods of very 
hot temperature have a harmful effect on plants and water availability conditions that may 
compromise yields, even in the presence of irrigation plans (Lobell, Cahill, & Field, 2007). Warm 
nights, on the contrary, are episodes of elevated night temperatures that are more problematic 
from a perspective of diffusion of diseases and pests. Warm nights are not necessarily related to 
heatwaves, and different drivers and processes may be associated with each of them. As already 
discussed, these extreme events may have a severe impact on society, and, on the other hand, they 
are becoming more and more frequent due to global warming (Chapman, Watkins, & Stainforth, 
2019), (Bador, et al., 2017). Therefore, attribution to anthropogenic climate change is also a relevant 
problem, with the purpose of identifying possible changes in human habits to mitigate the 
occurrence of these events. For these reasons, Machine Learning (ML) approaches may be good 
methods to inspect and predict in a data-driven fashion the most relevant drivers and the possible 
occurrence of such events. Subsequently, causal inference can lead to new insights regarding the 
two phenomena, their drivers and their interconnection. Finally, attribution with ML methods can 
better identify the impact of humans on the occurrence of these events. A more advanced step may 
be to investigate the relationship between the occurrence of the two events, in order to identify 
common drivers and the possibility of their simultaneous occurrence (further details for these 
concurrent extremes problems can be found in the next chapter). In the literature, some approaches 
are available for the detection, forecast, causation and attribution of extreme temperatures using 
ML, applied only on night-time data to detect warm nights. However, only a few applications 
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address heatwaves and even fewer applications are available that directly address warm nights 
events. Due to the restricted amount of relevant recent papers on these topics, they will be 
discussed altogether in the following section. 
 

5.2 Detection, Forecast, Causation and Attribution 

5.2.1 Heatwaves 

Only a few papers address the problems of detection and forecast of heatwaves with Machine 
Learning techniques in the literature. (Chattopadhyay, Nabizadeh, & Hassanzadeh, 2020) combine 
analogue forecasting (which can be seen as a K-nearest-neighbor approach) with deep learning to 
predict heatwaves (and cold spells). Surface air temperature and geopotential height at 500 mb 
have been adopted as daily data and the ANN chosen is a CapsNet. The network is trained in a 
supervised manner by auto labeling the data, assigning a label from 0 to 4 each day depending on 
the value of temperature over North America several days later. From the results, it is possible to 
conclude that the network is able to predict the occurrence of a heatwave (or cold wave) from 1 to 
5 days ahead and using only the values of geopotential height with satisfactory results, 
outperforming standard ANN and logistic regression. From this result, it is also possible to conclude 
that geopotential height is a candidate driver for heatwaves. Also (Asadollah, et al., 2022) address 
the forecast and detection of heatwaves, focusing on the eight climate regions of Iran. Daily 
maximum temperature has been adopted to identify heatwave days, while six reanalysis 
meteorological features at four different pressure levels have been employed as candidate drivers 
(air temperature, geopotential height, relative humidity, specific humidity, U wind, V wind). The ML 
models selected are decision trees, RF and AdaBoost with decision tree predictors. After applying 
PCA to reduce collinearity among features, AdaBoost is found to be the best performing method for 
this application, using humidity and wind component as features, which are therefore identified as 
the main drivers. 
 
Attribution problems, i.e., the causal relationships between anthropogenic climate change and 
heatwaves have been also addressed in some works. In (Pasini, Racca, Amendola, Cartocci, & 
Cassardo, 2017), attribution is addressed with neural networks. In particular, the paper underlines 
that Global Climate Model ensembles show human impact as the main driver of temperature 
increase. The aim of the work is to prove the robustness of these results with a completely data-
driven approach. The yearly average global temperature is considered as target of two neural 
network ensemble models. The first one takes as input the complete set of natural and 
anthropogenic factors RFANTH (anthropogenic forcing), RFSOLAR (solar activity), RFVOL (volcanoes) 
from 1850 to 2010. The second ANN takes as input the same quantities, but the value of 
anthropogenic forcing is fixed at its preindustrial value of 1850. The validation results show that in 
the first case the increasing trend of global temperature is clearly identified by the network, with 
good performance scores, while in the second one the recent increase in temperatures is not 
identified, with a constant trend from 1960. Moreover, a more detailed analysis has been performed 
on residuals, identifying the main drivers for the years 1960-2010 two anthropogenic factors: 
greenhouse gases as the main driver and black carbon as a less but still significant one. On the other 
hand, in the period 1910-1975 solar irradiation is identified as the main driver. (Park & Kim, 2018) 
address heatwave attribution focusing on the relationship between temperature and people 
hospitalised with heat illness. Nineteen meteorological variables, together with daily data of heat 
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illness hospital patients from 2011 to 2016 in Seoul metropolitan area, Korea, are considered. The 
purpose of this study was to determine the threshold temperature that defines a heatwave, using 
a data-driven approach that depends on the meteorological quantities together with the impact of 
the high temperature on human health. In this work, a spline regression model (MARS) was applied 
to identify the relevant changing points of the relationship between variables. From the results it is 
possible to conclude that low temperatures have little impact on the number of people hospitalised 
for heat-related illnesses, while this only becomes relevant when the temperature is above 32.58 C 
for two consecutive days.   
 
Finally, causality for heatwaves has been addressed in some articles, including recent works 
(Vijverberg & Coumou, 2022). In particular, in that paper the causal relationship between Sea 
Surface Temperature (SST) and Rossby waves (RW) is discussed, since the latter have been identified 
to be related to extreme heatwaves. Since the two considered variables are highly correlated, 
PCMCI approach has been applied as a causal discovery method to infer the relationship SST-RW for 
eastern and western US. With this method it is confirmed that both in the west and in the east SST 
is a plausible cause for RW at a daily scale. However, only for the eastern US there exists a long-lead 
time causal link from SST to RW, suggesting that it is possible to perform a long-lead predictability 
from SST to RW and therefore to temperature. Two previous papers already addressed causality in 
heatwaves by applying the Granger method.  In (Ratnam, Behera, Ratna, Rajeevan, & Yamagata, 
2016) causality is inspected for Indian heatwaves. In particular, two different analyses have been 
performed for India's north-central area and east coast. Granger causality is exploited in the north-
central area to identify 200 hPa geopotential height anomalies over North Atlantic as causes of the 
daily maximum temperatures with a two-day lag. On the Indian east coast, on the other hand, 
Granger causality is applied between the daily 850hPa eddy stream function anomalies in West 
Pacific and daily maximum temperature, identifying that the first causes the latter with a lag of one 
day. Finally, (Li, Tam, Tai, & Lau, 2021) exploit Granger causality to identify the relationship between 
summer heatwaves and vegetation cover (LAI index). In this study, a strong correlation between LAI 
index and heatwaves is identified. In particular, in Central Europe and the southern and 
southeastern parts of North America, heatwaves are more frequent with lower LAI, while for the 
northwestern and northeastern parts of North America, the opposite holds. These results are 
supported by further analysis and Granger causality application through statistical tests. 
 

5.2.2 Warm Nights 

To the authors’ knowledge, there are no specific works in the literature devoted to ML applications 
in the detection, causation and attributions of warm nights. For this reason, in this section, a few 
recent works on ML applications for extreme temperatures are briefly discussed, considering that 
similar methodologies can be applied directly to warm nights. (Paniagua-Tineo, et al., 2011) 
addressed the problem of predicting the daily maximum temperature with SVM for regression in 
different measuring stations in Europe. Meteorological variables (e.g., temperature, precipitation, 
relative humidity, air pressure) are considered as features together with the daily synoptic situation 
of the day and the monthly cycle. From those results, it is possible to conclude that the model can 
accurately predict the maximum temperature for the subsequent 24 hours. The SVM for regression 
is also shown to outperform ANN-based methods in this task and this good performance suggests 
that the selected variables are relevant drivers of the maximum temperature value. More recently, 
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(Peng, Zhi, Ji, Ji, & Tian, 2020) applied ANN and Natural Gradient boosting to predict maximum 
temperature with a lead time of 1-35 days over East Asia. The method is shown to outperform a 
classical model output postprocessing (EMOS), with better performances in more than the 90% of 
the overall area. Relating forecast and causality, (Oettli, et al., 2022) proposed a hybrid approach to 
predict the air temperature through the sea surface temperature (SST), combining dynamical 
forecast and nine different ML methods that converge into an ensemble model. The proposed 
methodology is applied to Japan's central region, and the experimental results show a satisfactory 
performance for two months lead time. Moreover, the causality between SST and air temperature 
is also addressed. In particular, the information flow, a causal quantity related to transfer entropy, 
is evaluated between the SST at each point of the available global grid and the air temperature of 
the region of interest, identifying the regions of the Earth where the SST is a candidate to be causally 
related to the air temperature of central Japan. (Attanasio, 2012) also applies causality analysis to 
temperature anomalies, looking for evidence of the impact of natural and anthropogenic warming 
on the temperature extremes, which makes this work related both to causality and attribution. In 
this paper, Granger causality is adopted to show that there is little connection between natural 
forcings and global temperature anomalies, while the greatest influence on them is from CO2, with 
also a relevant but smaller influence of methane. Although this result seems to indicate that there 
is no causal relationship between meteorological drivers and temperature anomalies, it must be 
underlined that this experiment is conducted assuming linear settings and it only considers total 
solar irradiance, cosmic ray intensity and stratospheric aerosol optical thickness as candidate 
meteorological causes. Some specific applications of ML for attribution of the maximum 
temperature value to climate change also exist. For example, in (Chithra, et al., 2015) ANNs are 
applied to evaluate the climate change impact on the monthly maximum temperature of the 
Chaliyar river basin, India. Considering reanalysis data and dynamical model predictors in a climate 
change context, different ANNs have been trained and validated for different seasons. Then, 
considering different dynamical models, the input variables have been simulated for the future and 
in all scenarios maximum temperature is predicted to increase by the next hundred years between 
one and three degrees.  

6 MACHINE LEARNING FOR COMPOUND EVENTS AND CONCURRENT 
EXTREMES 

Compound events are combinations of events, that are not necessarily extremes, and can lead 
to significant impacts for humans and ecosystems. The individual events may occur simultaneously 
or within a specific time period, and they may have additive or even multiplicative effects. 
Concurrent extremes are defined as the occurrence of two extreme weather events, simultaneously 
or with a certain time lag. The events may be of a different type (e.g., a heatwave and a drought) 
and occur in the same location with a temporal lag or of the same type in two different locations 
within a specific time period. (Toreti, Cronie, & Zampieri, 2019) provides an overview of the problem 
of the identification of concurrent extremes. The paper proposes a methodology based on the 
marked inhomogeneous J-Function (Cronie & van Lieshout, 2016), using an application focused on 
wheat-producing regions.  
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The detection and study of compound events and concurrent extremes is vital for a coherent impact 
assessment (Zampieri, Ceglar, Dentener, & Toreti, 2017) (Zscheischler, et al., 2018). However, the 
scarcity of data available where these multiple events have been labelled, the large variety of 
combinations of events that may be addressed as concurrent extremes and the broad definition of 
compound events hinder the direct application of ML techniques to provide a data-driven forecast 
of their occurrence, or to discriminate between drivers and causes. For this reason, very little 
literature addresses these problems with ML, making this literature stream largely unexplored, with 
much room for improvement. 
 
A recent technical report (Feng, et al., 2021) introduces a possible ML pipeline that can be followed 
to address different problems related to compound events and concurrent extremes with ML. The 
first step is the identification of these events, which is still an open problem, since there are few 
datasets to train the models on. Unsupervised ML techniques can also work with unlabeled 
observations. Then the focus is on detecting the main drivers to identify some variables that lead to 
the occurrence of these events, which can be precursors for a future event. Moreover, explainable 
AI methods are suggested to evaluate the drivers' importance in ML model prediction. Finally, model 
ensembles and probabilistic models are suggested as possible relevant supervised learning 
techniques to perform a final forecast of these events. A collection of articles (Zhang, Murakami, 
Khouakhi, & Luo, 2021) also presents concurrent extremes as a relevant open topic. This collection 
is composed of articles related to dynamical models, statistics or machine learning, all aiming to 
advance this topic. Two articles are particularly relevant from this collection. (Huang, et al., 2021) 
focused on solar radiation prediction, performing twelve different ML methods, identifying 
meteorological variables as crucial for the performance of the models and selecting XGboost and a 
stacking ensemble model as the best-performing methods. The models confirm that the maximum 
of the mean ground temperature increases with solar radiation, leading to the conclusion that solar 
radiation is one of the most impactful variables for concurrent extremes. Moreover, (Wang, Zhao, 
Gao, Zhang, & Feng, 2021) combine ML approaches (Isolation Forests) to identify the set of outliers, 
which can be a valid alternative to labelled datasets. In the paper, a statistical model is applied to 
identify the critical points. The experiment is conducted in China, studying the connection of 
extreme events between the Pearl River Delta and the Yangtze River Delta regions, considering TC, 
precipitation and temperature data. A significant correlation is found between the heatwaves in the 
Pearl River Delta and the extreme precipitation in the Yangtze River Delta identified by the method, 
suggesting that their occurrence can be considered as concurrent extremes. Some preliminary work 
has also been done for compound events and machine learning. For example, (Sweet & Zscheischler, 
2022) present a study where crop yield failure is explained through ML, with a data-driven approach 
based on RF that identifies the critical meteorological conditions that lead to a severe impact on 
agricultural yields. 
 
Since detection and forecast have very preliminary ML applications for these events, to the authors’ 
knowledge, causality and attribution have not been addressed in the literature so far. Indeed, they 
usually require a robust methodology for detection to add significance to the results. 
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7 CONCLUSIONS 

Detection, causation, and attribution of EE are difficult tasks, with many physical processes involved 
that are difficult to be represented by classical dynamical models. ML can enhance the capability to 
perform these tasks by exploiting the information brought by observational data, with the possibility 
to also consider simulated data and estimating the bias increased by the simulations. 
In particular, ML can provide efficient methods to process big climate datasets, with the purpose of 
extracting information and patterns from spatially and temporally distributed data of climatological 
variables associated with EE. 
 
Different challenges arise when dealing with spatio-temporal climatic datasets:  

• Highly correlated variables, with correlations decreasing with distance, which need to be 
discarded or aggregated to avoid high collinearity between features. 

• Time delays, that make more difficult the feature extraction process, since the value of a 
variable in a certain position may impact the target in a different position many timesteps 
later. 

• Highly non-linear dependencies, that lead to the necessity to consider a complex model and 
quantities that are able to evaluate non-linear relationships, rather than classical 
correlations. 

• High dimensional datasets, usually with more features than samples, that underline the 
necessity to reduce the dimensionality before estimating a ML model. 

 
This document provides an extensive overview of ML methods suitable to tackle the different 
challenges that arise in this context, with a methodological overview of dimensionality reduction, 
feature selection, supervised learning and causal inference. The first two subfields are proposed to 
reduce the huge number of variables and to select the relevant candidate drivers, to feed supervised 
learning techniques. Finally, causal inference may be able to give a causal insight of the identified 
dependencies. Then, the focus of this work is on a literature review of ML applications for the 
detection, causation and attribution of the EE addressed in CLINT. 
A major pillar of this document is indeed the state-of-the-art analysis to identify how the challenges 
that arise in this context are addressed in the literature for the EE under analysis. In particular, the 
methodologies addressed in Chapter 2 are applied in most of the works reviewed in the subsequent 
chapters, together with other methods such as oversampling and undersampling to address 
imbalanced classification or explainable AI algorithms to identify the relevant variables complex 
models (e.g., ANNs).  
 
From the literature review performed, it is possible to draw some conclusions that are common to 
all the EE analysed. On one hand, detection with ML is the most addressed task in the literature, 
with many applications that apply different feature selection techniques and a final prediction with 
ensemble or ANN-based algorithms. On the other hand, causation and attribution with ML are less 
inspected in the literature: the first is a relatively new field, where methods able to scale to huge 
dimensions have been introduced only recently and usually relies on strong assumptions, while 
attribution is a variation of detection focused on human impact and can be addressed with standard 
ML techniques.  
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There are also peculiarities that are specific of each extreme events. Detection of droughts is largely 
addressed in the literature, mostly focused on the detection of drought indices such as the SPI and 
the SPEI. Also detection of TCs is a well-studied topic and many aspects can be analysed: genesis, 
tracking, intensity, impact, together with the improvement of indices. A few works have been found 
on the detection of heatwaves and warm nights with ML, that mostly focus on the mean or the 
maximum temperatures. Fewer works have been identified for compound events and concurrent 
extremes, that have not been clearly formulated as ML problems yet. Finally, as already discussed, 
causation and attribution are in general less studied, with some relevant results found for droughts 
and TCs.  
 
In conclusion, this document is a review of the subfields of ML identified as relevant for the 
detection, causation and attribution of EE and of the existing applications available in the literature. 
This is a first step that allows to identify which methods can be used in the framework of CLINT and 
which methods need to be improved to provide successful results in the project, with the design of 
new algorithms. 
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