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EXECUTIVE SUMMARY 

This report describes Machine Learning (ML) developments for the study of climate change impacts 
on extreme events (EEs) in order to support the attribution of single EEs, the detection of observed 
trends, and the quantification of future changes in EEs and concurrent EEs. The AI-added value is 
assessed with respect to existing datasets and/or methods, and illustrated with examples covering 
the ample spectrum of spatio-temporal scales and types of EEs considered in CLINT, from heat 
waves (HWs) at hotspot area to concurrent hot-dry EEs at continental scale.  
 
First, two AI-based algorithms for attribution of EEs contributing to Deliverable 2.3 are presented. 
The first one combines Autoencoders and the classical Analogue Method (AE‐AM) to quantify 
climate change influences on EEs by yielding a probabilistic reconstruction of meteorological fields 
associated with EEs for two periods with different levels of anthropogenic forcing. By encoding 
relevant information of predictor fields, the AE‐AM outperforms the classical AM in reconstructing 
major historical European HWs, and detects climate change signals in a selection of historical EEs. 
The second AI-based model for attribution uses a Variational Autoencoder (VAE) for a probabilistic 
detection of climate change signals in the spatio-temporal evolving patterns of EEs. The learning of 
the VAE from a simulated natural world is employed to reconstruct a naturalised version of EEs that 
occur in the present climate. As illustrated in a selection of simulated HWs, the VAE arises as a 
powerful tool for near real-time attribution.  
 
Secondly, the report describes the results of an AI-based algorithm to fill gaps in observational 
datasets (Deliverable 2.2). The AI model, a U-Net with partial convolutional layers, is trained with 
complete datasets (e.g. historical runs of Global Climate Models, GCMs). When applied to the 
monthly extreme temperature indices of HadEX (1901-2018), the algorithm produces consistent 
results and outperforms traditional infilling algorithms, being very effective in periods and regions 
with a large amount of missing information. The completed dataset provides a long record of 
observational series with continuous spatial coverage at a horizontal resolution similar to that of 
historical reanalyses for an improved assessment of regional trends in EEs. The inspection of the 
infilled product reveals more complex historical patterns of extreme temperature indices than those 
reported before.  
 
Finally, an AI model contributing to Deliverable 2.3 is developed for the construction of storylines 
(i.e. feasible climate change responses in EEs from the combined effect of changes in relevant 
drivers). The identification of drivers follows two complementary strategies: spatial clustering for 
dimensionality reduction and evolutionary algorithms for an optimised feature extraction. The novel 
use of Common Warming States for the computation of changes in EEs and their drivers further 
circumvents model bias issues. As an illustration, the AI model is applied to summer HWs in the Po 
Valley. The large spread of future projections is reduced to four storylines, which entail substantial 
differences depending on the future evolution of southwestern European precipitation and North 
Atlantic pressure. Storylines are constructed for summer hot-dry concurrent EEs in central Europe, 
which require specific AI-based developments to account for the multivariate nature of concurrent 
EEs, state-dependent feature importance and non-linear relationships between the drivers. For 
most storylines hot and dry conditions become more severe, but their future evolution is largely 
mediated by changes in summer atmospheric circulation and secondarily by a spring dipole in sea 
surface temperatures. 
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Our results highlight the added value of AI for enhancing attribution, trend detection and the 
identification of drivers of EEs, underlining at the same time the need for additional work on process 
understanding. In this sense, future steps should build upon hybrid approaches / explainable AI 
models and move towards the impacts of EEs. Efforts are underway to expand CLINT experience to 
other pilot areas and EEs, including the attribution of EEs in the real world, the detection of trends 
for challenging extreme indices (e.g. precipitation), or the identification of drivers and their 
dependencies for future EEs and concurrent EEs in other European regions. 
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1. INTRODUCTION 

Work Package (WP) 5 (Attribution Analysis and Future Projections of Extreme Events) aims to 
explore Machine Learning (ML) approaches for the study of Extreme Events (EE), in particular their 
links with anthropogenic forcing and future changes. This goal is aligned with Objective 2 in CLINT, 
pursuing the development of Artificial Intelligence (AI)-enhanced Climate Science to support the 
attribution of single EEs and their observed trends to man-made climate change, and the 
quantification of future changes in EEs. WP5 is structured in three Tasks, targeting the attribution 
of individual EEs (Task 5.1), observed trends (Task 5.2) and future changes (Task 5.3) in EEs and 
concurrent EEs, respectively (see Table 1). This report is the final deliverable of WP5, describing the 
results from the work carried out in Tasks 5.1, 5.2 and 5.3.  
 
AI/ML techniques have recently been applied to identify anthropogenic signals in the global spatial 
patterns of annual mean temperature and precipitation (e.g., Barnes et al. 2019), to evaluate the 
relative contribution of natural and anthropogenic forcings to global warming (e.g. Pasini et al. 
2017), or to map the evidence of anthropogenic influences in mean temperature and precipitation 
(e.g. Callaghan et al. 2021). However, to the best of our knowledge, AI/ML algorithms have not been 
explicitly applied to quantify climate change influences on individual EEs, revisit the observed trends 
in EEs or construct feasible (driver-based) future scenarios of changes in EEs and concurrent EEs. 
Therefore, to assess the potential added value of AI on these issues, a three-step framework has 
been designed in WP5 (Figure 1): 
 

 
Figure 1 Three-step CLINT framework: review, benchmarking and AI-based developments. 

 
1. Review of existing datasets or approaches (what has been done?): This step aims to provide a 
critical review in order to assess current capabilities, challenges and ways of improvement for 
attribution, trend detection and future changes in EEs and concurrent EEs (Table 1). The review 
relied on papers published in peer-reviewed journals, including review and perspective articles, as 
well as public reports, books and open-source collections of case studies. 
 
2. Benchmarking (what can be done?): This step identifies ‘windows of opportunity’ for a ML-based 
improvement in the attribution of EEs, and the quantification of their observed trends and future 
projections. The specific aspects that are subject to AI-enhancement must be: i) feasible to 
implement, thus requiring coordination with WP2 and WP8 for the design of AI models; 2) 
interpretable to provide process-based understanding of EEs (in support of WP3 and WP4); 3) 
informative for the impacted sectors (WP6 and WP7). Some of the applications developed by CLINT 
are novel, whereas others represent improvements with respect to existing ones, in both cases 
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providing an AI-added value. The specific challenge varies with the Task considered (Table 1), 
ranging from methods (Task 5.1), datasets (Task 5.2) and understanding (Task 5.3).  
 
3. AI-based applications (what is done in CLINT?): This step aims to explore, develop and implement 
the most suitable AI-based models to address the specific issues in EEs and concurrent EEs that have 
been identified in Step 2. It implied the adaptation of existing algorithms to the specific problem at 
hand, and in some cases, the development of new ones. In general, for the same problem multiple 
approaches, algorithms and/or architectures have been considered and tested. However, we only 
discuss herein the definitive ones at this stage (Table 1). AI-based models were designed to be 
portable and transferable so that, in principle, they can be applied to different regions, seasons 
and/or EEs. However, not all of these combinations have been tested, and one should not expect 
that the algorithms serve for all purposes. In these cases, hyper-parameter tuning or transfer 
learning can be applied. The chosen AI-based models vary in complexity, ranging from AutoEncoders 
(AEs) and Variational AutoEncoders (VAEs, Task 5.1), to U-Net Neural Networks (NNs) with 
convolutional layers (Task 5.2), and a combination of deep-learning (DL) algorithms for an optimised 
feature extraction (e.g. Coral Reef Optimisation, CRO) with ML techniques for dimensionality 
reduction (Task 5.3). Details of the ML methods and algorithms can be found in the Deliverable (D) 
D2.2 (ML algorithms for EE forecast and reconstruction) and D2.3 (ML algorithms for climate 
science). 
 
Table 1 List of tasks addressed in WP5, along with their objectives, benchmarks, ML approaches, expected results and 
the type of EEs described in this report.   

Task Objective Benchmark ML approach Expected result EE considered  

T5.1 
Climate change 
signals in 
individual EEs  

Reliance on 
‘framing’ choices 
(spatio-temporal 
scales, event 
definition) 

Hybrid model: 
autoencoder - 
analogue method 
 
Variational 
Autoencoder  

Novel approaches 
for the attribution 
of the spatio-
temporal evolution 
of individual EEs 

Summer heat 
waves and heavy 
precipitation at 
subcontinental 
(regional) scales 

T5.2 

Trends in the 
spatial patterns 
of extreme 
indices 

HadEX3 database 
of extreme 
indices 

U-Net Neural Network  
with partial 
convolutions 

Infilled datasets for 
a better detection 
of historical trends 
in EEs 

Monthly frequency 
of hot and cold 
days over Europe 
all year-round 

T5.3 

Future changes 
of EEs based on 
robust responses 
in their drivers 

Identification of 
climate change 
drivers of EEs 

Dimensionality 
reduction & optimised 
feature extraction  
 
Kernel Regularised 
Generalised Canonical 
Correlation Analysis 

Unreported 
remote drivers and 
best / worst-case 
scenarios of future 
changes in EEs 

Summer heat 
waves in the Po 
valley  
 
 
Summer hot-dry 
days in central 
Europe 

 
This report will focus on the application of ML algorithms for the attribution, detection of historical 
trends and future changes of EEs (Step 3). Steps 1 and 2 have already been addressed, and can be 
found in previous reports, including D5.1 (EE attribution), and Milestone (MS) MS25 (Historical EE 
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selected for attribution studies), MS26 (Trends in EEs detected) and MS27 (Storylines of projected 
changes in each type of EE constructed). Except for the datasets (Section 2), the rest of the report, 
including the Methodology (Section 3) and Results (Section 4) will be divided following the three 
tasks of WP5, as they employ different ML algorithms and have their own challenges.  
 
Not all types of EEs, regions/hotspots, or seasons that may be of interest have been described. 
Instead, a prioritised selection has been made, trying to cover the ample spectrum of spatio-
temporal scales and types of EEs considered in CLINT. They range from heat waves (HWs) at hotspot 
level (e.g. Po Valley) to concurrent hot-dry EEs at large continental scale, which can be informative 
for WP7 and WP6, respectively. Preference is given to HWs and droughts (DRs), since they represent 
one of the main problems derived from climate change, due to the observed and projected increase 
in their frequency, duration and/or severity (Seneviratne et al. 2021). Moreover, these EEs can occur 
in isolation or in combination (i.e. concurrent EEs), magnifying their effects, particularly in 
transitional climates characterised by strong land-atmosphere feedbacks such as Europe. Indeed, 
combined heat and dryness is the most studied type of concurrent EE because of its demonstrated 
impacts on socio-economic sectors (see e.g. Hao et al. 2022 for a review). In the food sector, for 
example, combined HWs and DRs can reduce cereal yields by 9-10% at national level, and explain 
40% of the yield interannual variability (Lesk et al. 2016; Zampieri et al. 2017). 
  
Based on the successive reports of the Intergovernmental Panel on Climate Change (IPCC), there is 
a widespread agreement that hot-dry days will increase in both intensity and frequency (IPCC 2021). 
Recent studies for central Europe have indicated, for instance, that summers like the record-
breaking one in 2018 could become the norm in the middle century (Toreti et al. 2019). The 
increasing trend in hot-dry days is dominated by the intensification of HWs (Wu et al. 2021), which 
can occur regardless of DR occurrence. HWs cause devastating impacts on human health, 
ecosystems, agriculture and economy.  
  
Therefore, as an illustration of the ML algorithms developed in WP5, this deliverable will pay special 
attention to HWs (or temperature extremes in general) as isolated EEs, and hot-dry EEs, as 
concurrent EEs, although Heavy precipitation (HP) is also considered. The analysis of HWs will focus 
on continental scales relevant to WP6, as well as regional vulnerable hotspots such as the Po Valley, 
which is a sensitive area due to the large population and concentration of agricultural and industrial 
activities. The analysis of concurrent EEs will consider hot-dry days in central Europe (including Rhine 
Delta and Lake Como basin hotspots), where summer HWs tend to be strongly coupled to DRs, and 
can significantly harm agricultural crops and hydrological resources.  
  

1.1 Attribution of EEs 

EE attribution quantifies the influence of climate change on the probability of occurrence, 
magnitude or driving factors of a particular EE (NAS 2016; Shepherd 2016; Stott et al. 2016; Otto 
2017). Climate change influences can be inferred by comparing the distributions of a class of EE 
(similar to the observed one) in two climates, one with and one without human influences, also 
referred to as factual world (the actual world with anthropogenic forcings) and counterfactual world 
(the world that would have been without climate change). D5.1 reviewed existing knowledge, data 
and approaches for attribution of EEs to climate change and provided a database collection of about 
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one hundred attribution case studies of different types of EEs, setting up the roadmap for avenues 
on the use of ML techniques in attribution.  
 
Therein, the analogue method (AM) was presented as a powerful method for fast attribution of EEs, 
which can be applied to observations and Global Climate Model (GCM) simulations (e.g., Cattiaux et 
al. 2010; Yiou et al. 2017; Jézéquel et al. 2018; Faranda et al 2022). Besides attribution, the AM is a 
classical technique for field reconstruction (Zorita and Von Storch 1999). In essence, this is a k‐
nearest neighbour method, which relies on the fact that two similar atmospheric states (predictors) 
cause similar surface conditions (target). Specifically, two days are considered analogues when their 
atmospheric states (or any other conditional factor of the target field to reconstruct) resemble each 
other in terms of a similarity criterion. These analogues are considered random ‘replicates’, which 
allow reconstructing the expected distribution of the target variable.  
 
In EE attribution, the AM searches for historical states of the atmospheric circulation that resemble 
the one observed during the EE. Changes in the EE are inferred by comparing the distributions of 
the target reconstructed from analogues of two periods with different levels of anthropogenic 
forcings. That way, the AM reconstructs how the EE would have been in recent and past periods 
given the occurrence of the same conditional factor. As the dynamics are the same in both periods, 
the difference emphasises the influence of thermodynamic changes on the EE, which are easier to 
detect and attribute to climate change (Shepherd 2016).  
 
Due to the efficiency and low computational cost of AI models, they have the potential of providing 
fast (near real-time) attribution, circumventing some of the current limitations in attribution (e.g. 
the need of time-consuming GCM simulations), and bringing novel developments (e.g. the detection 
of climate change signals in the spatio-temporal pattern of the EE). In particular, an explicit 
attribution on the evolving patterns of the EE would allow extending the classical attribution 
question to other attributes of the EE (e.g., duration, spatial extent, trajectory, etc.), and minimise 
the sensitivity of the results to the EE definition (see D5.1 for more details). 
  
This deliverable describes two novel AI-based approaches for attribution. The first one aims to 
improve the classical AM through the use of ML algorithms for a more efficient search of analogues 
than in the classical AM. This method will be tested in two high-impact EEs. A pure AI-based 
approach (under development) will also be introduced, since it has the potential of providing near-
real-time attribution of the changes in the spatio-temporal patterns of individual EEs.  
 

1.2 Trends in EEs 

Task 5.2 focuses on ML methods developed in Task 2.5 to detect observed trends in EEs and related 
extreme indices. For this purpose, different observational datasets widely employed by the climate 
community have been investigated. These datasets contain diverse climate variables that are 
derived from weather stations and then interpolated onto a globally uniform spatial grid. Due to 
inherent limitations of observational measurements (see D2.2), these datasets exhibit missing 
values that vary in space and time. Data scarcity is especially prominent before the mid-20th century 
and poses major challenges in the analysis of trends in EEs, which is essential for elaborating 
effective climate risk assessments and policies. To circumvent this problem, it is common to infill 
the missing data using statistical methods such as the Angular Distance Weighting (ADW, Shepard 
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1968), the thin plate spline interpolation (Hutchinson 1995) or Kriging (Oliver and Webster 1990). 
Nevertheless, these methods suffer from well-known limitations that reduce their effectiveness 
when applied to climate data with a large amount of missing values. 
 
The emergence of DL-based inpainting techniques in the past years offered the possibility to 
overcome these limitations through the application of transfer learning with GCM or reanalysis data 
(Shibata et al. 2018; Dong et al. 2019; Geiss and Hardin 2021; Kadow et al. 2020; Hu et al. 2023; Yao 
et al. 2023; Olonscheck et al. 2023). For instance, the global reconstruction of the HadCRUT4 
monthly temperature dataset (Morice et al. 2021) by Kadow et al. (2020) highlights the remarkable 
performance of NNs compared to Kriging and Principal Component Analysis (PCA). This DL 
methodology, based on the U-Net architecture (Ronneberger et al. 2015) and partial convolutional 
layers (Liu et al. 2018), has been adapted in Task 2.5, and its Python implementation is available at 
https://github.com/FREVA-CLINT/climatereconstructionAI. The method, described in D2.2, has 
been applied successfully to the reconstruction of observational datasets of different monthly mean 
variables (e.g. temperature and precipitation). This deliverable focusses on its application to 
extreme indices, as is the scope of CLINT, describing the characteristics of the observational dataset, 
the details of the training and evaluation of the AI models used for the reconstruction and analysis 
of the results. 
 

1.3 Future changes in EEs and concurrent EEs 

Task 5.3 aims to investigate future projections of EEs and their interaction with changes that 
contextually occur in the drivers of the EEs themselves. EEs and concurrent EEs are linked to large-
scale climate variables, which are in turn often influenced by climate change (Horton et al. 2015). 
Understanding the relationship between large-scale drivers and EEs can help to improve predictions 
and the understanding of future evolution of EEs. The focal point of this Task is the identification of 
drivers of EEs and the quantification of changes in the drivers and their effects on EEs. This analysis 
has been performed using storylines (Shepherd et al. 2018; Zappa 2019), which represent an 
expected outcome based on one physically self-consistent combination of climate change responses 
in certain drivers of regional climate (Zappa and Shepherd 2017). This technique aims at dealing 
with GCM uncertainty by selecting plausible future climate configurations and inspecting the 
different evolutions of EE that occur in them. These storylines span the range of uncertainty within 
the multi-model ensemble of future projections through several combinations of changes in a 
manageable number of drivers. The drivers of an EE can be simplified in the form of time series 
describing a large-scale internal phenomenon (such as the North Atlantic Oscillation or El Niño-
Southern Oscillation) or a climate variable averaged over a specific area. 
 
Storylines help provide further insight into the driving factors of EEs and their regional implications. 
Several studies have employed this approach to discretise the uncertainty in different regional 
indicators (Mindlin et al. 2020; Monerie et al. 2023). Storylines of dynamical variables such as 
precipitation and wind are typically generated from the combined response of remote drivers and 
global teleconnections of the atmospheric circulation (Woollings 2010). Differently, 
thermodynamically-driven changes or EEs are affected by regional drivers (e.g. land-atmosphere 
coupling) and remote factors influencing regional conditions (e.g. sea surface temperatures, SSTs) 
(Garrido-Pérez et al. 2024 represents a recent application within CLINT).  
 

https://github.com/FREVA-CLINT/climatereconstructionAI
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Storylines rely on the identification of robust drivers of EEs. AI algorithms can help in this task 
through (see Salcedo-Sanz et al. 2024): i) dimensionality reduction techniques for the construction 
of candidate drivers; ii) optimisation algorithms for feature selection in high-combinatorial problems 
in order to find the best set of drivers; iii) advanced regression procedures to account for non-linear 
interactions between the drivers. This combination of AI-based tools allows to browse large datasets 
of candidate drivers and identify the most relevant ones for each type of EE.  
 
This deliverable illustrates applications on the AI-based identification of relevant drivers and the 
construction of future storylines for two types of EEs: HWs in a CLINT hotspot (Po Valley), and 
concurrent (hot and dry) EEs at European scales, which are useful for WP7 and WP6, respectively. 
The methods used to define these EEs and their drivers have been applied to reanalysis data, which 
are used as a benchmark for the evaluation of GCMs, therefore identifying the GCMs that reproduce 
the relationships between EE and drivers found on reanalysis. The responses of these drivers to 
climate change are then combined in a meaningful way to construct storylines of future changes in 
EEs and concurrent EEs.  

2. DATASETS 

A summary of the datasets employed in this report is presented in Table 2.  
 
Table 2 List of observational, reanalysis and GCM datasets used in this report. Name = short name of the dataset, Source 
= original producer, handled by = partner doing the download/extraction of the dataset over the region of interest, 
processed by = partner applying “model output statistics” if any (downscaling, calibration etc.), stored by = partner 
distributing the data for the consortium partners (e.g. centralised CLINT repository at DKRZ), used by = partner using 
the data (case study). 

Name Source 
Handled  

by 
Processed  

by 
Stored  

by 
Used 

by 

ERA5 C3S-CDS CMCC   N/A CMCC CMCC, JLU, CSIC, UAH  

HadEx MetOffice DKRZ DKRZ DKRZ DKRZ 

MPI-ESM-MR Hereon Hereon Hereon DKRZ CMCC, Hereon 

GCMs CMIP6 DKRZ N/A DKRZ CMCC, JLU, DKRZ, CSIC 

 

2.1 Observational products 

Observational products of monthly extreme indices with missing values are infilled in Task 5.2 using 
an AI-based model. They are obtained from the HadEX3 dataset (Dunn et al. 2020), which provides 
29 land-based extreme indices derived from daily precipitation and temperature records of 30,000 
weather stations since 1901. These monthly indices follow the definition of the Expert Team on 
Climate Change Detection and Indices (ETCCDI). They are computed at the weather stations and 
have undergone quality checks before interpolation onto the regular grid with the ADW method. 
 
Extreme indices of the HadEX3 data, available at https://www.metoffice.gov.uk/hadobs/hadex3  
(last access 12/10/2022), are not suitable for AI-based infilling, since they have already been 
interpolated with the ADW approach. Therefore, an intermediate product of the dataset has been 

https://www.metoffice.gov.uk/hadobs/hadex3
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created using the Climate Anomaly Method (CAM, Jones 1994), which avoids interpolation. This 
method computes monthly indices from in-situ data by using the Climpact2 software before its 
conversion to a gridded form with CAM. The resulting dataset, named HadEX-CAM, focuses on hot 
and cold temperature extremes across the European continent, which are defined in Section 3.1.  
 
Quality controls, including the identification and exclusion of anomalous data, are conducted to 
ensure the integrity of the dataset, which covers the 1901-2018 period. As shown in Figure 2, the 
resulting extreme indices present a large amount of missing values, providing a challenging 
benchmark for our AI method. 
 

 
Figure 2 Time evolution of the percentage of valid values in the original HadEX-CAM dataset over Europe from January 

1901 to December 2018. Colour lines represent different extreme indices. Note that the time series tend to overlap. 
For better visualisation, they are plotted with colour lines of different thickness. 100% of valid values corresponds to 

the total number of values per month covering the land, i.e. 763 values.  
 

2.2 Reanalyses 

In all tasks of WP5, we use data from the ERA5 reanalysis data (Hersbach et al. 2020) over the 1940-
2022 period. This reanalysis is employed as a ground truth and for training some AI-based models 
in real world (benchmarking). In some applications, it is also used for evaluation of the results 
retrieved from GCMs. The variables, spatial resolution and domain and temporal frequency of the 
data vary depending on the application (details are provided in the corresponding section).  
 

2.3 Global Climate Models 

Simulated data come from GCMs participating in the Climate Model Intercomparison Project phase 
6 (CMIP6). CMIP6 data were obtained from the Earth System Grid Federation node of DKRZ, 
accessible on the Levante platform (Table 3).  
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Table 3 Details of the CMIP6 data used in WP5. (SSP = all SSP scenarios; mmb01 = member number one). 

Model Number of members Available simulations Nominal resolution 

AWI-CM-1-1-MR 5 
Historical, SSP (mmb01), 

SSP370 (others)  
100 km 

BCC-CSM2-MR 1 Historical, SSP 100 km 

CAMS-CSM1-0 1 Historical, SSP 100 km 

CMCC-ESM2 1 
Historical, SSP126, SSP245, 

SSP585 
100 km 

CNRM-CM6-1 3 
Historical, SSP (mmb01), 

SSP370 (other) 
250 km 

CNRM-CM6-1-HR 1 Historical 50 km 

EC-Earth3 21 
 Historical, various SSP for 

each mmb 
100 km 

EC-Earth3-CC 1 Historical 100 km 

EC-Earth3-Veg 1 Historical 100 km 

EC-Earth3-AerChem 1 Historical 100 km 

GFDL-CM4 1 Historical, SSP245, SSP585 100 km 

HadGEM3-GC31-MM 1 Historical 100 km 

HadGEM3-GC31-LL 10 Historical, Natural, SSP245 250 km 

INM-CM4-8 1 Historical, all 100 km 

MPI-ESM1-2-HR 10 
Historical, SSP (mmb01), 

SSP370(others) 
100 km 

MRI-ESM2-0 5 
Historical, SSP (mmb01), 

SSP370(others) 
100 km 

NorESM2-MM 1 Historical, all 100 km 

 
Task 5.1 also employs simulated data from the HadGEM3-GC31-LL GCM. In this case, historical and 
natural simulations (both covering 1850-2014) are considered, which are commonly employed in 
the CMIP6-component Detection & Attribution Model Intercomparison Project to facilitate an 
improved estimation of the climate response to anthropogenic forcings over the historical period 
(Gillett et al. 2016). Natural forcing simulations are equivalent to historical runs in that they impose 
the observed evolution of natural forcings (solar, volcanic, etc.), but anthropogenic forcings are fixed 
at preindustrial levels. Therefore, natural experiments allow inferring how the historical period 
could have been without increasing levels of anthropogenic forcings (but with the same natural 
forcings as in observations). The HadGEM3-GC31-LL model has been selected because it provides a 
high number of realisations. Furthermore, it performs well in the simulation of many EEs over 
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Europe, and its atmospheric-only version, HadGEM3-A, is the core of the near-real time attribution 
system of the Hadley Centre employed in many attribution studies (e.g., Ciavarella et al. 2018). 
 
Historical simulations (1850-2014) of eight GCMs participating in CMIP6 have been used as an 
independent and complete dataset to train the AI-based infilling models in Task 5.2. In this case, 
GCMs are selected by imposing a minimum horizontal resolution that must be higher or equal to 
that of the target (HadEX-CAM) dataset (see Table 3). 
 
GCM data are also used for the calculation of EEs, concurrent EEs and drivers in Task 5.3. They 
include historical experiments and Shared Socio-economic Pathway (SSP) scenarios (2015-2100) of 
CMIP6 GCMs. Future climate projections include the ScenarioMIP pathways: SSP1-2.6, SSP2-4.5, 
SSP3-7.0 and SSP5-8.5. The computation of EEs and drivers in GCMs follows the same approach as 
in ERA5. Only members and experiments with complete series are selected. In some cases, the low 
resolution of the GCM provided an insufficient number of grid points for the calculation of EEs. For 
this reason, only models with horizontal resolution finer than ~150 km are considered (Table 3).  

3. METHODS 

3.1 Extreme indices and concurrent events 

Temperature extreme indices: For the analysis of trends (Task 5.2), we use the HadEX-CAM dataset 
(Section 2.1), which includes monthly temperature extreme indices, based on daily maximum (TX) 
and daily minimum (TN) temperature:  
 
· Warm days: the percentage of days in the month when the TX is higher than the 90th percentile  
· Warm nights: the percentage of days in the month when the TN is higher than the 90th percentile  
· Cool days: the percentage of days in the month when the TX is lower than the 10th percentile  
· Cool nights: the percentage of days in the month when the TN is lower than the 10th percentile  
 
The daily percentiles are calculated over a 1981-2010 base period using a 5-day window centred on 
each calendar day, following the ETCCDI definition. 
 
HWs: HW indices were calculated for ERA5 and each combination of model, member and scenario 
(from now on generally referred to as simulation) by using the scripts developed in D2.2. HW 
definition relies on the daily series of TX exceedances above a seasonally-varying threshold, defined 
as the daily 90th percentile of TX over a baseline period. From these series, various yearly indices 
are obtained, such as the 90th percentile of TX (TX90p), the number of days above the 90th 
percentile (NDQ90), or the Heat Wave Magnitude Index (HWMI; Russo et al. 2015). The series of TX 
exceedances determines HW occurrence, which is used as a target for the AI-based identification of 
drivers (see Section 3.5), while the series of yearly indices are employed for the evaluation of GCMs 
in the future climate and the construction of storylines (Section 4.3). The HWMI is used to identify 
the top European HWs of 1950-2010, which are employed to test the performance of the hybrid 
model for attribution (Section 3.3). For the computation of percentiles in ERA5, the baseline is the 
1981-2010 period, which has a global mean near-surface temperature (GSAT) of 14.2 °C. For each 
GCM simulation, the 30-yr period with the same GSAT as ERA5 is chosen as baseline (see Section 
3.2).  
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Bivariate heat magnitude day (BVHMD): To characterise HWs in the context of concurrent EEs, we 
extend the Heat Magnitude Day of Zampieri et al. (2017) by including both TX and TN. This allows 
us to describe temperature-related impacts more comprehensively, since some sectors are also 
affected by TN (Perkins and Alexander 2013). These methods and the derived BVHMD will be 
described in D3.3 (AI-enhanced Extreme Events detection).  
 
Non-parametric SPEI (NPSPEI): For DR detection, we use our recently proposed non-parametric 
version of the Standardised Precipitation and Evapotranspiration Index (SPEI). This approach uses a 
non-parametric local likelihood-based method (Loader 1996; Geenens et al. 2017) to estimate the 
distribution function instead of a parametric distribution like the classical SPEI (Vicente-Serrano et 
al. 2010). More details can be found in D3.1 (EE Detection). The index is based on water balance 
(WB), defined as the difference of total precipitation and potential evapotranspiration. For the 
latter, we use the Penman-Monteith approach (Allen et al. 1998). This physically-based approach is 
recommended by the IPCC for studying DRs, as temperature-based approximations (e.g., 
Hargreaves, Thornthwaite) tend to overestimate trends and the magnitude of DRs, especially in the 
context of global warming. In the report, we will use the NPSPEI-1 for DR characterization, here 
called NPSPEI for ease of notation, which takes into account the monthly accumulated water 
unbalance. 
 
Figure 3 shows the co-variability of BVHMD and NPSPEI for the summers (June-to-August) of 1981-
2010 in ERA5, demonstrating the capability of these indices to capture the HW-DR dependence. 
 

 
Figure 3 Spearman correlation of monthly NPSPEI-1 and bivariate HMD for June, July and August (JJA) 1981-2010. The 

black square identifies the central European region [6°W-20°E, 45-56°N] employed for the assessment of hot-dry 
concurrent EEs. 

 
Concurrent extreme event index: The Concurrent Extreme Event Index (CEEI) is used for the analysis 
of concurrent EEs. It is a one-dimensional unitless time series constructed from the above 
mentioned HW- and DR-related indices by using Kernel regularised generalised canonical 
correlation analysis (KRGCCA; Tenenhaus et al. 2015, 2017). This method identifies the dominant 
patterns of BVHMD and NPSPEI, as well as those of selected drivers (herein SST and 500 hPa 
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geopotential height, Z500), while concurrently maximising the correlation among these 
components. By examining the interactions between BVHMD and NPSPEI, the CEEI reflects the 
dominant patterns of the combined space of HW and DR indices. That way, the CEEI characterises 
the connection of HWs and DRs: positive values indicate warm and dry conditions, with increasing 
values denoting increasing severity. The CEEI will also be indirectly linked to the drivers of these two 
EEs through correlation properties. See D2.2 for technical details. 
 

3.2 Common Warming States 

The evaluation of CMIP6 GCMs (with respect to ERA5) is performed by considering the 30-yr periods 
in which each GCM simulates current climate conditions. These reference periods (and the 
corresponding future climate periods) are termed Common Warming States (CWSs). They require 
the computation of GSAT and provide an alternative and complementary approach for model 
evaluation and projections to traditional methods based on time-fixed periods or Global Warming 
Levels (GWLs). The simulated period set as reference of current conditions is directly compared to 
the benchmark (ERA5) and used for GCM validation. The definition of future climate periods builds 
upon that of current conditions. 
 

 
Figure 4 Yearly GSAT (with 30-year running mean) of a sample of GCMs and ERA5. Intersections with horizontal lines 

indicate the central year of the corresponding CWSs. 
 
CWSs identify periods in which the GCMs have the same (predefined) absolute value of GSAT. This 
approach aims at assessing the effects of global conditions on EEs (regardless of the pre-industrial 
values simulated by the GCM). In particular, CWSs allow us to inspect how EE occurrence and 
intensity change when the GSAT reaches a specific threshold. As current climate, we consider the 
1981-2010 period, which has a GSAT of 14.2 °C in ERA5. Then, for each GCM simulation we identify 
the 30-yr period when this GSAT value is simulated, which is referred to as CWS14.2. Note that 
simulations can have their CWS14.2 ending after 2014. In that case the CWS14.2 is determined for 
each scenario separately. Similarly, for future projections a threshold of 15 °C (CWS15) is 
established.  The process is illustrated in Figure 4, which shows the 30-yr centred periods in which 
different GCMs cross the aforementioned periods representative of current (CWS14.2) and future 



 
CLINT - CLIMATE INTELLIGENCE 

Extreme events detection, attribution and adaptation 
design using machine learning 

EU H2020 Project Grant #101003876 

 

AI-ENHANCED ATTRIBUTION AND PROJECTIONS OF EXTREME EVENTS 23 

 

(CWS15) conditions. This novel approach is chosen as an alternative framework to the well-known 
GWLs, which are defined as periods with the same GSAT increase over the pre-industrial average.  
 

3.3 ML algorithms for attribution  

We consider two AI-based algorithms for attribution: a hybrid approach, AE-AM (in collaboration 
with WP4), combining AE with the classical AM, and a pure AI-based method (VAE). As stated in the 
introduction, the AM reconstructs the conditions expected during the EE (target) by considering 
analogues, i.e. days with similar conditional factors (predictors) to the one observed at the time of 
the EE (bottom panel in Figure 5). For each calendar day d of the EE, we identify the best K = 20 
analogues of the ERA5 record (1940-2022), excluding the year of the EE. The similarity metric is the 
root mean squared error (RMSE) of the atmospheric circulation over a predefined spatial domain. 
As a predictor, different atmospheric circulation variables are tested, including sea level pressure 
(SLP) and Z500, without reporting substantial differences. The distribution of the targeted field is 
reconstructed by randomly picking one of the K best analogues for each day of the EE, and repeating 
this process N = 1,000 times. The associated error is measured as the departure between the 
reconstructed and observed values.  
 

 
Figure 5 AE‐AM model (top) and classical AM (bottom). The EE under study at time t is defined by the variable F over 
the domain X. In the AE-AM approach F(X,t) feeds the trained encoder to obtain the latent space Z(t). The AM is then 

applied to obtain the reconstruction of F(X,t) by using the closest neighbours of F(X,t) (AM) and of Z(t) (AE-AM). 
Adapted from Pérez-Aracil et al. (2024) 

 
Recently, ML has been responsible for significant advances in AM-based modelling (Salcedo‐Sanz et 
al. 2024). As a joint effort of WP2, WP4 and WP5, CLINT has designed a novel ML‐based hybrid 
approach for the attribution of EEs, combining AEs and the AM. An AE is an unsupervised method 
that comprises two deep NNs, one to encode information (encoder) and the other to decode it 
(decoder). The intermediate (encoded) representation is called latent space, which provides a 
meaningful and compact representation of the input data, from which the original data can be 
reconstructed with the decoder. The hypothesis of the AE-AM is that the AM can find better 
analogues by working on this optimised space of reduced dimensionality than on spatially resolved 
fields of the predictor. The method has been developed by WP2 parners for WP4 and WP5. For 
details on the architecture of the AE-AM model, see D2.3 and Pérez-Aracil et al. (2024). The AE is 
trained in ERA5 data (excluding the observed EE), using the difference between the input and the 
decoded field as loss function. Once it has been trained, the encoder is employed for the 
reconstruction of the EE of interest: for each day of the EE, the encoder transforms the predictor 
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field to its latent space, and the AM searches for the K closest analogues in this reduced space (top 
panel in Figure 5). Note that the decoder is not used for reconstruction. Therefore, AE-AM and AM 
only differ in that they search analogues of the filtered and raw predictor fields, respectively, which 
makes the AE-AM highly interpretable.   
 
As the AM-based attribution relies on field reconstruction, the added value of the AE-AM method 
will be demonstrated by comparing the AM (benchmark) and AE-AM reconstructions of the TX fields 
observed during eight major European HWs (Pérez-Aracil et al. 2024). Table 4 lists the spatial 
domains used for the predictor (SLP) and target (TX) fields of each HW event, which vary from case 
to case. In a second stage, the AE-AM is applied for the attribution of a reduced number of selected 
EEs, including a HW and a heavy precipitation (HP) event. The attribution is performed by comparing 
the variables of these EEs (TX for HWs and precipitation for HP), as reconstructed by analogues from 
two periods with different levels of anthropogenic forcing: 1940-1980 (old or counterfactual world) 
and 1981-2022 (new or factual world). The difference between the reconstructions of the factual 
and counterfactual worlds is attributed to recent climate change. 
 
Table 4 Summary information of the HWs considered for the assessment of AE-AM vs. AM approaches. 

HW event Dates Mean TX (°C) SLP domain TX domain 

France 2003 01–19 Aug 28.4 [32–70]°N, [28°W–30°E] [42–50]°N, [6°W–8°E] 

Spain 1995 16–24 Jul 30.5 [32–70]°N, [28°W–30°E] [34–42]°N, [10°W–4°E] 

Greece 1987 18–27 Jul 30.2 [28–66]°N, [8°W–50°E] [34–44]°N, [18–32]°E 

Germany 2006 09–31 Jul 26.2 [24–72]°N, [28°W–30°E] [44–54]°N, [4°W–16°E] 

Poland 1994 21 Jul–11 Aug 28.8 [32–70]°N, [18°W–40°E] [48–56]°N, [14–26]°E 

Balkans 2007 15–28 Aug 29.2 [32–70]°N, [8°W–50°E] [40–52]°N, [18–42]°E 

Russia 2010 16 Jul – 19 Aug 32.6 [32–70]°N, [22–80] °E [38–60]°N, [40–60]°E 

Russia 1954 01–12 Jul 28.8 [32–70]°N, [8°W–50°E] [44–60]°N, [28–48]°E 

 

The second approach for attribution uses a VAE, which represents a probabilistic variant of the AE 
(Klampanos et al. 2018; Kingma and Welling 2019). In a VAE the representation of the latent space 
maps each input state into a probability distribution, from which a reconstruction ensemble is 
retrieved (instead of just one single decoded field, as in AEs). Describing the parameters of the latent 
space with probability distributions is highly desirable to account for uncertainty in reconstructions. 
VAEs (and AEs) can be used to detect anomalies, i.e. values in the input field that exceed a given 
threshold, usually inferred from the maximum reconstruction error during training (e.g. Camps-Valls 
et al. 2021). This rationale is employed in CLINT to detect anthropogenic signals in EEs (Figure 6).  
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Figure 6 Schematic representation of the VAE employed for attribution in CLINT. 

 
To do this, the VAE is trained with daily fields (herein TX) from an ensemble of natural simulations 
(i.e. without anthropogenic forcings). After training, it is used to reconstruct and detect anomalies 
in daily fields from historical experiments of the same GCM (i.e. with anthropogenic forcings). For a 
given input field of the historical run (e.g. the TX field of a HW), the VAE will reconstruct the features 
of the natural world learnt during the training, thus delivering an ensemble of naturalised 
reconstructions of the input field (e.g. multiple realisations of how the EE could have been without 
climate change). If the threshold for the anomaly detection is chosen as the maximum 
reconstruction error during training, the detected anomalies will represent virtually impossible 
outcomes for a natural world. The architecture of the VAE is described in D2.3. For testing this AI-
based attribution approach, we have used an ensemble of historical and natural simulations of the 
HadGEM3-GC31-LL GCM (Section 2.3). The VAE is trained with two input channels: daily European 
maps of TX for the summer seasons of the natural simulations (1850-2014), and the corresponding 
calendar day to account for intra-seasonal variations. After training, the VAE is applied to detect 
climate change signals in HWs simulated by the GCM in the historical simulation. 
 

3.4 ML algorithms for reconstruction  

In recent years, DL techniques have emerged as efficient approaches to tackle diverse problems in 
climate science. Examples of these DL models are densely connected networks, convolutional NNs 
(convnets) and recurrent NNs. The DL-based method employed for the reconstruction of the HadEX-
CAM observational dataset (Section 2.1) is detailed in D2.2. Herein, we summarise the main 
characteristics of the method, as well as the features relevant to the reconstruction of the specific 
variables under consideration in Task 5.2. 
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As depicted in Figure 7, the algorithm employs a U-Net that is made of partial convolutional layers. 
As shown by Liu et al. (2018), this type of convolutions is more effective in the infilling of large and 
irregular regions of missing values compared to standard convolutions. This characteristic is 
particularly beneficial for the reconstruction of observed climate variables, since the data can be 
very scarce in earlier periods, as in the HadEX-CAM dataset. 
 

 
Figure 7 Example of U-Net architecture used to reconstruct the HadEX-CAM dataset. 

 
Multiple loss functions can be employed in combination with this architecture of NNs (the specific 
choice is expected to depend on the dataset). Two types of loss functions have been implemented: 
a standard Mean Absolute Error (MAE) loss that is more relevant for pixel-level accuracy; and a 
sophisticated loss function (Liu et al. 2018) that favours physical realism. The latter, hereafter 
referred to as inpainting loss function, is a combination of five terms whose relative contribution to 
the loss function is determined empirically. For a full description of the terms, see D2.2. 
 
The hyperparameters of the infilling models, such as the number of encoding/decoding layers or 
the learning rate, are also expected to be specific to each dataset and hence they have been 
determined by performing a hyperparameter search. Additionally, some optional features have 
been implemented, such as the data normalisation, the circular padding for global data and the 
binding of the predictions to a limited range of values. They permit to improve the accuracy of the 
U-Net and can be used when they are relevant to the characteristics of the dataset. 
 
Given the limited length and the incomplete nature of the observational datasets, it is required to 
employ a transfer learning methodology by training the infilling AI models in an independent 
complete dataset, herein taken from historical simulations of CMIP6 GCMs (Section 2.3). The GCM 
data is pre-processed to match the definition and characteristics of the observational HadEX-CAM 
variables by calculating the extreme temperature indices of Section 3.1 with Climate Data Operator 
(Schulzweida 2022). The data is finally regridded to match the spatial resolution of the target dataset 
and split into a training, a validation and a test set (Table 5). 
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Table 5 Total number of samples and number of samples per month for the training, validation and test sets. 

Dataset 
Training set Validation set Test set 

Total /month Total /month Total /month 

HadEX-CAM 50616 37 9576 7 1368 1 

 
The NN (Figure 7) employs two types of inputs: the gridded variable and the masks of missing values 
derived from the dataset to be infilled. During the training, the masks are selected randomly for 
each sample and used to create artificial missing values in the training dataset of complete GCMs. 
The inputs are propagated through the NN following the mask-update procedure described in D2.2, 
and the loss function is calculated for the missing values only by comparing the predictions of the 
infilled dataset with the original one. The training is performed iteratively and stopped when 
optimal training and validation loss values have been reached. The validation set is used during the 
training step to calculate the learning curves and prevent overfitting of the models.  
 
The test set is used to evaluate the accuracy of the trained models by using unseen GCM data. For 
this purpose, artificial missing data is created in the test set of CMIP6 GCMs for each month by using 
the corresponding mask of missing values extracted from the observational dataset. Evaluation 
metrics, such as RMSE or Spearman rank correlation coefficient are calculated to assess the 
performance of the infilled predictions with respect to the unmasked test data. Once the infilling 
model has been trained, validated and tested, it is applied to the observational incomplete dataset 
in order to reconstruct the spatial fields of the targeted observables for each month of the 
considered period (1901-2018).  
 

3.5 ML algorithms for storylines 

Storylines describe a set of plausible evolutions of a variable or event of interest in a changing 
climate (Zappa and Shepherd 2017). They are constructed according to the occurrence of specific 
configurations, such as the combination of specific changes in the drivers of EE or the fulfilment of 
particular constraints that are expected to influence the analysed EE. In this work storylines are 
constructed considering the future evolution of certain drivers of EEs, as simulated by CMIP6 GCMs 
(Section 2.3). The drivers can be weather or climate variables, often summarised as indices or 
coefficients influencing the occurrence or intensity of that type of EE. Drivers are assessed and 
identified by means of AI-based algorithms developed in WP2 and applied in WP3-5. These 
algorithms represent powerful tools to integrate the current knowledge about EEs and discover 
unreported drivers, teleconnections or non-linear relationships in the climate system. 
 
The driver selection method is a two-step approach, comprising dimensionality reduction via spatial 
clustering of candidate drivers and feature extraction for optimised selection of drivers. A similar 
algorithm has been designed for forecasting in CLINT (D2.2). For the selection of drivers, a list of 
potential candidates has been created (Table 6) aiming to capture regional aspects of atmospheric 
and ocean variables that are potentially relevant for many types of EEs. Driver variables include SSTs, 
SLP or soil moisture (the selection can be customised based on process understanding of the 
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considered EE). Then, a K-means spatial clustering is applied to each driver in order to reduce the 
dimensionality of the input data (and the number of candidates). 
 
In a second step, the time series of the spatial clusters of all variables are used as input of the Coral 
Reef Optimisation (CRO) algorithm (Salcedo-Sanz et al. 2014; Pérez-Aracil et al. 2023), which 
performs an optimised feature extraction of the most relevant drivers of the EE. CRO is an 
evolutionary algorithm implementing several strategies for optimisation in feature selection 
problems. It has been developed in WP2. For technical details, see D2.2. Herein, CRO is used to find 
the combination of drivers that better explain the evolution of the target (e.g. HW occurrence in Po 
Valley) in a given dataset. The algorithm is able to detect combinations of drivers at different lags 
and with different durations. Further details about the algorithm are provided in D2.3. 
 
Table 6 List of candidate drivers of EEs. 

Variable 
Abbreviation in 

CMIP6 
Abbreviation in 

CLINT 
Domains of clustering 

Geopotential height at 500 hPa Zg Z500 Europe, World 

Maximum temperature at 2m Tasmax Tmax Europe 

Mean sea level pressure Psl mslp Europe, World 

Outgoing longwave radiation Rlut olr North Atlantic, World 

Sea ice cover Siconc Sic Arctic 

Sea Surface Temperature Tos sst North Atlantic, World 

Soil moisture (mass of water in all 
phases in the top 10 cm layer) 

Mrsos Sm Europe 

Total precipitation Pr Tp Europe 

 
The K-means - CRO approach for the detection of drivers is first applied to ERA5, and the resulting 
drivers are considered the ground truth. Before the construction of the storylines, the GCMs are 
validated by applying the same detection algorithms to the set of GCMs described in Section 2.3, 
and retaining those GCMs that identified the same drivers as ERA5. That way, the validation of the 
GCMs is driver-based, meaning that for each driver there is a set of validated GCMs that will be 
employed for the construction of storylines. The best solutions are retained, thus assigning a 
probability of occurrence to each set of N drivers, which is combined with physical understanding 
to assist in the final selection of drivers. Due to the high number of storylines that would result from 
the use of a high number of drivers, all analyses are performed considering a maximum of two 
drivers at a time, which is expected to generate four storylines. 
 
In the construction of storylines, the validated GCMs are sorted into groups according to the future 
changes in the selected drivers. Changes in the drivers are defined as the difference between future 
and current climates (i.e. CWS15 and CWS14.2; Section 3.2). For each driver, GCMs are then 
classified into those simulating higher or lower changes than the multi-model mean. Groups of 
GCMs are then formed in the multivariate driver space, by inspecting which GCMs follow specific 
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combinations of changes in the drivers. For each combination of responses in the two drivers, it is 
then possible to identify the GCMs that follow that specific storyline, and evaluate accordingly the 
projected changes in the EE of interest (including best and worst scenarios of EEs). That way, the 
storylines assess the changes in EEs as a function of the responses in the selected drivers, trying to 
reduce the uncertainty related to traditional multi-model approaches. 
 

3.6 ML algorithms for concurrent EEs 

The ML algorithms aim to identify the dominant components and associated drivers that capture 
the characteristics of the system formed by concurrent HWs and DRs. PCA and canonical correlation 
analysis along with their combinations are commonly used as dimension reduction algorithms in 
climate science (e.g., Wilks, 2011). However, these methods have limitations because they can only 
discern linear relationships, are confined to two spatial fields, and are sensitive to pre-processing 
choices (e.g., retained number of components, orthogonality of input features, etc.). Tenenhaus et 
al. (2015) introduced KRGCCA, which can address these challenges by employing appropriate 
regularisation schemes to handle high-dimensional predictors and mitigate high collinearity or 
spatial dependencies, as observed in climate data. Moreover, it can be used to extend the methods 
to the analysis of non-linear relationships by making implicit calculations through the use of kernels, 
thereby avoiding the need to specify a non-linear aggregation function (Schölkopf 2002). More 
details in these algorithms can be found in D2.2, D3.2 (Preliminary AI-enhanced EE detection) and 
D2.3.  
 
As described in Section 3.1, the KRGCCA is employed to generate CEEI as well as the associated 
drivers. Furthermore, we perform blockwise scaling (Garali et al. 2018) to ensure that the algorithm 
is not dominated by certain climate variables. Finally, spatial weighting (North et al. 1982) of the 
input features is applied to take the spatial information into account. In what concerns the drivers, 
variations in SSTs are a relevant predictor of EEs in seasonal forecasts. Thus, lagged SSTs, with a 
maximum lag of three months are considered as input variables. In particular, spring SSTs may serve 
as early indicators of summer HWs in central Europe (Beobide‐Arsuaga et al. 2023). Moreover, we 
consider lagged effects of Z500 to account for potential driver interactions since large-scale 
atmospheric patterns may contribute to decreased precipitation and soil dryness, which can 
precede the onset of HWs (Miralles et al. 2019).   
 
After the CEEI and the corresponding drivers have been extracted by the KRGCCA, additional AL-
based models are employed to assess the relationships between those variables. To model the 
conditional distribution function (CDF) of the CEEI on the associated drivers, we use a recently 
proposed approach called Quantile Regression Using I-Spline Neural Network (QUINN) by Xu and 
Reich (2023). It uses a synergy of Bayesian NNs and I-splines to estimate the CDF.  For more details, 
see D2.2 and Xu et al. (2022).  
 
Accumulated local effect (ALE) plots (Apley and Zhu 2020) are employed to compensate for the lack 
of interpretability of NNs and to understand the marginal effect of the drivers on the CEEI. They 
approximate the (potentially non-linear) effect of the drivers on the CEEI. Furthermore, the standard 
deviation of these quantities can be used to define variable importance criteria (Xu and Reich 2023), 
which are useful to identify the drivers that are more important for the behaviour of the CEEI and 
thus for concurrent hot and dry EEs. Additionally, ALE plots can visualise higher-order effects of 
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input variables, describing the predictive power of interactions among input variables. This allows 
us to explore how combinations of input variables affect specific parts of the distribution, which is 
valuable for characterising the compounded nature of concurrent EEs that often considered as pre-
conditioned events (Zscheischler et al. 2020).  

4. RESULTS 

4.1 Attribution  

4.1.1 Attribution with AE 

First, we compare the ability of the AM and AE‐AM approaches to reconstruct the intensity of the 
HWs considered (Table 4). To do so, the reconstructed variable is averaged over the targeted spatial 
domain and over the duration of the EE. The performance of the AE‐AM compared to the AM is 
quantified with the Skill Score. A sensitivity test based on different sizes of the AE latent space (8, 
64, 128, 256, 400, 600, 700 and 800 nodes) is also carried out in order to assess the influence of this 
hyper‐parameter in the training of the AE.  
 
Focusing on the observed magnitude of the EE, the performance of the AE‐AM is better than that 
of the AM for all of the HWs considered, and for all the latent space dimensions (Figure 8), except 
for the smallest one (8 nodes), which does not seem to include enough information to yield a 
competitive reconstruction of the HW intensity. In the rest of the cases, the AE‐AM distribution is 
closer to the target than that of the AM, indicating an AI‐enhanced reconstruction of TX for the most 
severe European HWs. The improvement of the TX reconstructions obtained with the AE‐AM is 
larger than 10% (exception made for the latent space of 8 nodes). Overall, the reconstructed error 
depends more on the HW analysed than on the latent space dimension, meaning little sensitivity to 
this hyper-parameter. 
 
Both, AM and AE-AM, are able to reconstruct warmer‐than‐average conditions, indicating that the 
predictor (atmospheric circulation) is a major driver of these EEs (e.g. Jézéquel et al. 2018; Faranda 
et al. 2022). The reconstructions explain a large fraction of the observed TX, the remaining being 
attributed to non-dynamical processes (e.g., land-atmosphere feedbacks) and/or limited sampling 
(i.e. few historical analogues of the given severity). Despite this, the results demonstrate a clear 
advantage of pre‐processing the data with the AE before applying the AM method. 
 
Additional analyses confirm the superiority of AE-AM, also during non-extreme periods (not shown). 
However, the differences between the AE‐AM and the AM reconstructions increase during HWs, 
suggesting that AE-AM is especially well suited for EEs. Furthermore, the reconstruction of TX with 
simpler linear methods of dimensionality reduction such as PCA does not outperform that obtained 
with the AE‐AM, at least for the analysed HWs (see examples in Figure 9).  
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Figure 8 Comparison of the TX distributions reconstructed by the AM and the AE‐AM using different dimensions of the 

latent space in the HWs of: a) France 2003; b) Spain 1995; c) Greece 1987; d) Germany 2006; e) Poland 1994; f) 
Balkans 2007; g) Russia 2010; h) Russia 1954. 
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Figure 9 Comparison of the TX distributions reconstructed by PCA‐AM for different number of components (64, 256 

and 600), and the AE‐AM and the AM methods in the HWs of: a) Greece 1987; b) Spain 1995; c) Russia 2010. 

 
To understand the differences between the TX reconstructions retrieved from AM and AE-AM, we 
analysed the analogue days selected by both methods. For simplicity, the analysis will focus on the 
2003 HW only. Many analogue days of that HW (188) are shared by the two methods. However, AM 
uses 118 days for reconstruction that AE‐AM does not, and AE‐AM has 99 days that are not 
analogues in AM. Using only these disjoint analogues, it is found that the AE-AM performs better 
than AM in terms of the magnitude and spatial pattern of the targeted TX field, reducing the bias of 
the AM reconstruction in all grid points (Figure 10). This shows that AE‐AM is more efficient in 
selecting optimal analogues for the reconstruction of HWs than the classical AM method.  
 

 
Figure 10 Comparison of TX (°C) reconstructions of the France 2003 HW obtained by analogue days that are unique of 

the: a) AE‐AM and b) AM approaches; c) the difference between AE-AM and AM. 

 
A pronounced difference between AE-AM and AM is the intraseasonal distribution of (disjoint) 
analogues. Although both methods tend to select days of the summer period (June-to-August), the 
AM also picks days of April, May, September and October, which contrasts with the AE‐AM 
preference for July and August (in agreement with the timing of the observed 2003 HW). Therefore, 
seasonality is more marked in the latent space (which codifies the most important information of 
the input field) than in the original pressure field, suggesting that the AE-AM can learn seasonal (or 
other relevant) aspects of the target that may not be present in the predictor. 
 
Having demonstrated the superiority of the AE-AM in reconstructing historical HWs, this hybrid 
approach has been employed for EE attribution, following the methodology described in Section 
3.3. In an attribution mode, the AE-AM reconstructs the expected intensity of the EE in two different 
climates, given the observed atmospheric conditions that caused the event. As a testbed for the 
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potential of the AE-AM algorithm to capture climate change signals, we have selected the results 
for two different types of EE: a HW and a HP event.  
 
The left panel of Figure 11 shows the distribution of Iberian-mean TX averaged over the period of 
the 2018 HW, as inferred from flow analogues of the past (blue) and present (red) climate. The 
comparison reveals that similar atmospheric conditions trigger warmer conditions (~1.5°C) now 
than in the recent past (i.e., the observed circulation would have caused a less severe HW in the 
past). As the atmospheric circulation is constrained, the reported differences should be attributed 
to thermodynamic changes (warming trend between 1940-1980 and 1981-2022). Therefore, recent 
climate change made this HW at least ~1.5 °C warmer. 
 

 
Figure 11 Flow-analogue distributions of (left) TX (°C) for Iberian HW of 1-8 August 2018; (right) precipitation 

anomalies (m day-1) for the 2014 winter European heavy precipitation event (January-to-February).  
 
On the other hand, the right panel of Figure 11 shows the reconstructions of daily mean 
precipitation anomaly averaged over northwestern Europe and derived from past and present 
analogues of the HP winter of 2015. The comparison reveals that the precipitation triggered by 
circulation would have been less severe in the past (i.e. the observed atmospheric conditions caused 
higher precipitation anomalies than those expected from past analogues). This is in agreement with 
the Clausius-Clapeyron relationship (a 7% increase in water holding capacity of the atmosphere per 
1 °C global warming) and the reported tendency to total precipitation increases, particularly over 
wet regions of the continent (IPCC 2021). The present-past differences in precipitation are not high, 
though, reflecting the uncertainty in dynamical aspects of climate change. Overall the results of the 
2018 Iberian HW and the 2014/2015 HP winter are in agreement with previous attribution studies 
based on classical methodologies (e.g. Barriopedro et al. 2020 and Yiou et al. 2017, respectively), 
supporting the usefulness of the AE-AM as an attribution tool. 
 

4.1.2 Attribution with VAE 

A VAE-anomaly detection method is being implemented for attribution of EEs, leveraging its 
potential to reproduce complex fields (Pang et al. 2021). The AI-based model has been trained with 



 
CLINT - CLIMATE INTELLIGENCE 

Extreme events detection, attribution and adaptation 
design using machine learning 

EU H2020 Project Grant #101003876 

 

AI-ENHANCED ATTRIBUTION AND PROJECTIONS OF EXTREME EVENTS 34 

 

daily TX fields from natural simulations of the HadGEM3-GC31-LL GCM and applied for the 
reconstruction of the historical simulation of the same GCM (see Section 3.3). In what follows, the 
term anomaly will refer to the difference between the reconstruction and the original fields, 
following the standard nomenclature in AI, whereas the term departure will be employed for the 
differences with respect to mean climatic values. Figure 12 shows different metrics of performance 
corresponding to the training (natural simulations) and reconstruction (historical simulations) 
stages. The annual average of the mean squared error (MSE) does not often exceed ~1 °C in the 
train dataset (see L2 in left panel of Figure 12), whereas it can exceed 1.2 °C in the historical 
simulation (right panel in Figure 12), particularly after 1975 and the 21st century. For the last 20 
years of the historical simulation, the metrics show a clear positive trend, which follows that of GSAT 
(Pearson’s correlation coefficient of 0.6). This indicates that an AI-based model trained in a natural 
world captures well the climate conditions of the past (i.e. a world with reduced anthropogenic 
influences) but it cannot reconstruct the magnitude of the anomalies experienced in a recent period, 
when the impact of anthropogenic climate change is most evident, because these anomalies would 
have been virtually impossible in a natural world.  
 

 
Figure 12 Time series of annual mean MAE, MSE and RMSE of natural simulations (train dataset; left) and historical 

simulations (target dataset; right) of the HadGEM3-GC31-LL GCM. 

 
Figure 13 (top) shows the distribution of TX (expressed as percentiles of the empirical cumulative 
distribution function of the train dataset) for two groups, comprising those days and grid points of 
the reconstructed historical simulation with MSE values above and below a given threshold. These 
two groups identify TX values that would be detected as an anomaly (i.e. a climate change signal) 
by the VAE and those that could have occurred in the natural climate, respectively. Different 
thresholds are employed for the detection of anomalies, including the median, the percentiles 75th 
and 95th and the maximum anomaly detected in the train dataset. These thresholds are defined for 
each gridpoint and calendar day. Using the maximum error as a threshold (left top panel of Figure 
13), most of the detected anomalies would correspond to TX extremes (of either the upper or lower 
tail of the distribution). As expected, the less demanding the threshold, the more anomalies fall 
within the interquartile range. Nevertheless, irrespectively of the threshold, the population of 
detected TX anomalies is consistently larger in the tails than in the rest of the distribution, and the 
opposite behaviour is observed for non-anomalous values. Therefore, the detection of highly 
unlikely TX values by the VAE is largely confined to HWs or cold spells that are unexpectedly warm.   
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Figure 13 Top: Violin plots of simulated TX values for those cases detected as anomalies (i.e. TX values above the 
threshold, pink) and non-anomalies (TX values below the threshold, blue) by the VAE. TX values are expressed as 

percentiles of the empirical cumulative distribution function of the train dataset. VAE anomalies are detected using 
different thresholds (columns): maximum, 95th percentile, 75th percentile and 50th percentile of MSE. Bottom: Index 
of plausibility based on correlations of the spatial patterns for the 100 days with the highest and lowest anomaly, as 

defined by (right) MSE and (left) Kullback-Leibler divergence error.  
 
To further assess the relationship between the VAE-detected anomaly and the plausibility of an 
historical TX field in the natural world, the 100 days with the highest and lowest anomalies were 
considered. For the classification of days two types of errors were assessed: the MSE (L2, right 
bottom panel in Figure 13) and the Kullback-Leibler divergence error (left bottom panel in Figure 
13). The plausibility of a given daily TX pattern is quantified as the time-mean spatial correlation of 
the TX field of that day with that of the remaining days of the record. Then, a bootstrapping 
procedure with 10,000 trails was performed to estimate the mean correlation and associated 
uncertainty for the group of high and low anomalies. For both types of error, the mean correlation 
is positive for low errors and negative for high errors. This means a higher probability of detecting 



 
CLINT - CLIMATE INTELLIGENCE 

Extreme events detection, attribution and adaptation 
design using machine learning 

EU H2020 Project Grant #101003876 

 

AI-ENHANCED ATTRIBUTION AND PROJECTIONS OF EXTREME EVENTS 36 

 

anomalies (i.e. high errors) in days with spatial patterns that tend to oppose those occurring in non-
anomalous days.  
 

 
 Figure 14 Daily fields for HWs simulated in the historical period of HadGEM3-GC31-LL GCM affecting (top) the Iberian 

Peninsula, (middle) central Europe and (bottom) Scandinavia. Columns denote the temperature departure (°C), the 
VAE anomaly (only grid points where the MSE values are greater than the median MSE of the training dataset are 

shown) and the percentile of the TX value computed with a GEV fitted to the training dataset.  

 
The results indicate that the VAE-anomaly detection can be used to detect field structures that have 
never been seen in a climate without anthropogenic climate change. As an illustration, the method 
is applied to outstanding HWs of the historical simulation over different regions of Europe (all of 
them occurring towards the end of the simulated period, when anthropogenic influences are large): 
Iberian Peninsula, Central Europe and Scandinavia (Figure 14). In all cases, the largest TX anomalies 
detected by the VAE (middle panels) coincide with the regions of marked HW intensity (left panels) 
and high percentiles of a Generalised Extreme Value (GEV) distribution (right panels), the latter 
meaning that the simulated TX values would have been extremely unlikely in a pre-industrial 
climate. The detection of VAE anomalies can also extend to regions that are not directly affected by 
the HW (e.g. eastern Europe in the case of the Iberian HW). The correspondence between the GEV 
percentile and the VAE anomaly patterns is very good in all cases (also on daily scales). The results 
indicate that the VAE-anomaly detection is capable of detecting spatially resolved climate change 
signals on daily scales during EEs, and their temporal evolution, thus providing the basis for future 
development of ultrafast attribution methods of EEs. 
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4.2 Trends in extreme indices 

To reconstruct the HadEX-CAM dataset, we have trained 12 infilling models for each extreme index: 
warm days and nights, and cool days and nights (Section 3.1). These models underwent evaluations 
on unseen data using the RMSE and spatial correlation metrics (Section 3.4). To explore the ability 
for generalisation, the infilling models were applied and evaluated systematically on different types 
of dataset: i) a multi-GCM dataset (test set); ii) the ERA5 reanalysis dataset, and iii) an observational 
dataset (HadEX-CAM). For the test and ERA5 datasets, artificial missing values were introduced in 
each input sample by applying a mask of missing values derived from the corresponding month of 
the HadEX-CAM dataset. In the case of the HadEX-CAM dataset, additional missing values were 
created by applying a mask corresponding to the month with the highest prevalence of missing 
values (January 1901). In all three cases, evaluation metrics were computed by comparing the 
reconstructed values with the original values that have been masked out.  
 
The results of the evaluation are shown in Tables 7 and 8. The performance of the reconstruction is 
also compared with the results obtained using the Kriging method on the same data. Apart from the 
correlation for the cool nights’ index of HadEX-CAM, the AI model outperforms Kriging for all 
datasets, extreme indices and metrics. We notice a general improvement of the metrics for the ERA5 
dataset compared to the test set, which is likely due to the differences in time span. Indeed, the 
proportion of valid values within the ERA5 (1940-2018) period is higher than in the test set (1901-
2018) period (see Figure 2), hence providing more statistical information for the reconstruction. In 
contrast, the results obtained for the HadEX-CAM show a deterioration of the accuracy in 
comparison with the test and ERA5 datasets, due to the additional reduction in the amount of valid 
values for the AI and Kriging reconstructions of the HadEX-CAM experiments. Despite the narrowing 
disparities in evaluation metrics between the two reconstruction methods, the AI models remain 
superior overall. 
 

Table 7 RMSE for the reconstruction of the extreme temperature indices of the test, ERA5 and HadEX-CAM datasets. 

 RMSE Warm days Cool days Warm nights Cool nights 

Test set 
Kriging 5.12 6.96 4.77 7.12 

AI 4.29 5.79 4.17 6.20 

ERA5 
Kriging 5.08 5.31 4.95 5.81 

AI 4.39 4.70 4.33 5.24 

HadEX-CAM 
Kriging 6.85 7.34 5.72  6.91 

AI 6.73 6.99 5.67 6.91 
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Table 8 Spearman rank correlation coefficient for the reconstruction of the extreme temperature indices of the test, 
ERA5 and HadEX-CAM datasets. 

  Warm days Cool days Warm nights Cool nights 

Test set 
Kriging 0.81 0.85 0.81 0.84  

AI 0.85 0.88 0.84  0.86 

ERA5 
Kriging 0.84 0.86 0.84  0.85 

AI 0.87 0.88 0.87  0.87 

HadEX-CAM 
Kriging 0.63 0.65 0.64 0.67 

AI 0.65 0.66 0.65 0.66 

 

 
Figure 15 Regional means of warm days (left) and cool nights (right) for the original HadEX3 dataset, the original 

HadEX-CAM dataset and its AI reconstruction over the full grid (Europe) and three European regions defined by the 
IPCC report (IPCC 2021): NEU, WCE, MED. Units are percentage of warm days and cold nights in a month. 

 
Having established the effectiveness of our AI method through successful evaluation, we can 
confidently proceed with the AI reconstruction of the HadEX-CAM dataset. Figure 15 shows the 
spatial mean of the reconstructed warm days and cool nights compared with the original HadEX3 
and HadEX-CAM datasets. The three curves present a good overall agreement for the entire 
European region and align with the findings of the IPCC regarding the increase (decrease) in the 
frequency of warm days (cool nights) (Seneviratne et al. 2021). Discrepancies across datasets are 
slightly more pronounced for the cool nights, for which the original HadEX-CAM dataset (and its AI 
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reconstruction) display lower values than HadEX3. These differences are particularly noticeable 
during the first half of the 20th century in the Mediterranean region (Figure 15), where the amount 
of missing values is the largest. 
 
Due to the temporal constraints of available observational datasets, the published spatial trend 
analyses of ETCCDI indices for European regions primarily cover recent periods, typically the second 
half of the 20th century (Chervenkov et al. 2019, Squintu et al. 2021). Our AI methodology offers 
the opportunity to expand the temporal context of recent changes and improve the characterisation 
of spatial patterns and regional means compared to HadEX3. While continental mean values remain 
similar between HadEX3 and our AI model (Figure 15), significant disparities arise at smaller spatial 
scales. For instance, the long-term linear trends of warm days (Figure 16) and cool nights (Figure 
17), calculated for the entire period (1901-2018) using the median of pairwise slopes estimator (Sen 
1968; Theil 1992) reveal complex patterns and pronounced regional contrasts, with the AI 
reconstruction exhibiting higher spatial heterogeneity compared to HadEX3. 
 

 
Figure 16 Linear trends (in days decade-1) of warm days for the period 1901-2018. Left panel: original HadEX3 dataset 

(considering only grid boxes with at least 66% of valid data across the whole time period). Right panel: AI 
reconstruction. 

 

 
Figure 17 Same as Figure 16 for cool nights. 
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For instance, the AI model indicates small trends in warm days over North Africa and southern 
Turkey/Syria coastlines, alongside increased warm day frequencies in central Europe and the Baltic 
Sea. The original and reconstructed datasets suggest larger absolute trends in cool nights than in 
warm days, with notable decreased frequencies of cool nights in North Africa and western Europe. 
The AI model depicts a more varied landscape with regional variations, including significant negative 
trend values in cool nights over Ukraine and Romania not captured by HadEX3. Notable 
discrepancies are also visible in the Middle East, where the AI model suggests smaller trends 
compared to HadEX3. Results for a more recent period (1980-2018) also exhibit detailed spatial 
structures in the AI reconstruction (see Figure 18 and 19). For this recent period, it is possible to 
compare our results with those of ERA5. The spatial variability observed in the ERA5 trends closely 
resembles that of the AI model. The similarities between the AI and ERA5 trends are particularly 
evident in certain regions with pronounced changes, such as the Black Sea coasts. 
 

 
Figure 18 Linear trends (in days decade-1) of warm days for the period 1980-2018. Left panel: original HadEX3 dataset 

(considering only grid boxes with at least 66% of valid data across the whole time period). Central panel: AI 
reconstruction. Right panel: ERA5 dataset. 

 

 
Figure 19 Same as Figure 18 for cool nights. 
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4.3 Storylines 

4.3.1 Storylines of EE 

This section illustrates the application of ML algorithms for the construction of storylines of EEs, 
using HWs in the Po Valley as a pilot. Figure 20 highlights the regions considered for the calculation 
of HW-related indices (TX90P, HWMI; Section 3.1). The drivers of HWs were obtained by considering 
a scrutinised list of candidate variables at daily resolution (see Table 6), and applying a two-step 
driver-detection procedure (see Section 3.5). First, for each variable, geographical areas with similar 
variability were determined by applying k-means clustering to the daily series of anomalies of ERA5 
(defined with respect to 1981-2010). These clusters are calculated over different domains (Europe, 
World, North Atlantic, Arctic, etc.), depending on the spatio-temporal characteristic of the variables 
(Table 6). Some examples of the resulting clusters are shown in Figure 21. 
 

 
Figure 20 Administrative regions of Piedmont (yellow), Lombardy (blue), Veneto (red) and Emilia-Romagna (green) and 

the corresponding grid-points of ERA5. 

 

 
Figure 21 Examples of geographical clusters obtained for some of the variables: Z500, total precipitation, SLP and SST.  
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This process is repeated for each GCM simulation, using the clusters calculated on ERA5, and 
considering the CWS14.2 period as baseline for the computation of anomalies. For each cluster 
three daily time series are calculated from geographical summary statistics (spatial average, and the 
25th and 75th percentiles) of the local variables over the grid points embedded in that cluster. In a 
second step, the set of daily series anomalies related to all the clusters are used as candidate drivers 
for an optimised feature selection. The selection of the drivers is performed with the CRO algorithm 
(Section 3.5), using summer HW occurrence as the target series and the aforementioned cluster-
based daily series of candidate drivers as predictors.  
 
As a first step, the CRO algorithm is applied to the current climate of ERA5 (1981-2020 period), 
considering the mean statistics of each cluster as candidate predictors, with the aim of determining 
benchmark drivers. The algorithm is run 20 times with a maximum of 20,000 evaluations each. The 
10% solutions with the highest cross validation scores are selected and analysed. Figure 22 shows 
the selection rate among the top 10% solutions, indicating how many times each candidate driver 
is selected at different lags. The candidates with a selection rate of at least 0.67 at any lag are 
identified as the benchmark drivers of HWs in the Po Valley. They are listed in Table 9. These findings 
are consistent with the work on EE detection performed within WP3 (see D3.2) and the use of this 
information for the developing of hybrid or data-driven sub-seasonal and seasonal forecasts is 
currently under inspection. 
 
Table 9 Clusters selected during the application of CRO to ERA5 (1981-2010). 

Feature selection code 
Short Name Variable Cluster 

domain 
Cluster 
number 

Covered area Selection 
rate 

tasmax_Europe_cllow01 TASMAX-CEU TASMAX Europe 2 Central Europe 84.7% 

psl_Europe_cllow02 PSL-NS PSL Europe 3 Norwegian Sea 96.0% 

zg_World_cllow04 ZG-GL ZG World 5 Greenland 82.6% 

pr_Europe_cllow02 PR-IWB PR Europe 3 Italy & W Balkans 98.7% 

mrsos_Europe_cllow00 MRSOS-CEU MRSOS Europe 1 Central Europe 96.4% 

mrsos_Europe_cllow02 MRSOS-IBP MRSOS Europe 3 Iberian Peninsula 80.2% 

pr_Europe_cllow03 PR-NAS PR Europe 4 
N. Africa & 
Scandinavia 

76.1% 

tos_North_Atlantic_cllow00 TOS-Trop TOS N Atlantic 1 [0 – 30]°N 89.0% 

zg_Europe_cllow03 ZG-SWEU ZG Europe 4 SW Europe 99.7% 
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Figure 22 Selection rate related to the ERA5 clusters (columns, only spatial average statistics are presented) for different lags (rows). Purple colour denotes selection rates below 

0.67, green stands for values above the threshold, indicating the selected benchmark drivers. 
 



 
CLINT - CLIMATE INTELLIGENCE 

Extreme events detection, attribution and adaptation 
design using machine learning 

EU H2020 Project Grant #101003876 

 

AI-ENHANCED ATTRIBUTION AND PROJECTIONS OF EXTREME EVENTS 44 

 

 
Figure 23 Selection rates for the same drivers as in Figure 22 (rows) and the three statistics (squares in each cell). Columns indicate the analysed simulations. Green is used for 

ERA5 benchmark drivers and blue for the selection rates of the simulations. Orange vertical bands indicate the on-site benchmark drivers. Purple vertical bands highlight the two 
clusters used for the construction of storylines. 
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Once the benchmark drivers are found, a validation of GCMs is performed by applying the same 
procedure (CRO model) to their simulations and identifying those that selected the benchmark 
drivers. Such a process generates the list of simulations capable of reconstructing the observed 
relationship between the driver and the EE previously found in reanalysis data. For the evaluation 
process, all cluster-related statistics (including the mean and the 25th and 75th percentiles of the 
local predictors) are included. This allows to empower the search of drivers in conditions where 
relationships among the variables simulated by the GCMs could be statistically similar, but not 
identical, to those of the reanalysis. The board in Figure 23 shows the results of this feature selection 
for the CWS14.2 period of each simulation (rows). For a given driver (columns), each cell is 
composed of three squares, each standing for one of the statistics. Blue shading indicates the 
maximum selection score among all the lags inspected by the CRO. It can be seen that feature 
selection gives some noisy results on simulations. Nevertheless, the benchmark drivers are often 
selected in the simulations, especially the on-site drivers (orange highlighted columns). The three 
statistics can perform differently from each other, in part because they measure different statistical 
properties but also because the algorithm tends to neglect redundant drivers. Finally, the validation 
of the GCM simulations is performed with a driver-based approach. For each driver, a simulation is 
validated if a score larger than 0.67 is reached by at least one of the considered statistics.  
 
The storyline approach is based on the inspection of pairs of drivers whose interaction may affect 
HW occurrence. As a consequence, all the possible pairs of benchmark drivers are tested. Figure 24 
is a heatmap illustrating the number of simulations that select each pair. Different combinations of 
drivers can provide a satisfactory description of HW evolution. However, some of them are more 
frequent than others. As expected, combinations including information from local conditions (i.e. 
clusters of TX, Z500 and total precipitation over the Po Valley region, orange shaded columns) are 
selected by the majority of the GCM simulations. These drivers are widely acknowledged, since high 
Z500 and low precipitation are often associated with HW conditions (e.g. Barriopedro et al. 2023 
and references therein). 
 
The storyline approach also allows one to explore unreported drivers of summer HWs in the Po 
Valley by focusing on remote variables affecting on-site conditions, such as SLP over the Norwegian 
Sea (PSL-NS) or northern tropical SST anomalies (TOS-Trop). In particular, 13 GCM simulations 
selected both PSL-NS and precipitation in central-east southern Europe (PR-IWB) as a driver 
combination affecting summer HWs in the Po Valley. This is one of the highest counts among those 
pairs that include at least one remote driver, as shown in Figure 24. 
 
Once the pair of drivers has been chosen, the next step involves the selection of GCM projections 
that will be considered for the construction of the storylines of future changes of EEs. This process 
consists of three phases: 
 
a) preliminary filter of projections: the selection rates related to the three statistics of each driver 
are checked; if at least one of them is larger than 0.5, the projection is selected; 
 
b) statistics selection: considering the projections that passed (a), the mean selection rate of each 
one of the three statistics is calculated, allowing to assess the best-performing statistics on average; 
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c) final selection of projections: once the best-performing statistics is chosen, the projections with 
a selection rate of at least 0.33 in that statistics are selected, discarding those simulations that fail 
this criterion. 
 
This procedure provides a good compromise between finding statistics with good scores and 
identifying a reasonable number of GCM projections. In the design of the process, the following 
considerations were taken into account: i) mean, 25th percentile and 75th percentile statistics are 
correlated with each other; ii) a strict threshold on one single statistics (without considering the 
scores of the others) could cause an excessive reduction in the number of selected simulations, 
compromising the statistical robustness of the storylines. Finally, it is important to stress that this 
process is specifically related to each pair of drivers. A different pair will result in different selected 
GCM projections, according to the simulated features of each model, member and scenario.   

 
Figure 24 Number of simulations validating each pair of ERA5 benchmark drivers. 

 
As described above, the storylines constructed here focus on the interaction between two drivers 
and the EE of interest. As an illustration, we have considered the influence of PR-IWB and PSL-NS 
on the evolution of summer HWs in the Po Valley. The list of validated GCM simulations for this pair 
of drivers can be found in the legend of Figure 25. For each simulation, changes in the drivers are 
computed from the daily series as the difference of 30-yr averages between CWS15.0 (future 
climate) and CWS14.2 (current climate).  
 
The resulting changes in the drivers are displayed in the scatterplot of Figure 25. There, the x-axis 
represents the climate change responses in PR-IWB and the y-axis summarises the simulated 
changes of PSL-NS in the multi-model ensemble. The quadrants delimited by the two multi-model 
means (vertical and horizontal lines) determine four groups of GCM simulations, each one defining 
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a storyline. These are named low-low (LL), low-high (LH), high-low (HL), and high-high (HH), with LH 
denoting low changes in PR-IWB and high changes in PSL-NS. To avoid including simulations whose 
drivers’ changes are too far from (or too close to) the multi-model mean, a bivariate gaussian 
regression (without rotation of the axes, i.e. no diagonalization of the correlation matrix) is applied. 
The resulting distribution was used to determine thresholds containing the 80% and 5% of the GCM 
simulations (outer and inner ellipses in Figure 25). The simulations with drivers’ responses laying 
outside (inside) of the outer (inner) ellipse are discarded. 

 

 
Figure 25 Scatter plot of the change of the drivers (x axis: PR-IWB, y axis: PSL-NS) between CWS15 and CWS14.2. Each 
dot represents a validated simulation for this pair of drivers. A bivariate Gaussian regression is applied to the spatial 
distribution and is here displayed. 80% and 5% confidence levels of this regression are represented by the ellipses. 

 
In each storyline, the yearly indices related to HWs (Section 3.1) are averaged for each year of the 
CWS15.0 period, using the selected GCM simulations. Figure 26 shows the results for TX90P, which 
gives an indication of the distribution of TX in each summer. For a global warming of 0.8 °C 
(difference of GSAT between the two CWS), the LL storyline projects a mean increase of 1.72 °C in 
TX90P. This storyline is related to changes in PR-IWB and PSL-NS that lay below those projected by 
the multi-model mean. While the first driver describes the well-known regional feedbacks between 
precipitation deficits and HWs, changes in the second driver can be interpreted as a deepening of 
low pressure systems over the area enclosed by Scotland, Iceland and Norway.  
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Figure 26 Series of annual TX90p (with a 4-tr running mean) for each selected simulation (lines) and storyline (panels). Lines are full colour (CWS15) or shaded (CWS14.2). Multi-

model means are displayed with thick dashed lines (black: CWS15, grey: CWS14.2). Thick grey dotted lines represent ERA5. Differences between CWS15 and CWS14.2 are shown in 
the lower sectors of each graph. Averages and uncertainties are provided in the legends
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To conclude, we stress the agreement between the indices calculated on ERA5 and those obtained 
on the CWS14.2 of simulations, which indicates a correct relationship between large-scale GSAT and 
the representation of local temperature patterns. This agreement is also observed in almost all 
storylines, especially those with low changes in PR-IWB, suggesting that the overestimation of 
precipitation might be connected with biases in temperature.  
 

4.3.2 Storylines of concurrent events 

This section focuses on concurrent EEs (hot-dry days) over Central Europe, as defined in Figure 3 
(Section 3.1). The potential drivers of concurrent EEs have been thoroughly examined in D4.1 (EE 
causation analysis). Here the focus is on Z500 and SSTs due to their relatively smooth nature (Section 
3.6). The identification of the drivers is done using the 1981-2010 reference period of ERA5 
reanalysis. KRGCCA is employed to derive the CEEI. In order to capture the non-linear interactions 
of the local variables, we use non-linear kernels namely the first order arc-cosine kernel. For the 
selected drivers (SST and Z500) a linear kernel was found to be sufficient.  
 

 
Figure 27 Summary statistics of the univariate CEEI at each grid point. Spearman correlation of CEEI with: (a) BVHMD; 

(b) NPSPEI-1. Coefficient of tail dependence (using the 90th percentile) for: (c) BVHMD; (d) NPSPEI-1. 
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The suitability of the CEEI is validated at each grid point by calculating the local Spearman correlation 
coefficient of this index with both the NPSPEI and BVHMD, as well as the tail dependence (e.g. Coles 
2004) (Figure 27). The correlations and tail dependencies are notably high for the central region of 
Europe, indicating a strong correspondence between high values of the CEEI and hot-dry conditions.  
 
Furthermore, the explained variances of NPSPEI, CEEI, and BVHMD are 72.3%, 68.5%, and 74.9%, 
respectively (not shown). This indicates that CEEI can account for ~70% of the variability of the HW 
and DR indices over the study region. In conjunction with Figure 27, this suggests that the non-linear 
KRGCCA successfully captures meaningful non-linear influences of NPSPEI and BVHMD on CEEI, 
demonstrating its suitability for describing large-scale concurrent HWs and DRs. 
 
Moving on to the dominant drivers of CEEI, we use the QUINN framework (Section 3.6) to estimate 
the CDF of CEEI, incorporating SST and Z500 as input variables with lags up to three months. As a 
prior, we use the Automatic Relevance Determination (MacKay 1992), which is able to learn the 
relevance of each driver. The model's quality can be evaluated by examining the values of the CDF, 
which should follow a standard uniform distribution. The model shows a satisfactory performance, 
as illustrated in Figure 28. 
 

 
Figure 28 Q-Q-Plot for all ensemble members of the derived QUINN model. 

 
Next, we address the most important variables for learning the CDF of CEEI by QUINN. Notably, high 
values of the CEEI coincide with concurrent EEs, prompting us to focus on the (conditional) 90th 
percentile. Using ALE plots as a variable importance criterion, it is revealed that Z500 in June-to-
August and April-June SSTs are the two most influential variables (Figure 29). The associated 
patterns indicate an omega-like atmospheric blocking pattern over central Europe (Figure 30). This 
finding is physically consistent, since blockings are typically linked with subsidence, resulting in clear 
skies, increased solar radiation, and reduced precipitation, which leads to warm and dry conditions 
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(Sousa et al. 2018). These mechanisms can be further influenced by soil drying and land-atmosphere 
feedbacks (Miralles et al. 2019). On the other hand, the SST-related patterns reveal a dipole in the 
western part of Europe, with negative anomalies in the north and warm anomalies towards western 
and southwestern Europe.  

 
Figure 29 Variable importance for the input variables of QUINN. Bar charts reflect the median of the ensemble of the 

variable importance criterion and whiskers correspond to the 95% confidence intervals. 
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Figure 30 Extracted spatial patterns from the KRGCCA analysis for: (a) June Z500 (m); (b) April-June SST (°C) anomalies 
corresponding to a time lag of two months. Anomalies are computed with respect to the 1981-2010 reference period. 

 
Finally, the marginal effects of these two variables are inspected through ALE plots. The results are 
shown in Figure 31. For both drivers, ALEs tend to shift towards positive values (thus increasing 
values of CEEI and magnitude of concurrent EEs), suggesting a monotonic relationship. This effect 
dampens for Z500 after reaching a certain level, with a similar but weaker effect for SST. The 
greatest ALE, and the highest likelihood of observing hot and dry conditions, occurs when both 
variables are in a positive state. If the SST pattern is opposite to that of Figure 30 the ALE still remains 
positive, indicating that warm and dry conditions still persist in the presence of the omega blocking. 
On the other hand, when SSTs are in a strong positive phase but Z500 anomalies are negative (thus 
corresponding to a trough), the chances for the occurrence of concurrent events are lower, likely 
due to rainier conditions, which could be reinforced by the positive anomalies of SST. Therefore, the 
omega blocking dominates the joint effect of the variables on CEEI, with the SSTs further 
accelerating the effect of the atmospheric circulation. 
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Figure 31 Estimated marginal effects of the QUINN model based on the ensemble mean for the most important input 

features on the CEEI. (a) and (b) correspond to the individual effects of June-August Z500 and April-June SSTs, 
respectively. c) displays the joint effect or interaction of the two variables. 

 

The evaluation of CMIP6 GCMs is carried out by applying the KRGCCA to construct the CEEI in the 
CWS14.2 reference period of each simulation. We assess the similarity of the spatial patterns 
extracted from KRGCCA with those obtained from ERA5 (Figure 30) by using the Perkins-Score. 
Figure 32 illustrates the Z500 patterns for MPI-ESM1-2-HR and their corresponding scores. As a 
criterion, a given simulation is retained if the mean Perkins-Score (Perkins et al. 2007) for the SST 
and Z500 is above 0.75, and both scores are above 0.6. The simulations meeting the specified criteria 
are selected to form the storylines. 
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Figure 32 Spatial patterns of June-August Z500 anomalies extracted from the MPI-ESM1-2-HR GCM. Anomalies are 

defined with respect to CWS14.2. 
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To develop the storylines, we consider the CWS15 period of each validated simulation and construct 
scatter plots similar to those of Figure 25. To display these plots, simulated data are projected onto 
the extracted spatial patterns of Figure 30 in order to obtain their associated time series. Then, the 
30-yr mean values for the CWS14.2 and CWS15 periods of each simulation are obtained (note that 
the mean of the considered drivers over CWS14.2 is zero). Figure 33 shows the scatter plots of the 
drivers for the CWS15 period, with positive values of the drivers denoting a higher frequency of 
positive phases than in current climate conditions. Most GCMs simulate a positive shift of the Z500 
pattern, which was also the most important driver of CEEI in present-day climate, as well as a shift 
towards positive phases of the SST patterns. Together, with the observed marginal effects (Figure 
31), the results suggest disproportionate increases towards more frequent hot-dry EEs. 
 

 
Figure 33 Scatter plots with the change in the drivers of hot-dry conditions between CWS15 and CWS14.2, together 

with the 5 and 80 % confidence bands for the multi-model mean.  

 
To verify it, we analyse the evolution of the variables (TX, TN and WB) used to construct the CEEI in 
order to provide a more comprehensive view of its evolution for different storylines. For this 
purpose, we calculate the standardised anomalies of the variables with respect to the CWS14.2. The 
four quadrants of Figure 33 are determined by the multi-model mean and define the storylines. The 
results of each storyline are presented in the form of boxplots in Figure 34. 
 
We notice that, except for LL, all storylines indicate a shift towards warmer and drier conditions, 
albeit the magnitude of the changes is uncertain. Accordingly, increases in hot and dry events are 
very likely. These shifts can be pronounced for storylines involving increases in Z500, in agreement 
with Z500 being the most strongly influenced variable (Figure 29). However, large changes in SSTs 
may also trigger similar changes in these variables. TN shows stronger shifts than TX in all storylines, 
showing the added value of its inclusion into the used indices. It also implies a marked increase of 
warm nights, which are impactful phenomena for the health sector. Most of the WB distribution 
shifts towards drier conditions than in CWS14.2, except for LL, for which the WB variability would 
remain similar to that in CWS14.2.  
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Figure 34 Boxplots of standardised anomalies of TX, TN and WB (with respect to CWS14.2). Storylines are based on 
changes with respect to the multi-model mean (Figure 33). Grey lines indicate an interval of one standard deviation 

and the black line is the mean value. 

5. CONCLUSIONS  

This report describes Artificial Intelligence (AI) and Machine Learning (ML) applications for the topics 
addressed in Work Package 5 (WP5), which include the attribution of Extreme Events (EEs), the 
detection of observed trends, and the quantification of future changes in EEs and concurrent EEs. 
The deliverable covers different types of EEs, with special emphasis on high-impact heatwaves 
(HWs) and droughts (DRs) at continental and regional hotspot scales of interest for WP6 and WP7. 
The key findings and outlook for next steps are summarised as follows:  
 
A novel hybrid approach combining AI-based Autoencoders and the classical Analogue Method (AE‐
AM) has been developed in CLINT for a probabilistic reconstruction of meteorological fields during 
EEs. This algorithm uses a deep AE trained with predictor fields of the EE (herein sea-level pressure, 
SLP, although other input variables may be considered), which are encoded into a reduced latent 
space. Then, the AM is directly applied to the states of this latent space in order to find similar 
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situations in the historical record. These analogue days are finally employed to reconstruct the 
targeted field. The AE‐AM approach has shown better performance than the classical AM in 
reconstructing the daily maximum temperature (TX) during the major historical European HWs. The 
results indicate that the AE can condense important information in the latent space that the AM 
may exploit for reconstruction in a more efficient way than using the explicitly resolved field. This 
illustrates a clear advantage of pre‐processing the data with the AE before the application of the 
AM method. Next steps foresee the inclusion of additional inputs (information channels), which 
could lead to reduced reconstruction errors and the development of highly conditioned attribution 
of EEs. The issues arising from the increased complexity in the model, such as the definition of 
distances in the multivariate space, or the relative importance of the predictors chosen for HW 
reconstruction are amenable to deep learning techniques.  
 
In addition to AE-AM, a pure AI-based model for attribution of EEs has been developed within CLINT. 
It uses a Variational Autoencoder (VAE) anomaly method for the detection of climate change signals. 
To do so, the model is trained in natural climate conditions, as simulated by Global Climate Models 
(GCMs), and this learning is applied to reconstruct a naturalised version of historical fields associated 
with EEs. The performance of the model is tested in simulated HWs. The results indicate that the 
VAE-anomaly detection is capable of detecting climate change signals in the spatio-temporal 
patterns of EEs (i.e. field structures that have never been seen in a climate without anthropogenic 
climate change). Once trained, the reconstruction is very fast and hence the method can be 
exploited for near real-time attribution of EEs (i.e. reconstructing how the EE could have evolved in 
a preindustrial climate without human influences). Future developments include: 1) cross-validation 
experiments in other (out-of-training) GCMs and/or reanalyses to address the influence of model 
biases and sensitivity to training datasets; 2) the transference of the VAE-anomaly method to the 
real world (observed EEs) and; 3) its application to other types of EEs.  
 
An AI-based method for the reconstruction of observational extreme indices over Europe has been 
designed. The infilling model employs a U-Net with partial convolutional layers. It is trained with 
historical GCM runs that were artificially masked with the missing values of the observational 
product to be completed, so that the infilled dataset can be compared with the original one. The 
trained model is then applied for the reconstruction of extreme indices of HadEX-CAM for each 
month of 1901-2018. For extreme temperature indices, the method produces consistent results 
when trained with different datasets, and outperforms the Kriging method, being very effective in 
the infilling of a large amount of missing information with irregular distribution. The model provides 
a longer temporal context for the assessment of trends of extreme indices and improves the 
characterisation of spatial patterns and regional means. Our AI-enhanced reconstruction reveals 
complex and more heterogeneous patterns of trend in European extreme temperature indices than 
HadEX3. The analyses demonstrate the capability of our AI method to investigate observed trends 
in a continuous observational dataset with a spatial resolution similar to that of modern reanalysis 
products but with a much longer temporal coverage. The reconstructed dataset has been prepared 
for the climate community to foster investigations that could further improve the understanding of 
EEs and their changes at local and regional scales. Additionally, it seeks to contribute to the 
development of nuanced climate-related policy at the regional level. The infilling model has also 
been adapted successfully for the reconstruction of global monthly mean temperature (HadCRUT5) 
and the Global Precipitation Climatology Centre dataset operated by the World Meteorological 
Organization, therefore allowing the infilling of derived indices related to multivariate climate EEs 
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such as DRs. Next steps include: 1) the reconstruction of other extreme indices (e.g. those related 
to precipitation); 2) the infilling of other observational datasets (e.g. E-OBS); 3) the extension of the 
analysis to global scales, including challenging regions characterised by severe data scarcity (e.g. 
Africa). 
 
Novel algorithms based on multiple AI-based strategies have been developed for the construction 
of storylines of EEs. These methods combine different AI-based approaches for the identification of 
candidate drivers (spatial clustering for dimensionality reduction and evolutionary algorithms for 
the optimisation of extracted features) with physical understanding and model evaluation 
supporting the final choice of drivers. AI-based methods deal with several limitations of classical 
methods, such as the large number of potential predictors (high-dimensionality), and their non-
linear interactions and dependencies among the drivers. Drivers are uncovered by applying these 
AI-based methods to reanalysis data, and subsequently verified on the multi-model ensemble. Then, 
the storyline technique makes it possible to construct physically-consistent evolutions of EEs based 
on the combined effect of climate change responses in these drivers. Such an approach allows 
managing the intrinsic multi-model uncertainty in future projections of EEs, reducing the large 
spread to a manageable number of storylines. The use of Common Warming States (CWSs), which 
select specific periods in the GCM simulations, further circumvents eventual model biases by 
focusing on periods with the same climate conditions. As an illustration of the AI-enhanced 
identification of climate drivers of future changes of EEs, the CLINT approach has been applied to 
summer HWs in the Po Valley, pinpointing its dependence on two main discovered drivers linked to 
regional precipitation in southeastern Europe and large-scale atmospheric circulation. In particular, 
an enhanced reduction of precipitation over Italy and the western Balkans and a deepening of North 
Atlantic Oscillation (both with respect to the multi-model mean) would increase the 90th percentile 
of maximum temperatures over the Po Valley by +1.72°C, which is approximately double than the 
simulated global warming (+0.8°C).  
 
Similar storyline experiments have been conducted for summer hot and dry events in central Europe 
(as represented by the Concurrent Extreme Event Index, CEEI), which can affect multiple socio-
economic sectors such as agriculture and health. In this case, Kernel Regularized Canonical 
Correlation Analysis method, combined with expert-based pre-selection of candidate drivers (mid-
tropospheric geopotential height and sea surface temperature, SST), has been employed to identify 
the dominant predictors and encapsulate their influences. The most important drivers of hot-dry 
days were atmospheric blocking in summer and a dipole of SSTs from April to June. Most of the 
GCMs project these drivers to occur more frequently in the future. As a consequence, storylines 
overall indicate that hot and dry conditions in central Europe will become more intense in the future. 
However, there are non-linear responses in the magnitude of hot-dry EEs to the changes in these 
drivers. Given the plethora of existing kernel functions, this CLINT approach can be adapted to 
different types of compound EEs. This will allow investigating non-linear feedbacks of these drivers 
and their evolution in future scenarios for a wide range of EEs. The storyline approach developed in 
CLINT dissects the interdependencies between the considered EEs and a set of selected drivers. 
Furthermore, it enables to identify the set of GCMs that follow a specific driver’s or combination of 
drivers’ responses (storyline), which can be used to run impact-based models (WP6 and WP7) and 
construct best and worst case scenarios. Additional future developments include the application of 
storylines to other hotspots (e.g. Douro Basin or Rhine Delta) and EEs (e.g. Tropical Cyclones and 
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DRs), and the exploration of processes and causal links between the drivers and the EEs. This will be 
the object of near future research, in cooperation with other WPs.  
 
Some of the applications carried out in WP5 have been developed at regional scales (e.g., storylines 
of HWs in the Po Valley; hot-dry days in central Europe), but with methods that are easily portable 
and adaptable to other regions. Other developments provide continental-wide results with 
information at the grid point scale (e.g. trends in extreme indices, attribution in spatially resolved 
fields), which would allow applications at different spatial aggregations, from the local scales 
relevant to WP7 to the pan-European scales addressed in WP6. As a note of caution, it is worth 
mentioning that the use of datasets and methods developed in WP5 are fit for purpose. Therefore, 
they might not be optimal for other regions or EEs and hence we strongly encourage testing the 
sensitivity of AI models before its application, and tuning the architecture and hyperparameters to 
the specific problem at hand, if needed. 
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